Sample Questions: Joint Distributions Part One

STA256 Fall 2018. Copyright information is at the end of the last page.

1. The discrete random variables x and y have joint probability mass function $p_{x y}=c x y$ for $x=1,2,3, y=1,2$, and zero otherwise.
(a) Find the value of the constant c and calculate the marginal frequency functions.
(b) What is $F_{x}(x)$?
2. The discrete random variables x and y have joint distribution

$$
\begin{array}{c|ccc}
& x=1 & x=2 & x=3 \\
\hline y=1 & 3 / 12 & 1 / 12 & 3 / 12 \\
y=2 & 1 / 12 & 3 / 12 & 1 / 12
\end{array}
$$

Give the following. The answers are numbers.
(a) $F_{x y}(1,1)$

$$
F_{x y}(2,2)
$$

(b) $F_{x y}(1.5,4)$

$$
F_{x y}(-1,3)
$$

(c) $F_{x y}(4,4)$

$$
F_{x y}(6,1.82)
$$

(d) $F_{x y}(4,19)$

$$
F_{x y}(0,0)
$$

	$x=1$	$x=2$	$x=3$
$y=1$	$3 / 12$	$1 / 12$	$3 / 12$
$y=2$	$1 / 12$	$3 / 12$	$1 / 12$

3. A jar contains 30 red marbles, 50 green marbles and 20 blue marbles. A sample of 15 marbles is selected with replacement. Let X be the number of red marbles and Y be the number of blue marbles. What is the joint probability mass function of X and Y ?
$p(x, y)=$
4. This time the selection is without replacement. Again, what is the joint probability mass function of X and Y ?
$p(x, y)=$
5. Let $f_{x, y}(x, y)= \begin{cases}c(x+y) & \text { for } 0 \leq x \leq 1 \text { and } 0 \leq y \leq x \\ 0 & \text { otherwise }\end{cases}$
(a) Find the constant c.
(b) What is $f_{x}(x)$?
6. The continuous random variables X and Y have joint cumulative distribution function

$$
F_{x y}(x, y)= \begin{cases}x^{3}-x^{3} e^{-y / 4} & \text { for } 0 \leq x \leq 1 \text { and } y \geq 0 \\ 1-e^{-y / 4} & \text { for } x>1 \text { and } y \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

(a) What is $F_{x y}\left(\frac{1}{2}, 3\right)$?
(b) What is $F_{x y}(2,3)$?
(c) What is $F_{x y}(-1,3)$?
(d) What is $f_{x y}(x, y)$?
7. Still for the joint distribution with

$$
\begin{aligned}
& F_{x y}(x, y)=\left\{\begin{array}{ll}
x^{3}-x^{3} e^{-y / 4} & \text { for } 0 \leq x \leq 1 \text { and } y \geq 0 \\
1-e^{-y / 4} & \text { for } x>1 \text { and } y \geq 0 \\
0 & \text { otherwise }
\end{array}\right. \text { and } \\
& f_{x, y}(x, y)= \begin{cases}3 x^{2} \frac{1}{4} e^{-y / 4} & \text { for } 0 \leq x \leq 1 \text { and } y \geq 0 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

(a) Obtain $f_{x}(x)$ by integrating out y.
(b) Calculate $F_{x}(x)$ by taking limits.
(c) Obtain $f_{x}(x)$ from $F_{x}(x)$.

For $F_{x y}(x, y)=\left\{\begin{array}{ll}x^{3}-x^{3} e^{-y / 4} & \text { for } 0 \leq x \leq 1 \text { and } y \geq 0 \\ 1-e^{-y / 4} & \text { for } x>1 \text { and } y \geq 0 \\ 0 & \text { otherwise }\end{array}\right.$ and
$f_{x, y}(x, y)= \begin{cases}3 x^{2} \frac{1}{4} e^{-y / 4} & \text { for } 0 \leq x \leq 1 \text { and } y \geq 0 \\ 0 & \text { otherwise }\end{cases}$
(d) Obtain $f_{y}(y)$ by integrating out x.
(e) Obtain $F_{y}(y)$ by taking limits.
(f) $\operatorname{Obtain} f_{y}(y)$ from Obtain $F_{y}(y)$.
8. Let $f_{x, y}(x, y)= \begin{cases}2 e^{-(x+y)} & \text { for } 0 \leq x \leq y \text { and } y \geq 0 \\ 0 & \text { otherwise }\end{cases}$

Obtain $f_{x}(x)$.
9. Let $f_{x, y}(x, y)= \begin{cases}\frac{x y}{16} & \text { for } 0 \leq x \leq 2 \text { and } 0 \leq y \leq 4 \\ 0 & \text { otherwise }\end{cases}$

Find $P\left(Y<X^{2}\right)$. The answer is a number.
10. Let $f_{x, y}(x, y)= \begin{cases}4 x y e^{-\left(x^{2}+y^{2}\right)} & \text { for } x \geq 0 \text { and } y \geq 0 \\ 0 & \text { otherwise }\end{cases}$

Find $P(Y>X)$. The answer is a number.

This handout was prepared by Jerry Brunner, Department of Mathematical and Computational Sciences, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The ${ }^{\mathrm{A}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ source code is available from the course website:

