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Goal of statistical analysis

The goal of statistical analysis is to draw
reasonable conclusions from noisy numerical data.
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Steps in the process of statistical analysis
One approach

I Consider a fairly realistic example or problem.

I Decide on a statistical model.

I Perhaps decide sample size.

I Acquire data.

I Examine and clean the data; generate displays and
descriptive statistics.

I Estimate model parameters, for example by maximum
likelihood.

I Carry out tests, compute confidence intervals, or both.

I Perhaps re-consider the model and go back to estimation.

I Based on the results of estimation and inference, draw
conclusions about the example or problem.
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What is a statistical model?
You should always be able to state the model.

A statistical model is a set of assertions that partly specify the
probability distribution of the observable data. The
specification may be direct or indirect.

I Let X1, . . . , Xn be a random sample from a normal
distribution with expected value µ and variance σ2.
The parameters µ and σ2 are unknown.

I For i = 1, . . . , n, let yi = β0 + β1xi,1 + · · ·+ βp−1xi,p−1 + εi,
where

β0, . . . , βp−1 are unknown constants.
xi,j are known constants.
ε1, . . . , εn are independent N(0, σ2) random variables.
σ2 is an unknown constant.
y1, . . . , yn are observable random variables.

The parameters β0, . . . , βp−1, σ
2 are unknown.
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Model and Truth
Is a statistical model the same thing as the truth?

“Essentially all models are wrong, but some are
useful.” (Box and Draper, 1987, p. 424)
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Parameter Space

The parameter space is the set of values that can be taken on by
the parameter.

I Let X1, . . . , Xn be a random sample from a normal
distribution with expected value µ and variance σ2.
The parameter space is {(µ, σ2) : −∞ < µ <∞, σ2 > 0}.

I For i = 1, . . . , n, let yi = β0 + β1xi,1 + · · ·+ βp−1xi,p−1 + εi,
where

β0, . . . , βp−1 are unknown constants.
xi,j are known constants.
ε1, . . . , εn are independent N(0, σ2) random variables.
σ2 is an unknown constant.
y1, . . . , yn are observable random variables.

The parameter space is
{(β0, . . . , βp−1, σ2) : −∞ < βj <∞, σ2 > 0}.
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Coffee taste test

A fast food chain is considering a change in the blend of coffee
beans they use to make their coffee. To determine whether their
customers prefer the new blend, the company plans to select a
random sample of n = 100 coffee-drinking customers and ask
them to taste coffee made with the new blend and with the old
blend, in cups marked “A” and “B.” Half the time the new
blend will be in cup A, and half the time it will be in cup B.
Management wants to know if there is a difference in preference
for the two blends.
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Statistical model

Letting θ denote the probability that a consumer will choose the
new blend, treat the data Y1, . . . , Yn as a random sample from a
Bernoulli distribution. That is, independently for i = 1, . . . , n,

P (yi|θ) = θyi(1− θ)1−yi

for yi = 0 or yi = 1, and zero otherwise.

I Parameter space is the interval from zero to one.

I θ could be estimated by maximum likelihood. θ̂ = y.

I Large-sample tests and confidence intervals are available.
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Carry out a test to determine which brand of coffee is
preferred
Recall the model is Y1, . . . , Yn

i.i.d.∼ B(1, θ)

Start by stating the null hypothesis.

I H0 : θ = 0.50

I H1 : θ 6= 0.50

I Could you make a case for a one-sided test?

I α = 0.05 as usual.

I Central Limit Theorem says θ̂ = Y is approximately
normal with mean θ and variance θ(1−θ)

n .
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Several valid test statistics for H0 : θ = θ0 are available
Recall that approximately, Y ∼ N(θ, θ(1−θ)

n
)

Two of them are

Z1 =

√
n(Y − θ0)√
θ0(1− θ0)

and

Z2 =

√
n(Y − θ0)√
Y (1− Y )

What is the critical value? Your answer is a number.

> alpha = 0.05

> qnorm(1-alpha/2)

[1] 1.959964
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Calculate the test statistic and the p-value for each test
Suppose 60 out of 100 preferred the new blend

Z1 =
√
n(Y−θ0)√
θ0(1−θ0)

> theta0 = .5; ybar = .6; n = 100

> Z1 = sqrt(n)*(ybar-theta0)/sqrt(theta0*(1-theta0)); Z1

[1] 2

> pval1 = 2 * (1-pnorm(Z1)); pval1

[1] 0.04550026

Z2 =
√
n(Y−θ0)√
Y (1−Y )

> Z2 = sqrt(n)*(ybar-theta0)/sqrt(ybar*(1-ybar)); Z2

[1] 2.041241

> pval2 = 2 * (1-pnorm(Z2)); pval2

[1] 0.04122683
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Conclusions

I Do you reject H0? Yes, just barely.

I Isn’t the α = 0.05 significance level pretty arbitrary?
Yes, but if people insist on a Yes or No answer, this is
what you give them.

I What do you conclude, in symbols? θ 6= 0.50. Specifically,
θ > 0.50.

I What do you conclude, in plain language? Your answer is a
statement about coffee. More consumers prefer the new
blend of coffee beans.

I Can you really draw directional conclusions when all you
did was reject a non-directional null hypothesis? Yes.
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A technical issue

I In this class we will mostly avoid one-tailed tests.

I Why? Ask what would happen if the results were strong and in
the opposite direction to what was predicted (dental example).

I But when H0 is rejected, we still draw directional conclusions.

I For example, if x is income and y is credit card debt, we test
H0 : β1 = 0 with a two-sided t-test.

I Say p = 0.0021 and β̂1 = 1.27. We say “Consumers with higher
incomes tend to have more credit card debt.”

I Is this justified? We’d better hope so, or all we can say is “There
is a connection between income and average credit card debt.”

I Then they ask: “What’s the connection? Do people with lower
income have more debt?”

I And you have to say “Sorry, I don’t know.”

I It’s a good way to get fired, or at least look silly.
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The technical resolution

Decompose the two-sided test into a set of two one-sided tests
with significance level α/2, equivalent to the two-sided test.
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Two-sided test

H0 : θ = 1
2 versus H1 : θ 6= 1

2 , α = 0.05

0.025 0.025

Z
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Left-sided test

H0 : θ ≥ 1
2 versus H1 : θ < 1

2 , α = 0.05

0.025
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Right-sided test

H0 : θ ≤ 1
2 versus H1 : θ > 1

2 , α = 0.05

0.025
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Decomposing the 2-sided test into two 1-sided tests

H0 : θ = 1
2 vs. H1 : θ 6= 1

2 , α = 0.05

0.025 0.025

Z

H0 : θ ≥ 1
2 vs. H1 : θ < 1

2 , α = 0.05

0.025

H0 : θ ≤ 1
2 versus H1 : θ > 1

2 , α = 0.05

0.025

I Clearly, the 2-sided test rejects H0 if and only if exactly
one of the 1-sided tests reject H0.

I Carry out both of the one-sided tests.
I Draw a directional conclusion if H0 is rejected.
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Summary of the technical resolution

I Decompose the two-sided test into a set of two one-sided
tests with significance level α/2, equivalent to the
two-sided test.

I In practice, just look at the sign of the regression
coefficient, or compare the sample means.

I Under the surface you are decomposing the two-sided test,
but you never mention it.
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Plain language

I It is very important to state directional conclusions, and
state them clearly in terms of the subject matter. Say
what happened! If you are asked state the conclusion in
plain language, your answer must be free of statistical
mumbo-jumbo.

I Marking rule: If the question asks for plain language and
you draw a non-directional conclusion when a directional
conclusion is possible, you get half marks at most.
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What about negative conclusions?
What would you say if Z = 1.84?

Here are two possibilities, in plain language.

I “This study does not provide clear evidence that
consumers prefer one blend of coffee beans over the other.”

I “The results are consistent with no difference in preference
for the two coffee bean blends.”

In this course, we will not just casually accept the null
hypothesis. We will not say that there was no difference in
preference.

We are taking the side of Fisher over Neyman and Pearson in
an old and very nasty argument.
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Confidence intervals
Usually for individual parameters

I Point estimates may give a false sense of precision.

I We should provide a margin of probable error as well.
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Copyright Information

This slide show was prepared by Jerry Brunner, Department of
Statistics, University of Toronto. It is licensed under a Creative
Commons Attribution - ShareAlike 3.0 Unported License. Use
any part of it as you like and share the result freely. The
LATEX source code is available from the course website:
http://www.utstat.toronto.edu/∼brunner/oldclass/appliedf19
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