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Abstract

When independent variables are measured with error, ordinary least squares re-

gression can yield parameter estimates that are biased and inconsistent. Here, we

document the inflation of Type I error that can occur in this situation. In addition to

analytic results, we report a large-scale Monte Carlo study showing unacceptably high

Type I error rates, under circumstances that could easily be encountered in practice.

The problem applies to various types of regression and various types of measure-

ment error. Statistical methods that incorporate measurement error are available,

but their use requires multiple indicators of the independent variables. This implies

a new tradition of data collection.

Keywords: Errors in variables, Measurement error, Type I error, Structural equa-

tion models, Monte Carlo.



Introduction

This is a story about something everyone knows, but few seem to appreciate. Con-

sider the usual univariate multiple regression model with independent normal errors.

Everyone knows that even though the independent variables are supposed to be fixed

constants, in non-experimental studies they are usually random variables. This is

okay, but if the independent variables are measured with error, everyone knows that

there is trouble. Expressions of concern go back at least to Stouffer (1936), who

observed that estimates of partial correlations can be biased when the variables for

which one is controlling are measured with error. By the seventh edition of Statistical

methods for research workers, Fisher (1938) was warning scientists about the prob-

lem, again in the context of partial correlation. For multiple regression proper, earlier

discussions are reviewed and clarified by Cochran (1968), who shows that when the

independent variables are measured with error, ordinary least squares estimates of

the regression coefficients can be inconsistent and biased, even asymptotically.

The misleading quality of measurement error in the independent variables has

figured in one important political debate. Initial analyses of data from the Head

Start program (Cicirelli et al. 1969, Barnow 1973) suggested that even controlling

for socioeconomic status, students receiving a shorter (summer-only) version of the

program performed worse on an educational test than students who were not exposed

to any version of the Head Start program. The conclusion was that Head Start could

actually be harmful. This claim was challenged by Campbell and Erlbacher (1970) on

the grounds that socioeconomic status was measured with error, and so attempts to

control for it using ordinary least squares would not completely correct for differences

between the treatment group and the non-randomized comparison group.

In subsequent debate and re-analysis of the data allowing for measurement error

(Magidson 1977, Bentler and Woodward 1978, Magidson 1978), harmful effects are
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entirely ruled out. It is now accepted that all versions of the Head Start program

were helpful for African-American and Mexican-American children, and that the full

program was also helpful for White children; disagreement is limited to whether the

data also provide adequate evidence of a positive effect (not a negative effect) for

White children receiving the summer-only version of the program. What we take

from this example is that one can get away with ignoring measurement error, but not

when the conclusions of the study make a serious difference.

If measurement error is not to be ignored, it must be included in the statistical

model. The modelling of measurement error in the predictor variables has a long

history, especially in economics; see Wald (1940) and Madansky (1959) for references

to early writings. Today, there is a well-developed literature on regression models

that incorporate measurement error; for example, see the discussions and references

in Fuller (1987), Cheng and Van Ness (1999) and Wansbeek and Meijer (2000). These

measurement error models are special cases of the structural equation and related

models that have been long been popular in the social and biomedical sciences: see

for example Jöreskog (1978), Bollen (1989), and the generalizations of Skrondal and

Rabe-Hesketh (2004), Muthén (2002) and Muthén & Muthén (2006).

So, it is widely recognized that measurement error can present a problem for

ordinary least-squares regression, and a class of high-quality solutions is in place.

But please glance at the regression text that is closest to hand, provided that it is not

an econometrics text. It may or may not contain a warning about measurement error

in the independent variables, but look at the examples and sample data sets. You

will be reminded that in practice, measurement error is routinely ignored, and that

individuals at all levels of statistical sophistication are encouraged to go ahead and

carry out ordinary least-squares regression on observational data without worrying too

much about it. It is as if people are saying that asymptotic bias and inconsistency do
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sound pretty bad, but maybe there is is just a little bit of measurement error. Maybe

it does not matter much.

Unfortunately, it can matter a lot. Ignoring measurement error in the independent

variables of a regression can drastically inflate Type I error. Simply put, when one

tries to “control” for an independent variable that is measured with error, traditional

methods do not completely do the job. This holds under circumstances that can easily

be encountered in practice, and applies to various types of regression and various types

of measurement error.

We focus upon Type I error rather than bias, because significance tests are often

used in the biological and social sciences as a kind of filter, to reduce the amount

of random noise that gets into the scientific literature. In fact, we view this as the

primary function of statistical hypothesis testing in the discourse of science. Essen-

tially, p < 0.05 means that it is socially acceptable to speak. Therefore, when a

common statistical practice can be shown to inflate Type I error, there is a problem

— a problem that will be recognized by a large class of practitioners who are totally

unmoved by calculations of asymptotic bias.

Of course there is a connection between asymptotic bias and Type I error. If the

asymptotic bias occurs when the null hypothesis is true, and the estimated standard

deviation of the estimator tends to zero under the incorrect model, then the Type I

error rate will necessarily increase to unity. This accounts for passing references

(Fuller, 1978, p. 55; Cochran, 1968, p. 653) to incorrect Type I error rates when

measurement error is ignored. What we are doing in this paper is documenting the

connection and making it explicit for a particular class of examples.

In Section 1, we revisit an example discussed by Cochran (1968), in which ignoring

measurement error is shown to produce inconsistent least-squares estimates of regres-

sion coefficients when the independent variables as well as the dependent variable are
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normal. We observe that the inconsistency applies regardless of distribution, and that

the Type I error rate of the usual F or t test tends almost surely to one as the sample

size approaches infinity. These analytic results are supported by a large-scale Monte

Carlo study showing unacceptably high Type I error rates, even for small amounts of

measurement error and moderate sample sizes.

In Section 2, we report a set of smaller-scale simulations. First, we present an

example of how ignoring measurement error can result in rejection of the null hy-

pothesis virtually always when the null hypothesis is false — but with the regression

coefficient having the wrong sign. Finally, we combine references to the literature

and small Monte Carlo studies to show that ignoring measurement error in the in-

dependent variables can inflate Type I error for various types of regression (such as

logistic regression and Cox proportional hazards regression for survival data), and

various types of measurement error, including classification error for categorical in-

dependent variables. This calls into question many non-experimental studies which

claim to have “controlled” for potential confounding variables or risk factors using

the standard tools.

Modelling measurement error is preferable to ignoring it, and good solutions are

available. However, models that include measurement error usually require multi-

ple indicators of the independent variables in order to be uniquely identified in the

model parameters. For linear regression with measurement error, a simple solution

is to measure the independent variables twice. If it can be assumed that errors of

measurement on different occasions are uncorrelated, then appropriate methods can

applied in a routine manner.
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1 Inflation of Type I error rate

To see how badly things can go wrong when measurement error is ignored, consider

a multiple regression model in which there are two independent variables, both mea-

sured with simple additive error. This situation has been thoroughly studied, notably

by Cochran (1968), but the following is a bit more general than usual.

Independently for i = 1, . . . , n, let

Yi = β0 + β1ξi,1 + β2ξi,2 + εi (1)

Xi,1 = ν1 + ξi,1 + δi,1

Xi,2 = ν2 + ξi,2 + δi,2,

where β0, β1 and β2 are unknown constants (regression coefficients), and

E

[
ξi,1

ξi,2

]
=

[
κ1

κ2

]
V ar

[
ξi,1

ξi,2

]
= Φ =

[
φ11 φ12

φ12 φ22

]

E

[
δi,1

δi,2

]
=

[
0
0

]
V ar

[
δi,1

δi,2

]
= Θ =

[
θ11 θ12

θ12 θ22

]
E[εi] = 0 V ar[εi] = σ2.

The true independent variables are ξi,1 and ξi,2, but they are latent variables that

cannot be observed directly. They are independent of the error term εi and of the

measurement errors δi,1 and δi,2; the error term is also independent of the measurement

errors. The constants ν1 and ν2 represent measurement bias. For example, if ξ1 is true

average minutes of exercise per day and X1 is reported average minutes of exercise,

then ν1 is the mean amount by which people exaggerate their exercise times.

Also, it is reasonable to allow the measurement errors to be correlated. Again,

suppose that ξ1 is true amount of exercise and X1 is reported amount of exercise,

while ξ2 is true age and X2 is reported age. It is natural to imagine that adults who

exaggerate how much they exercise might tend to under-report their ages. Thus, the

covariance parameter θ12 is quite meaningful.
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When a model such as (1) holds, all one can observe are the triples (Xi,1, Xi,2, Yi)

for i = 1, . . . , n. Suppose the interest is in testing whether ξ2 is related to Y , condi-

tionally on the value of ξ1. The natural mistake is to take X1 as a surrogate for ξ1

and X2 as a surrogate for ξ2, fit the model

Yi = β0 + β1Xi,1 + β2Xi,2 + εi (2)

by ordinary least squares, and (assuming εi normal) test the null hypothesis H0 : β2 =

0 using the usual t or F -test.

Suppose that in fact β2 = 0 in Model (1), so that conditionally upon the value of ξ1,

the dependent variable Y is independent of ξ2. We now observe that that except under

special circumstances, the least squares quantity β̂2 based on Model (2) converges

almost surely to a quantity different from β2 = 0 as the sample size increases, with

the p-value of the standard test going to zero and the Type I error rate going to one.

1.1 Almost sure disaster

The ordinary least-squares estimate β̂2 (based upon the incorrect Model 2) is a func-

tion of the sample variance-covariance matrix, which by the Strong Law of Large

Numbers, converges almost surely to the true variance-covariance matrix of the ob-

served data. This variance-covariance matrix is in turn a function of the parameters of

the true model (1). So by a continuity argument, the ordinary least-squares estimate

converges almost surely to the corresponding function of the true model parameters.

Our focus is upon Type I error for the present, so we examine the case where

H0 : β2 = 0 is true. Setting β2 = 0 and simplifying, we find that as n tends to

infinity,

β̂2
a.s.→ β1(φ12θ11 − φ11θ12)

(φ11 + θ11)(φ22 + θ22)− (φ12 + θ12)2
(3)

Expression (3) is the asymptotic bias of β̂2 as an estimate of the true regression

parameter β2, in the case where β2 = 0. Notice that it does not depend upon the

6



intercept β0, the measurement bias terms ν1 and ν2, nor upon κ1 and κ2, the expected

values of the latent independent variables.

Clearly, the bias is zero only if β1 = 0 (the dependent variable is unrelated to ξ1)

or if φ12θ11 = φ11θ12. Notice the parallel roles played by φ12, the covariance between

the latent “true” independent variables, and θ12, the covariance between error terms.

If they have opposite signs they pull in the same direction, but if they have the same

sign they can partially or even completely offset one another. The effect of φ12 is

augmented by the variance of the error in measuring ξ1, while the effect of θ12 is

augmented by the variance of ξ1 itself.

The parameter θ11, the variance of the error term δ1, represents the amount of

noise in the independent variable for which one is trying to control, while θ22 is the

amount of noise in the independent variable one is trying to test. Clearly, θ11 is a

greater potential problem, because θ22 appears only in the denominator; measurement

error in the variable for which one is testing actually decreases the asymptotic bias,

in this case where β2 = 0. Incidentally, the denominator of (3) is the determinant of

the covariance matrix of X1 and X2; it will be positive provided that at least one of

Φ and Θ are positive definite. This condition is required for convergence.

All these details aside, the main point is that when Y is conditionally independent

of ξ2, the estimator β̂2 converges to a quantity that is not zero in general. Now, β̂2

is the numerator of the t-statistic commonly used to test H0 : β2 = 0 as a substitute

for the real null hypothesis H0 : β2 = 0. The denominator, the estimated standard

deviation of β̂2, may be written as

Sbβ2
=

Wn√
n

.

Using the same approach that led to (3), we find that Wn converges almost surely

to a positive constant, again provided that at least one of the covariance matrices Φ

and Θ are positive definite. Consequently, the absolute value of the t-statistic blows
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up to infinity, and the associated p-value converges almost surely to zero. That is, we

almost surely commit a Type I error.

1.2 A Monte Carlo study of Type I error inflation

The preceding result applies as n → ∞. To get an idea of how much Type I might

error be inflated in practice, we conducted a large-scale Monte Carlo study in which

we simulated data sets from Model (1) using various sample sizes, probability distri-

butions and parameter values.

Since Expression (3) for the asymptotic bias does not depend on any of the ex-

pected value terms, we set all expected values to zero for the simulations, except for

an arbitrary intercept β0 = 1 in the latent regression equation. Also, we let θ1,2 = 0,

so there is no correlation between the measurement errors.

This is a complete factorial experiment with six factors.

1. Sample size: There were 5 values; n = 50, 100, 250, 500 and 1000.

2. Correlation between latent (true) independent variables: Letting R1. R2 and R3

be independent random variables with mean zero and variance one, we calcu-

lated

ξ1 =
√

1− φ1,2 R1 +
√

φ1,2 R3 and (4)

ξ2 =
√

1− φ1,2 R2 +
√

φ1,2 R3,

yielding V ar(ξ1) = V ar(ξ2) = 1 and a correlation of φ1,2 between ξ1 and ξ2. A

quiet but important feature of this construction is that when φ1,2 = 0, ξ1 and ξ2

are independent, even when the distributions are not normal. There were five

correlation values: φ1,2 = 0.00, 0.25, 0.75, 0.80 and 0.90.

8



3. Variance explained by ξ1: With β1 = 1, β2 = 0 and V ar(ξ1) = φ1,1 = 1,

we have V ar(Y ) = 1 + σ2. So, the proportion of variance in the dependent

variable that comes from ξ1 is 1
1+σ2 . We used this as an index of the strength

of relationship between ξ1 and Y , and adjusted it by changing the value of

σ2. There were three values of explained variance, corresponding to a weak,

moderate and strong relationship between ξ1 and Y : 0.25, 0.50 and 0.75.

4. Reliability of X1: In classical psychometric theory (for example Lord and Novick,

1968) the reliability of a test is the squared correlation between the observed

score and the true score. It is also the proportion of variance in the observed

score that comes from the true score. From Model (1), we have

[Corr(ξ1, X1)]
2 =

[
φ1,1√

φ1,1

√
φ1,1 + θ

1,1

]2

=
1

1 + θ1,1

.

Thus we may manipulate the reliability by changing the value of the error

variance θ1,1. Five reliability values were employed, ranging from lackluster to

stellar: 0.50, 0.75, 0.80, 0.90 and 0.95.

5. Reliability of X2: The same five values were used: 0.50, 0.75, 0.80, 0.90 and

0.95.

6. Base distribution: In all the simulations, the distribution of the errors in the

latent regression (εi) are normal; we have no interest in revisiting the conse-

quences of violating the assumption of normal error in multiple regression. But

the distributions of the latent independent variables and measurement errors

are of interest. We constructed the measurement error terms by multiplying

standardized random variables by constants to give them the desired variances.

These standardized random variables, and also the standardized variables R1.

R2 and R3 used to construct ξ1 and ξ2 – see Equations (4) – come from a com-
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mon distribution, which we call the “base” distribution. Four base distributions

were examined.

• Standard normal

• Student’s t with degrees of freedom 4.1, scaled to have unit variance.

• Uniform on the interval (−
√

3,
√

3), yielding mean zero and variance one.

• Pareto (density f(x) = α
xα+1 for x > 1) with α = 4.1, but standardized.

Distributions and base distributions Because the simulated data values are

linear combinations of standardized random variables from the base distribution,

the base distribution is the same as the distribution of the simulated data only for

the normal case. Otherwise, the independent variables (both latent and observed)

are nameless linear combinations that inherit some of the properties of the base

distribution. The t base distribution yielded heavy-tailed symmetric distributions,

the Pareto yielded heavy-tailed nonsymmetric distributions, and the uniform yielded

light-tailed distributions.

Results Again, this is a complete factorial experiment with 5× 5× 3× 5× 5× 4 =

7, 500 treatment combinations. Within each treatment combination, we indepen-

dently generated 10,000 random sets of data, for a total of 75 million simulated data

sets. For each data set, we ignored measurement error, fit Model (2) and tested

H0 : β2 = 0 with the usual “extra sum of squares” F -test. The proportion of sim-

ulated data sets for which the null hypothesis was rejected at α = 0.05 is a Monte

Carlo estimate of the Type I error rate.

Considerations of space do not permit us to reproduce the entire set of results

here. Instead, we give an excerpt that tells the main part of the story, referring

the reader to www.utstat.toronto.edu/~brunner/MeasurementError for the rest.
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On the Web, the full set of results is available in the form of a 6-dimensional table

with 7,500 cells, and also in the form of a plain text file with 7,500 lines, suitable as

input data for further analysis. Complete source code for our special-purpose fortran

programs is also available for download, along with other supporting material.

Table 1 shows the results when all the variables are normally distributed and

the reliabilities of both independent variables equal 0.90; that is, only 10% of the

variance of the independent variables arises from measurement error. In the social

and behavioral sciences, a reliability of 0.90 would be considered impressively high,

and one might think there was little to worry about.

In Table 1, we see that except when the latent independent variables ξ1 and

ξ2 are uncorrelated, applying ordinary least squares regression to the corresponding

observable variables X1 and X2 results in a substantial inflation of the Type I error

rate. As one would predict from Expression (3) with θ1,2 = 0, the problem becomes

more severe as ξ1 and ξ2 become more strongly related, as ξ1 and Y become more

strongly related, and as the sample size increases. We view the Type I error rates

in Table 1 as shockingly high, even for fairly moderate sample sizes and modest

relationships among variables.

This same pattern of results holds for all four base distributions, and for all twenty-

five combinations of reliabilities of the independent variables. In addition, the Type I

error rates increase with decreasing reliability of X1, and decrease with decreasing

reliability of X2 (the variable being tested). The distribution of the error terms and

independent variables does not matter much, though average Type I error rates are

slightly lower when the base distribution is the skewed and heavy-tailed Pareto; the

marginal mean estimated Type I error rate was 0.37 for the Pareto, compared to 0.38

for the Normal, t and Uniform.
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Table 1: Estimated Type I error rates when independent variables and measurement
errors are all normal, and reliability of X1 and X2 both equal 0.90

25% of Variance in Y is Explained by ξ1

Correlation Between ξ1 and ξ2

N 0.0 0.2 0.4 0.6 0.8
50 0.0476† 0.0505† 0.0636 0.0715 0.0913
100 0.0504† 0.0521† 0.0834 0.0940 0.1294
250 0.0467† 0.0533† 0.1402 0.1624 0.2544
500 0.0468† 0.0595† 0.2300 0.2892 0.4649
1000 0.0505† 0.0734 0.4094 0.5057 0.7431

50% of Variance in Y is Explained by ξ1

Correlation Between ξ1 and ξ2

N 0.0 0.2 0.4 0.6 0.8
50 0.0460† 0.0520† 0.0963 0.1106 0.1633
100 0.0535† 0.0569† 0.1461 0.1857 0.2837
250 0.0483† 0.0625 0.3068 0.3731 0.5864
500 0.0515† 0.0780 0.5323 0.6488 0.8837
1000 0.0481† 0.1185 0.8273 0.9088 0.9907

75% of Variance in Y is Explained by ξ1

Correlation Between ξ1 and ξ2

N 0.0 0.2 0.4 0.6 0.8
50 0.0485† 0.0579† 0.1727 0.2089 0.3442
100 0.0541† 0.0679 0.3101 0.3785 0.6031
250 0.0479† 0.0856 0.6450 0.7523 0.9434
500 0.0445† 0.1323 0.9109 0.9635 0.9992
1000 0.0522† 0.2179 0.9959 0.9998 1.00000

†Not Significantly different from 0.05, Bonferroni corrected for 7,500 tests.
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2 And there’s more

2.1 Significance in the wrong direction

Consider Model (1) again. Let the covariance between ξ1 and ξ2 be positive, the partial

relationship between ξ1 and Y be positive, and the partial relationship between ξ2

and Y be negative. That is, φ1,2 > 0, β1 > 0, and β2 < 0. Again, suppose we

ignore measurement error and fit Model (2) with ordinary least squares, and test

H0 : β2 = 0. We now describe a simulation showing how small negative values of β2

can be overwhelmed by the positive relationships between ξ1 and ξ2, and between ξ1

and Y , leading to rejection of the null hypothesis at a high rate, accompanied by a

positive value of β̂2.

This kind of “Type III error” (Kaiser, 1960) is particularly unpleasant from a

scientist’s perspective, because the reality is that for each value of the first indepen-

dent variable, the second independent variable is negatively related to the dependent

variable. But application of the standard statistical tool leads to the conclusion that

the relationship is positive – the direct opposite of the truth. Almost certainly, such

a finding will muddy the literature and interfere with the development of any worth-

while scientific theory.

As in the first set of simulations, we set all expected values in Model (1) to zero

except for the intercept β0 = 1. We also let θ1,2 = 0, β1 = 1, and φ1,1 = φ2,2 = 1. We

then employed a standard normal base distribution, together with a sample size and

set of parameter values guaranteed to cause problems with Type I error: n = 500,

φ1,2 = 0.90, σ2 = 1
3

(so that ξ1 explains 0.75 of the variance in Y ), θ1,1 = 1 (so that

the reliability of X1 is 0.50), and θ2,2 = 1
19

(so that the reliability of X2 is 0.95).

We then varied β2 from minus one to zero, generating 10,000 data sets for each

value of β2. For each data set, we fit Model (2) and tested H0 : β2 = 0 at α = 0.05

with the usual F -test. Each test was classified as significant with β̂2 > 0, significant
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Figure 1: Probability of Rejecting H0 : β2 = 0
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Figure 1 shows the results. For substantial negative values of β2, the null hypothe-

sis H0 : β2 = 0 is rejected at a high rate with β̂2 < 0, leading to the correct conclusion

even though the model is wrong. As the value of β2 increases, the proportion of sig-

nificant tests decreases to near zero around β2 = −0.76 Then for values of β2 closer

to zero (but still negative), the null hypothesis is increasingly rejected again, but this

time with β̂2 > 0, leading to the conclusion of a positive relationship, when in fact

the relationship is negative. This example shows how ignoring measurement error in

the independent variables can lead to firm conclusions that are directly opposite to

reality.
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2.2 The generality of the problem

We have illustrated inflation of Type I error for the normal linear model with simple

additive measurement error, but the problem is much more general. We suggest that

regardless of the type of measurement error and regardless of the statistical method

used, ignoring measurement error in the independent variables can seriously inflate

Type I error. We will now support this assertion by references to the literature, supple-

mented by a collection of quick, small-scale Monte Carlo studies. All the simulations

in this section were carried out using R Version 2.1.1 (R Development Core Team,

2006). Code is available at www.utstat.toronto.edu/~brunner/MeasurementError.

Logistic regression with additive measurement error In this small simulation,

we constructed data sets with a pair of latent independent variables ξ1 and ξ2, and

corresponding manifest variables X1 and X2, using a normal base distribution and

the troublesome Φ and Θ values of Section (2.1). We then constructed a binary

dependent variable Y , with the log odds of Y = 1 equal to β0 + β1ξ1 + β2ξ2, where

β0 = β1 = 1 and β2 = 0. Ignoring the measurement error, we fit a standard logistic

regression model with the log odds of Y = 1 equal to β0 + β1X1 + β2X2, and used a

likelihood ratio test of H0 : β2 = 0. The parallel to what we did with ordinary least

squares regression should be clear.

In 1,000 simulations with n = 250, we incorrectly rejected the null hypothesis

957 times. This shows that the problem described in this paper applies to logistic

regression as well as to the normal linear model.

Normal linear regression with censored independent variables Austin and

Brunner (2003) describe inflation of Type I error for the case where an independent

variable has a “cutoff” – a value that is recorded for the independent variable if

it equals or exceeds the cutoff value. The inflation of Type I error occurs when
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the one attempts to test another variable that is correlated with the true version

of the censored variable, while “controlling” for the censored version with ordinary

regression. If one views the censoring as an obscure type of measurement error, this

fits neatly into the framework of the present paper.

Normal linear regression and logistic regression with categorized indepen-

dent variables The most common variant of this data analytic crime arises when

independent variables are split at the median and converted to binary variables. The

loss of information about the independent variables is a type of measurement error,

albeit one that is deliberately introduced by the data analyst. Maxwell and Delaney

(1993) show how Type I error can be inflated in this situation. While their argument

depends upon a multivariate normal distribution for the data, in fact the inflation

of Type I error does not depend upon the distribution (apart from the existence of

moments). Median splitting the independent variables has also been shown to inflate

Type I error in logistic regression (Austin and Brunner, 2004).

Normal linear regression, ranking the independent variable We have un-

published work showing that in terms of Type I error, median splits are worse than

dividing the independent variable into three categories, three categories are worse

than four, and so on. The limiting case is when an independent variable is ranked,

and one performs a regression controlling for the ranked version, rather than for the

independent variable itself. Even here there can be substantial Type I error inflation;

we demonstrate this with a quick simulation.

We constructed data sets according to Model (1) again using the Φ values of

Section (2.1), a reliability of 0.95 for X2, a normal base distribution, β0 = β1 = 1 and

β2 = 0. However, the observable independent variable X1 contained the ranks of ξ1,

rather than ξ1 plus a piece of random noise. As usual, we fit the incorrect regression
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model (2) and tested H0 : β2 = 0 with the usual “extra sum of squares F -test. In

1,000 simulated data sets, the null hypothesis was rejected 544 times at the 0.05 level.

Log-linear models with classification error For categorical independent vari-

ables, the most natural kind of measurement error is classification error, in which the

recorded value of a variable is different from the true one. In this case, the structure

of measurement error corresponds to a matrix of transition probabilities from the

latent variable to the observable variable.

Now we construct an example to show that ignoring measurement error can lead

to unacceptable inflation of the Type I error rate in this situation. Again there

are two correlated latent variables ξ1 and ξ2, only this time they are binary. The

corresponding observable variables X1 and X2 are also binary. There is a binary

dependent variable Y that is dependent upon ξ1 and conditionally independent of ξ2.

The components of the measurement error model are two-way tables of the joint

probabilities of ξ1 and ξ2, ξ1 with X1, and ξ2 with X2. The values we used are given

in Table 2.

Table 2: Joint probabilities for the classification error model

ξ1

ξ2 0 1
0 0.40 0.10
1 0.10 0.40

X1

ξ1 0 1
0 0.30 0.20
1 0.20 0.30

X2

ξ2 0 1
0 0.45 0.05
1 0.05 0.45

The data were constructed by first sampling a (ξ1, ξ2) pair from a multinomial

distribution, and then simulating X1 conditionally on ξ1 and X2 conditionally on

ξ2. Finally, we generated Y conditionally on ξ1 using P (Y = 0|ξ1 = 0) = P (Y =

1|ξ1 = 1) = 0.80. Repeating this process n = 250 times yielded a simulated data

set of (X1, X2, Y ) triples. We then tested for conditional independence of X2 and
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Y given X1, as a surrogate for for the conditional independence of ξ2 and Y given

ξ!. Specifically, we used R’s loglin function to fit a hierarchical loglinear model

with an association between X1 and X2, and between X1 and Y . Comparing this to

a saturated model, we calculated a large-sample likelihood ratio test of conditional

independence with two degrees of freedom. In 1,000 independent repetitions of this

process, the null hypothesis was incorrectly rejected 983 times at the 0.05 level.

Factorial ANOVA with classification error In an unbalanced factorial design

with a quantitative dependent variable, a common approach — say using the Type III

sums of squares of SAS proc glm (SAS Institute Inc., 1999) — is to test each main

effect controlling for all the others as well as the interactions. We now report a quick

simulation showing that in a two-factor design, if factor level membership is subject

to classification error in one of the independent variables, then Type I error may be

inflated in testing for a main effect of the other independent variable.

We started with two correlated binary latent independent variables ξ1 and ξ2,

and their corresponding observable versions X1 and X2, constructed according to the

same classification error model we used for loglinear models; see Table 2. We then

generated the dependent variable as Y = 1 + ξ1 + ε, where ε is Normal with mean

zero and variance 1
4
. Because ξ1 is Bernoulli with probability one-half, its variance

is also 1
4
, and it accounts for half the variance in Y . Conditionally upon the latent

(true) independent variable ξ1, Y is independent of ξ2 and there is no interaction.

Repeating this process n = 200 times yielded a simulated data set of (X1, X2, Y )

triples. As usual, we conducted the analysis using the observable variables X1 and X2

in place of ξ1 and ξ2 respectively, ignoring the measurement error. We fit a regression

model with effect coding and a product term for the interaction, and tested for a

main effect of X2 at the 0.05 level with the usual F test. Again, this is equivalent to

the test based on Type III sums of squares in SAS proc glm. Conducting this test
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on 1,000 simulated data sets, we incorrectly rejected the null hypothesis 995 times.

Discarding data to get equal sample sizes in factorial ANOVA In Section 1,

we saw that inflation of Type I error arises not just from measurement error in the

independent variables, but from the combination of correlated independent variables

and measurement error in the one for which one is attempting to “control.” Now

sometimes, researchers (not statisticians, we hope) randomly discard data from ob-

servational studies to obtain balanced factorial designs, and it might be tempting to

try this here to eliminate the correlation between independent variables. It doesn’t

work, though, because it is association between the latent independent variables that

is the source of the problem.

To verify this, we simulated random sets of data exactly as in the last example,

except that when one of the four combinations of X1, X2 values reached 50 observa-

tions, we discarded all subsequent observations in that cell, continuing until we had

50 data values in each of the four cells. Then we tested for a main effect of X2 (as a

surrogate for ξ2) exactly as before. The result was that we wrongly rejected the null

hypothesis 919 times in 1,000 simulated data sets.

Proportional hazards regression with additive measurement error The last

mini-simulation shows that the problem of inflated Type I error extends to survival

analysis. Proceeding as in earlier examples, we constructed data sets with a pair

of latent independent variables ξ1 and ξ2, and also corresponding manifest variables

using a normal base distribution and the the Φ and Θ values of Section (2.1). We

then sampled the dependent variable Y from an exponential distribution with mean

exp β0 + β1ξ1 + β2ξ2, with β0 = β1 = 1 and β2 = 0. So again, Y is conditionally

independent of ξ2. We then right-censored all the data for which Y > 5 (Type I

censoring), so that around a quarter of the data in each data set were censored.
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Ignoring the measurement error, we fit a proportional hazards model (Cox, 1972)

with R’s coxph function, using X1 and X2 as the independent variables, testing the

relationship of X2 to Y controlling for X1. In 1,000 simulated data sets with n = 100,

we incorrectly rejected the null hypothesis 994 times, showing that proportional haz-

ards regression, too, is subject to severe inflation of Type I error when measurement

error in the independent variables is ignored.

3 Discussion

We are not suggesting that ignoring measurement error always inflates Type I error

to the degree indicated by our Monte Carlo results. Usually there are more than

two independent variables; in this case, ordinary least-squares estimates of regression

parameters are still asymptotically biased, but the pattern is complex, with many

parameters having the potential to partially cancel or magnify the effects of others

when the null hypothesis is true. With estimated standard errors going to zero, Type I

error will still approach one as the sample size tends to infinity for most parameter

confiurations, but the magnitude of the effect for a given sample size will depend

upon the variances and covariances among the independent variables and among the

measurement errors.

Still, we cannot escape the conclusion that measurement error in the independent

variables will inflate Type I error to some degree. The severity of the problem in

practice is unknown, but our Monte Carlo results suggest that it can be very bad.

Given this, it seems unduly optimistic to continue applying standard regression and

related methods in the presence of obvious measurement error, and hoping that the

various sources of trouble will cancel out and everything will be okay. Surely, we can

do better.

For linear models with measurement error, we prefer to use classical structural
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equation modelling of the kind described by Jöreskog (1978) and Bollen (1989), rather

than, for example, the arguably more sophisticated methods of Fuller (1987). This

is partly because structural equation models are easier to present to students and

clients, and partly because of the availability of high-quality commercial software such

as LISREL (Jöreskog and Sörbom, 1996), AMOS (Arbuckle, 2006) and SAS proc calis

(SAS Institute, 1999). There is also a structural equation modelling package for R

(Fox, 2006). Estimation and testing methods have been developed for categorical

variables, both latent and observed (Lee and Xia, 2006; Muthén, 2002; Muthén and

Muthén, 2006; Skrondal and Rabe-Hesketh, 2004). Our hope is that tools like these

will soon become part of the statistical mainstream.

However, it is not just a matter of applying a new statistical method to the

same old data. In many cases, a different kind of data set is required. The reason

is that for even the simplest measurement error models, multiple indicators of the

independent variables are required for the model to be identified; see for example the

discussions by Fuller (1987) and Bollen (1989). A simple solution for linear regression

with measurement error is measure each independent variable twice, preferably on

two different occasions and using different methods or measuring instruments —

perhaps as in Campbell and Fiske’s (1959) “multi-trait multi-method matrix.” If it

can be assumed that the measurement errors on the two occasions are uncorrelated,

scientists and undergraduates without much mathematical background should have

no trouble using commercially available software to carry out a valid measurement

error regression.
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