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3.4.3 Scheffé . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.4.4 Simultaneous confidence intervals and adjusted p-values . . . . . . . 85

iii



iv CONTENTS
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Preface to Edition 0.9

This book is free and open source

From the perspective of the student, possibly the most important thing about this text-
book is that you don’t have to pay for it. You can read it either online or in hard copy,
and there are no restrictions on copying or printing. You may give a copy to anyone you
wish; you may even sell it without paying royalties. The point is not so much that the
book is free, but that you are free.

The plan for publishing this book is deliberately modeled on open source software.
The source code is LATEXṪhere are also some graphics files, most of which were produced
with R. The R code appears as comment statements in the LATEX source. There are also
some modifiable graphics files in the open svg format). Continuing the analogy to open
source software, the compiled binary is a PDF or DjVu file. Everything is available at

www.utstat.toronto.edu/∼brunner/DataAnalysisText.

This document is distributed without any warranty. You are free to copy and distribute
it in its present form or in modified form, under the terms of the GNU Free Documentation
License as published by the Free Software Foundation. A copy of the license is included
in Appendix 12. In case this appendix is missing, the Free Documentation License is may
be found at

http://www.gnu.org/copyleft/fdl.html.

The Approach of the Book

This book is about using statistical methods to draw conclusions from real data. The
methods are intermediate to advanced, and the student should have had at least one
Statistics class at some time in the past. The course (or courses) can be at any level,
mathematical or not. The important thing is that the student have some exposure to
concepts like null hypothesis and p-value, or else the treatment in Chapter 1 will go past
too rapidly for comfort.

But but while data analysis uses statistical methods, it’s not just Statistics. The
enterprise consists of research design, data processing, and applications of Statistical
methods; you need to think about the parts pretty much at the same time in order to
do a decent job. Research design is vital because the numbers that are collected and the

vii
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viii PREFACE TO EDITION 0.9

way they are collected determine the information they contain. So research design places
limits upon the conclusions that can be drawn from a given data set, regardless of what
statistical technique is used. And while the details of how data are processed prior to the
actual analysis may not have a lot of intellectual value in itself, but it can have a huge
impact on the quality of the final result. So we will not hesitate to get our hands dirty.

Occupying a territory somewhere between descriptive statistics and data processing is
data checking and cleaning. Almost all real data sets contain errors, and some of them
can be located and fixed during the data analysis. The practical importance of checking
and cleaning the data can scarcely be exaggerated1. As the old saying goes, “Garbage in,
garbage out.”

A lot of the book is about statistical ideas. The presentation is deliberately non-
mathematical2, relying on translations of statistical theory into English. For the most
part, formulas are avoided. While this involves some loss of precision, it also makes
the course accessible to students from non-statistical disciplines (particularly graduate
students and advanced undergraduates on their way to graduate school) who need to use
statistics in their research. Even for students with strong training in theoretical statistics,
the use of plain English can help reveal the connections between theory and applications,
while also suggesting a useful way to communicate with non-statisticians.

We will avoid mathematics, but we will not avoid computers. Learning to apply
statistical methods to real data involves actually doing it, and the use of software is
not optional. Furthermore, we will not employ “user-friendly” menu-driven statistical
programs. Why?

• It’s just too easy to poke around in the menus trying different things, produce some
results that seem reasonable, and then two weeks later be unable to say exactly
what one did.

• Real data sets tend to be large and complex, and most statistical analyses involve
a sizable number of operations. If you discover a tiny mistake after you produce
your results, you don’t want to go back and repeat two hours of menu selections
and mouse clicks, with one tiny variation.

• If you need to analyze a data set that is similar to one you have analyzed in the past,
it’s a lot easier to edit a program than to remember a collection of menu selections
from last year.

To clarify, the word “program” does not mean we are going to write programs in some
true programming language like C or Java. We’ll use statistical software in which most

1For example, in one study designed to predict students’ Calculus marks, one of the predictors was High
School grade point average (GPA), a number from zero to 4.0. There were some zeros, but they meant
that the students’ actual GPAs were not recorded for some reason — and nobody told the statistician.
Consider the consequences of calculating means and regression coefficients and so on without first checking
the data.

2When I cannot resist the impulse to say something requiring a background in mathematical statistics,
I’ll try to put it in a footnote. Footnotes may contain other kinds of digression as well.
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of the actual statistical procedures have already been written by experts; usually, all we
have to do is invoke them by using high-level commands.

The statistical programs we will use are SAS and to a much lesser extent, R. These
programs are command-oriented rather than menu-oriented, and are very powerful. They
are industrial strength tools.

Message to the Instructor

Among commercial books I know, Ramsey and Schafer’s The Statistical Sleuth [17] comes
closest to this book in its goals and level. In my view, Ramsey and Schafer’s text is much
better than this one; their range of statistical methods is broader, and in particular their
examples and sample data sets are wonderful. The advantage of the book you’re reading
is that it’s free, and also (just from my personal perspective) I find Ramsey and Schafer’s
relentless model-building approach to data analysis a little tiring. Maybe in time this
book will approach the Statistical Sleuth in quality, especially if other people help clean
it up and contribute some chapters. In the meantime, one could do worse than requiring
students to use the present text, placing Ramsey and Schafer on reserve, and using some
of their examples in lecture.

Earlier versions of this text presented SAS running in a unix/linux environment. This
was convenient at the University of Toronto, where students can log in remotely to unix
servers running SAS, and use the software without charge. All that has changed with the
introduction of SAS University Edition, which is available free of charge to anyone with a
university email address. It’s really better and more convenient in most ways, so starting
with Edition 0.9, all references to the operating system (including unix text editors, ssh
access and so on) will be eliminated, and just the SAS programs, log files and output will
be presented. Details of how to use SAS University Edition are best given in lecture.
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Chapter 1

Introduction

1.1 Vocabulary of data analysis

We start with a data file. Think of it as a rectangular array of numbers, with the rows
representing cases (units of analysis, observations, subjects, replicates) and the columns
representing variables (pieces of information available for each case). There are n cases,
where n is the sample size.

• A physical data file might have several lines of data per case, but you can imagine
them listed on a single long line.

• Data that are not available for a particular case (for example because a subject fails
to answer a question, or because a piece of measuring equipment breaks down) will
be represented by missing value codes. Missing value codes allow observations with
missing information to be automatically excluded from a computation.

• Variables can be quantitative (representing amount of something) or categorical.
In the latter case the “numbers” are codes representing category membership. Cate-
gories may be ordered (small vs. medium vs. large) or unordered (green vs. blue
vs. yellow). When a quantitative variable reflects measurement on a scale capable of
very fine gradation, it is sometimes described as continuous. Some statistical texts
use the term qualitative to mean categorical. When an anthropologist uses the
word “qualitative,” however, it usually refers to ethnographic or case study research
in which data are not explicitly assembled into a data file.

Another very important way to classify variables is

Explanatory Variable: Predictor = X (actually Xi, i = 1, . . . , n)

Response Variable: Predicted = Y (actually Yi, i = 1, . . . , n)

Example: X = weight of car in kilograms, Y = fuel efficiency in litres per kilometer

Sample Question 1.1.1 Why isn’t it the other way around?

1



2 CHAPTER 1. INTRODUCTION

Answer to Sample Question 1.1.1 Since weight of a car is a factor that probably in-
fluences fuel efficiency, it’s more natural to think of predicting fuel efficiency from weight.

The general principle is that if it’s more natural to think of predicting A from B, then
A is the response variable and B is the explanatory variable. This will usually be the case
when B is thought to cause or influence A. Sometimes it can go either way or it’s not
clear. Usually, it’s easy to decide.

Sample Question 1.1.2 Is it possible for a variable to be both quantitative and categor-
ical? Answer Yes or No, and either give an example or explain why not.

Answer to Sample Question 1.1.2 Yes. For example, the number of cars owned by a
person or family.

In some fields, you may hear about nominal, ordinal, interval and ratio variables,
or variables measured using “scales of measurement” with those names. Ratio means
the scale of measurement has a true zero point, so that a value of 4 represents twice as
much as 2. An interval scale means that the difference (interval) between 3 and 4 means
the same thing as the difference between 9 and 10, but zero does not necessarily mean
absence of the thing being measured. The usual examples are shoe size and ring size.
In ordinal measurement, all you can tell is that 6 is less than 7, not how much more.
Measurement on a nominal scale consists of the assignment of unordered categories. For
example, citizenship is measured on a nominal scale.

It is usually claimed that one should calculate means (and therefore, for example,
do multiple regression) only with interval and ratio data; it’s usually acknowledged that
people do it all the time with ordinal data, but they really shouldn’t. And it is obviously
crazy to calculate a mean on numbers representing unordered categories. Or is it?

Sample Question 1.1.3 Give an example in which it’s meaningful to calculate the mean
of a variable measured on a nominal scale.

Answer to Sample Question 1.1.3 Code males as zero and females as one. The mean
is the proportion of females.

It’s not obvious, but actually all this talk about what you should and shouldn’t do with
data measured on these scales does not have anything to do with statistical assumptions.
That is, it’s not about the mathematical details of any statistical model. Rather, it’s a set
of guidelines for what statistical model one ought to adopt. Are the guidelines reasonable?
It’s better to postpone further discussion until after we have seen some details of multiple
regression.
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1.2 Statistical significance

We will often pretend that our data represent a random sample from some population.
We will carry out formal procedures for making inferences about this (usually fictitious)
population, and then use them as a basis for drawing conclusions from the data.

Why do we do all this pretending? As a formal way of filtering out things that happen
just by coincidence. The human brain is organized to find meaning in what it perceives,
and it will find apparent meaning even in a sequence of random numbers. The main
purpose of testing for statistical significance is to protect Science against this. Even when
the data do not fully satisfy the assumptions of the statistical procedure being used (for
example, the data are not really a random sample) significance testing can be a useful way
of restraining scientists from filling the scientific literature with random garbage. This is
such an important goal that we will spend a substantial part of the course on significance
testing.

1.2.1 Definitions

Numbers that can be calculated from sample data are called statistics. Numbers that
could be calculated if we knew the whole population are called parameters. Usually
parameters are represented by Greek letters such as α, β and γ, while statistics are
represented by ordinary letters such as a, b, c. Statistical inference consists of making
decisions about parameters based on the values of statistics.

The distribution of a variable corresponds roughly to a relative frequency histogram
of the values of the variable. In a large population for a variable taking on many values,
such a histogram will be indistinguishable from a smooth curve1.

For each value x of the explanatory variable X, in principle there is a separate dis-
tribution of the response variable Y . This is called the conditional distribution of Y
given X = x.

We will say that the explanatory and response variables are unrelated if the condi-
tional distribution of the response variable is identical for each value of the explanatory
variable2. That is, the relative frequency histogram of the response variable does not de-
pend on the value of the explanatory variable. If the distribution of the response variable
does depend on the value of the explanatory variable, we will describe the two variables
as related. All this vocabulary applies to sample as well as population data-sets3.

1Since the area under such a curve equals one (remember, it’s a relative frequency histogram), the
smooth curve is a probability density function.

2As a technical note, suppose that X and Y are both continuous. Then the definition of “unrelated”
says f(y|x) = f(y), which is equivalent to f(x, y) = f(x)f(y). This is the definition of independence. So
the proposed definition of “unrelated” is a way of smuggling the idea of statistical independence into this
non-technical discussion. I said I was going to put the mathematical digressions in footnotes.

3A population dataset may be entirely hypothetical. For example, if a collection of cancer-prone
laboratory mice are given an anti-cancer vaccine, one might pretend that those mice are a random
sample from a population of all cancer-prone mice receiving the vaccine – but of course there is no such
population.
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Most research questions involve more than one explanatory variable. It is also com-
mon to have more than one response variable. When there is one response variable, the
analysis is called univariate. When more than one response variable is being considered
simultaneously, the analysis is called multivariate.

Sample Question 1.2.1 Give an example of a study with two categorical explanatory
variables, one quantitative explanatory variable, and two quantitative dependent variables.

Answer to Sample Question 1.2.1 In a study of success in university, the subjects
are first-year university students. The categorical explanatory variables are Sex and Im-
migration Status (Citizen, Permanent Resident or Visa), and the quantitative explanatory
variable is family income. The dependent variables are cumulative Grade Point Average
at the end of first year, and number of credits completed in first year.

Many problems in data analysis reduce to asking whether one or more variables are
related – not in the actual data, but in some hypothetical population from which the
data are assumed to have been sampled. The reasoning goes like this. Suppose that the
explanatory and response variables are actually unrelated in the population. If this null
hypothesis is true, what is the probability of obtaining a sample relationship between
the variables that is as strong or stronger than the one we have observed? If the proba-
bility is small (say, p < 0.05), then we describe the sample relationship as statistically
significant, and it is socially acceptable to discuss the results. In particular, there is
some chance of having the results taken seriously enough to publish in a scientific journal.

The number 0.05 is called the significance level. In principle, the exact value of
the significance level is arbitrary as long as it is fairly small, but scientific practice has
calcified around a suggestion of R. A. Fisher (in whose honour the F -test is named), and
the 0.05 level is an absolute rule in many journals in the social and biological sciences.

We will willingly conform to this convention. We conform willingly because we under-
stand that scientists can be highly motivated to get their results into print, even if those
“results” are just trends that could easily be random noise. To restrain these people from
filling the scientific literature with random garbage, we need a clear rule.

For those who like precision, the formal definition of a p-value is this. It is the minimum
significance level α at which the null hypothesis (of no relationship between explanatory
variable and response variable in the population) can be rejected.

Here is another useful way to talk about p-values. The p-value is the probability of
getting our results (or better) just by chance. If p is small enough, then the data are very
unlikely to have arisen by chance, assuming there is really no relationship between the
explanatory variable and the response variable in the population. In this case we will
conclude there really is a relationship.

Of course we seldom or never know for sure what is happening in the entire population.
So when we reject a null hypothesis, we may be right or wrong. Sometimes, the null
hypothesis is true (nothing is going on) and we mistakenly reject it; this is called a
Type One Error. It is also possible that the null hypothesis is false (there really is a
relationship between explanatory and response variable in the population) but we fail to
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reject it. This is called a Type Two Error. This numbering expresses the philosophy
that false knowledge is a really bad thing – it’s the Number One kind of mistake you can
make.

The probability of correctly rejecting the null hypothesis – that is, the probability of
discovering something that really is present, is one minus the probability of a Type Two
error. This is called the Power of a statistical test. Clearly, more power is a good thing.
But there is a tradeoff between power and Type One error, so that it is impossible for any
statistical test to simultaneously minimize the chances of Type One error and maximize
the power. The accepted solution is to insist that the Type One error probability be no
more than some small value (the significance level – 0.05 for us), and use the test that has
the greatest power subject to this constraint. An important part of theoretical statistics
is concerned with proving that certain significance tests that have the best power, and
the tests that are used in practice tend to be the winners of this contest.

If you think about it for a moment, you will realize that most of the time, even a test
with good overall power will not have exactly the same power in every situation. The two
main principles are:

• The stronger the relationship between variables in the population, the greater the
power.

• The larger the sample size, the greater the power.

These two principles may be combined to yield a method for choosing a sample size
based on power, before any data have been collected. You choose a strength of relationship
that you want to detect, ideally one that is just barely strong enough to be scientifically
meaningful. Then you choose a (fairly high) probability with which you want to be able
to detect it. Next, you pick a sample size and calculate the power – not difficult, in this
age of computers. It will almost certainly be too low, though it may be higher than you
need if you have started with a huge sample size. So you increase (or decrease) the sample
size, and calculate the power again. Continue until you have located the smallest sample
size that gives you the power you want for the strength of relationship you have chosen.
This is not the only rational way to choose sample size, but it is one of the two standard
ones.4 Examples will be given later.

Closely related to significance tests are confidence intervals. A confidence interval
corresponds to a pair of numbers calculated from the sample data, a lower confidence limit
and an upper confidence limit. The confidence limits are chosen so that the probability
of the interval containing some parameter (or function of the parameters, like a difference
between population means) equals a large value, say 0.95. Such a confidence interval
would be called a “ninety-five percent confidence interval.” The connection between tests
and confidence intervals is that a two tailed t-test or Z-test will be significant at the 0.05
level if and only if the 95% confidence interval does not contain zero.

4The other standard way is to choose the sample size so that a chosen confidence interval will have at
most some specified width.
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1.2.2 Should You Accept the Null Hypothesis?

What should we do if p > .05? Fisher suggested that we should not conclude anything. In
particular, he suggested that we should not conclude that the explanatory and response
variables are unrelated. Instead, we can say only that there is insufficient evidence to
conclude that there is a relationship. A good reference is Fisher’s masterpiece, Statistical
methods for research workers [9], which had its first edition in 1925, and its 14th and last
edition in 1970, eight years after Fisher’s death.

In some courses, Fisher’s advice is given as an absolute rule. Students are told that
one never accepts the null hypothesis. But in other courses, if the null hypothesis is not
rejected, then it is accepted without further question. Who is right? This is the echo
of a very old quarrel between Fisher, who is responsible for the concept of hypothesis
testing more or less as we know it, and the team of Jerzy Neyman and Egon Pearson,
who came along a bit later and cleaned up Fisher’s method, putting it on a firm decision-
theoretic basis. The decision in question is between the null hypothesis and the alternative
hypothesis, period. According to Neyman and Pearson, you have to pick one of them,
based on the data. Refusal to decide is not an option.

During their lifetimes, Fisher fought bitterly with Neyman and Pearson. To Neyman
and Pearson, Fisher was creative but mathematically unsophisticated. To Fisher, Neyman
and Pearson were good mathematicians, but they were missing the point, because science
does not proceed by simple yes or no decisions made in isolation from one another. Today,
Neyman-Pearson theory usually dominates in theoretical research and theoretical courses,
while Fisher’s approach dominates in applications and applied courses. One might think
that because this is an applied course, we’ll just side with Fisher. But it’s a bit trickier
than that.

In the typical data analysis project, the first step is to assemble the data file and
check it for errors. Then, the usual practice is to carry out a variety of statistical tests
to get a preliminary idea of how the variables are related to each other. This phase can
be automated (as in stepwise regression) or not, but in general you try a lot of tests,
and if a potential explanatory variable is not significantly related to the response variable
in question, you usually just drop it and look elsewhere. That is, the null hypothesis is
freely accepted, and the Neyman-Pearson approach seems to govern this most applied of
statistical pursuits.

You can’t fault this; scientists must explore their data, and statistical testing is a
good way to do it. But it is helpful to distinguish between exploratory and confirmatory
statistical analysis. In an exploratory analysis, the researcher carries out a large number
of tests in an attempt to understand how the variables are related to one another. Various
statistical models are employed, variables may be defined and re-defined several times, and
the sample may be subdivided in various ways. Anything reasonable may be (and should
be) attempted. Numerous null hypotheses may be tentatively rejected, and numerous
others may be tentatively accepted. Properly speaking, the product of an exploratory
analysis is hypotheses, not conclusions. It is rare for all the details of an exploratory
analysis to be given in writing, though it is good practice to keep a record of what has
been tried.
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In a confirmatory analysis, a more limited number of tests are carried out with the
intention of coming to firm conclusions.5 The results of confirmatory analyses are often
written up, because communication of results is in many ways the most important phase
of any investigation. It is clear that acceptance of the null hypothesis is a standard
feature of good exploratory analysis, even if it is not recognized as such. The argument
between Fisher and Neyman-Pearson is whether the null hypothesis should be accepted
in confirmatory analysis.

First of all, it’s clear that Fisher is right in a way. Suppose you wish to compare two
methods of teaching the piano. You randomly assign three students to one method and
two students to the other. After some reasonable period of time, you compare ratings of
their performance, using a two-sample t test or something. Suppose the results are not
statistically significant. Does it make sense to conclude that the two methods are equally
effective? Obviously not; the sample size is so small that we probably don’t have enough
power to detect even a fairly large effect.

But Neyman and Pearson do not give up, even in this situation. They say that if
one had to choose based just on this tiny data set, the conclusion of no effect would be
the rational choice. Meanwhile, Fisher is going crazy. Who would decide anything based
on such inadequate evidence? He does not know whether to laugh at them or tear his
hair out, so he does both, in public. On their side, Neyman and Pearson are irritated
by Fisher’s unwillingness (or inability) to appreciate that when statistical tests emerge as
mathematical consequences of a general theory, this is better than just making them up
out of thin air.

Fisher wins this round, but it’s not over. The trouble with his approach is that it never
allows one to conclude that the null hypothesis is true. But sometimes, experimental
treatments just don’t do anything, and it is of scientific and practical importance to be
able to say so. For example, medical researchers frequently conclude that drugs don’t
work. On what basis are they drawing these conclusions? On what basis should they
draw such conclusions?

Unfortunately, though there are clear conventional standards for deciding when a
relationship is present, there is much less agreement on how to decide that one is absent.
In medical research, scientists often get away with such claims based only on the fact
that a test fails to attain statistical significance. Then, if the sample size is not unusually
small, nobody objects. It seems to depend on the editor of the journal.

There are a couple of reasonable suggestions about how to be more systematic (need
references here). Both methods stop short of allowing you to conclude that a relationship
is completely absent. Instead, they focus on deciding that the relationship between ex-

5Ideally, exploratory and confirmatory analyses should be carried out on different data sets, possibly
by randomly splitting the data into exploratory and confirmatory sub-samples. But this is only feasible
when data are not too expensive or time-consuming to collect. In practice, researchers often explore their
data thoroughly, and then report the most interesting results as if they were a confirmatory analysis.
This practice is almost guaranteed to inflate the probability of Type One error, so it is wise to treat the
results of most scientific investigations as tentative until they have been independently replicated. In any
case, it is useful to distinguish conceptually between exploratory and confirmatory analysis, even though
the pure forms may seen only rarely in practice.
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Figure 1.1: A relationship that is significant but too weak to be meaningful.
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planatory variable and response variable is so weak that it does not matter, if it exists at
all.

One approach is based on power. Suppose you have selected the sample size so that
that there is a high probability (maybe 95%) of detecting a relationship that is just barely
meaningful (of course, if the relationship in the population happens to be stronger, the
probability of detecting it will be even higher). Then, if the test is non-significant, you
conclude that the relationship is not strong enough to be meaningful.

Another approach is based on confidence intervals. Again, you need to be able to
specify what’s scientifically or perhaps clinically meaningful, in terms of the population
parameters. You construct a confidence interval for the quantity in question (for example
a difference between means). If the 95% confidence interval lies entirely within a range of
values that is scientifically meaningless, you conclude that the relationship is not strong
enough to be meaningful.

These two reasonable methods need not yield the same conclusion for a given data
set; the confidence interval approach allows a relationship to be deemed negligible even
though it is statistically significant, while the power approach does not. Figure 1.1 shows
how this can happen. Notice that the 95% confidence interval is entirely within the range
of values deemed too small to be meaningful. But the confidence interval does not contain
zero, so p < 0.05. Any time the true parameter value is in the non-meaningful range but
is not exactly zero, a configuration like this is guaranteed to occur if the sample size is
large enough.

Unfortunately, both the power method and the confidence interval method typically
require a very large sample to conclude that a relationship is (virtually) absent. So it
often happens that an important test is non-significant, but the power for detecting a
marginal effect was fairly low, and the confidence interval includes both zero and values
that are not trivial. In this situation, the best we can do is follow Fisher’s advice, and
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say that the data do not provide sufficient evidence to conclude that the explanatory and
response variables are related.

Frequently, one has to write for a non-technical audience, and an important part of
this course is to express conclusions in plain, non-technical language — language that is
understandable to someone with no statistical training, but at the same time acceptable
to experts. Suppose you need to state conclusions, and the results are not statistically
significant. Most of your primary audience has no statistical background, so you need to
speak in clear, non-statistical language. But some of the audience (maybe including the
technical staff of your main audience) will be very disturbed if you seem to be accepting
the null hypothesis; they can make a lot of trouble. How do you finesse this?

Here are some statements that are acceptable. It’s good not to use exactly the same
phrase over and over.

• The data do not provide evidence that the treatment has any effect.

• There was no meaningful connection between . . .

• The results were consistent with no treatment effect.

• The results were consistent with no association between astrological sign and per-
sonality type.

• The small differences in average taste ratings could have been due to sampling error.

• The small differences in average taste ratings were within the range of sampling
error.

The nice thing about using this kind of language is that it communicates clearly to non-
experts, but it lets the experts read between the lines and see that you are aware of
the technical (philosophic) issue, and that you are being careful. There are many, many
more examples in Moore and McCabe’s Introduction to the practice of statistics [15].
This introductory text is simple and non-technical on the surface, but written with all
the theoretical complexities clearly in mind and under control. The result is a book
that satisfies both the absolute beginner and the professional statistician — quite an
accomplishment.

1.2.3 The Format of the Data File is Important!

If you’re the person who will be doing the statistical analysis for a research study, there
is an initial period where you are learning the objectives of the study and how the data
are going to be collected. For example, perhaps participants are going to watch some
commercials and then fill out a questionnaire. From the very beginning, you should be
thinking about what the cases are, what the explanatory and response variables are,
checking whether determining the relationships between explanatory and response vari-
ables will satisfy the objectives of the research, and deciding what statistical tests to
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employ. All this applies whether you are helping plan the study, or (more likely, if you are
a statistician) you are being brought in only after the data have already been collected.

Many scientific questions can be answered by determining whether explanatory vari-
ables and response variables are related. This makes it helpful to arrange data files in the
row-by-column format suggested at the beginning of this chapter. Again, rows are usually
cases, and columns are usually variables. But most data do not automatically come in
this format unless a knowledgeable person has arranged it that way.

Data Analysis Hint 1 If a data set is not already in a row-by-column format with rows
corresponding to cases and columns corresponding to variables, you should put it in this
format yourself, or get someone else to do it.

Statistical software (including SAS) mostly expects data to be arranged this way, so
Hint 1 is partly a matter of convenience. But there’s more to it than that. You might be
surprised how much a good data format can support good research design. For example,
it is common for people who are very smart in other ways to record data over time at
considerable effort and expense, but to change the data that are recoded or the way
they are recorded throughout the course of the study. As a result, almost nothing is
comparable, and most of the effort is wasted. An investigator who is thinking in terms of
variables and cases is less likely to make this blunder.

The row-by-column format forces you to know how many cases there are, and which
data come from the same case. Also, thinking in terms of variables helps you decide
whether two different variables are intended as measures of the same thing at different
times, or as quantities that are completely different.

On the other hand, you should keep your mind open. It is possible that for some
studies and certain advanced statistical models, a different structure of the data file could
be better. But I have never seen an example that applies to real data. In my experience,
when data are recorded in a format other than the one advocated here, it is a sign of lack
of sophistication on the part of the researchers.

So in the next section, please pay attention to the format of the data files. Bear in
mind, though, that these are all elementary tests, with one explanatory variable and one
response variable. Almost all real data sets have more than two variables.

1.2.4 Standard elementary significance tests

We will now consider some of the most common elementary statistical methods; these
are covered in most introductory statistics courses. There is always just one explanatory
variable and one response variable. For each test, you should be able to answer the
following questions.

1. Make up your own original example of a study in which the technique could be used.

2. In your example, what is the explanatory variable?

3. In your example, what is the response variable?

4. Indicate how the data file would be set up.
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Independent observations One assumption shared by most standard methods is that
of ”independent observations.” The meaning of the assumption is this. Observations 13
and 14 are independent if and only if the conditional distribution of observation 14 given
observation 13 is the same for each possible value observation 13. For example if the
observations are temperatures on consecutive days, this would not hold. If the response
variable is score on a homework assignment and students copy from each other, the
observations will not be independent.

When significance testing is carried out under the assumption that observations are
independent but really they are not, results that are actually due to chance will often be
detected as significant with probability considerably greater than 0.05. This is sometimes
called the problem of inflated n. In other words, you are pretending you have more
separate pieces of information than you really do. When observations cannot safely be
assumed independent, this should be taken into account in the statistical analysis. We
will return to this point again and again.

Independent (two-sample) t-test

This is a test for whether the means of two independent groups are different. Assumptions
are independent observations, normality within groups, equal variances. For large samples
normality does not matter. For large samples with nearly equal sample sizes, equal
variance assumption does not matter. The assumption of independent observations is
always important.

Sample Question 1.2.2 Make up your own original example of a study in which a two-
sample t-test could be used.

Answer to Sample Question 1.2.2 An agricultural scientist is interested in compar-
ing two types of fertilizer for potatoes. Fifteen small plots of ground receive fertilizer A
and fifteen receive fertilizer B. Crop yield for each plot in pounds of potatoes harvested is
recorded.

Sample Question 1.2.3 In your example, what is the explanatory variable (or vari-
ables)?

Answer to Sample Question 1.2.3 Fertilizer, a binary variable taking the values A
and B.

Sample Question 1.2.4 In your example, what is the response variable (or variables)?

Answer to Sample Question 1.2.4 Crop yield in pounds.

Sample Question 1.2.5 Indicate how the data file might be set up.

Answer to Sample Question 1.2.5
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A 13.1
A 11.3
...

...
B 12.2
...

...

Matched (paired) t-test

Again comparing two means, but from paired observations. Pairs of observations come
from the same case (subject, unit of analysis), and presumably are non-independent. The
matched t-test takes this lack of independence into account by computing a difference for
each pair, reducing the volume of data (and the apparent sample size) by half. This is our
first example of a repeated measures analysis. Here is a general definition. We will say
that there are repeated measures on an explanatory variable if a case (unit of analysis,
subject, participant in the study) contributes a value of the response variable for each
value of the explanatory variable in question. A variable on which there are repeated
measures is sometimes called a within-cases (or within-subjects) variable. When this
language is being spoken, variables on which there are not repeated measures are called
between-cases. In a within-cases design, each case serves as its own control. When the
correlations among data from the same case are substantial, a within-cases design can
have higher power than a between-cases design.

The assumptions of the matched t-test are that the differences represent independent
observations from a normal population. For large samples, normality does not matter.
The assumption that different cases represent independent observations is always impor-
tant.

Sample Question 1.2.6 Make up your own original example of a study in which a
matched t-test could be used.

Answer to Sample Question 1.2.6 Before and after a 6-week treatment, participants
in a quit-smoking program were asked “On the average, how many cigarettes do you smoke
each day?”

Sample Question 1.2.7 In your example, what is the explanatory variable (or vari-
ables)?

Answer to Sample Question 1.2.7 Presence versus absence of the program, a binary
variable taking the values “Absent” or “Present” (or maybe “Before” and “After”). We
can say there are repeated measures on this factor, or that it is a within-subjects factor.

Sample Question 1.2.8 In your example, what is the response variable (or variables)?

Answer to Sample Question 1.2.8 Reported number of cigarettes smoked per day.

Sample Question 1.2.9 Indicate how the data file might be set up.
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Answer to Sample Question 1.2.9 The first column is “Before,” and the second col-
umn is “After.”

22 18
40 34
20 10
...

...

One-way Analysis of Variance

Extension of the independent t-test to two or more groups. Same assumptions, everything.
F = t2 for two groups.

Sample Question 1.2.10 Make up your own original example of a study in which a
one-way analysis of variance could be used.

Answer to Sample Question 1.2.10 Eighty branches of a large bank were chosen to
participate in a study of the effect of music on tellers’ work behaviour. Twenty branches
were randomly assigned to each of the following 4 conditions. 1=No music, 2=Elevator
music, 3=Rap music, 4=Individual choice (headphones). Average customer satisfaction
and worker satisfaction were assessed for each bank branch, using a standard question-
naire.

Sample Question 1.2.11 In your example, what are the cases?

Answer to Sample Question 1.2.11 Branches, not people answering the questionnaire.

Sample Question 1.2.12 Why do it that way?

Answer to Sample Question 1.2.12 To avoid serious potential problems with inde-
pendent observations within branches. The group of interacting people within social setting
is the natural unit of analysis, like an organism.

Sample Question 1.2.13 In your example, what is the explanatory variable (or vari-
ables)?

Answer to Sample Question 1.2.13 Type of music, a categorical variable taking on 4
values.

Sample Question 1.2.14 In your example, what is the response variable (or variables)?

Answer to Sample Question 1.2.14 There are 2 response variables, average customer
satisfaction and average worker satisfaction. If they were analyzed simultaneously the
analysis would be multivariate (and not elementary).

Sample Question 1.2.15 Indicate how the data file might be set up.
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Answer to Sample Question 1.2.15 The columns correspond to Branch, Type of Mu-
sic, Customer Satisfaction and Worker Satisfaction

1 2 4.75 5.31
2 4 2.91 6.82
...

...
...

...
80 2 5.12 4.06

Sample Question 1.2.16 How could this be made into a repeated measures study?

Answer to Sample Question 1.2.16 Let each branch experience each of the 4 music
conditions in a random order (or better, use only 72 branches, with 3 branches receiving
each of the 24 orders). There would then be 10 pieces of data for each bank: Branch,
Order (a number from 1 to 24), and customer satisfaction and worker satisfaction for
each of the 4 conditions.

Including all orders of presentation in each experimental condition is an example of
counterbalancing — that is, presenting stimuli in such a way that order of presentation
is unrelated to experimental condition. That way, the effects of the treatments are not
confused with fatigue or practice effects (on the part of the experimenter as well as the
subjects). In counterbalancing, it is often not feasible to include all possible orders of
presentation it each experimental condition, because sometimes there are too many. The
point is that order of presentation has to be unrelated to any manipulated explanatory
variable.

Two (and higher) way Analysis of Variance

Extension of One-Way ANOVA to allow assessment of the joint relationship of several
categorical explanatory variables to one quantitative response variable that is assumed
normal within treatment combinations. Tests for interactions between explanatory vari-
ables are possible. An interaction means that the relationship of one explanatory variable
to the response variable depends on the value of another explanatory variable. This
method is not really elementary, because there is more than one explanatory variable.

Crosstabs and chi-squared tests

Cross-tabulations (Crosstabs) are joint frequency distribution of two categorical variables.
One can be considered an explanatory variable, the other a response variable if you like.
In any case (even when the explanatory variable is manipulated in a true experimental
study) we will test for significance using the chi-squared test of independence. Assumption
is independent observations are drawn from a multinomial distribution. Violation of the
independence assumption is common and very serious.

Sample Question 1.2.17 Make up your own original example of a study in which this
technique could be used.
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Answer to Sample Question 1.2.17 For each of the prisoners in a Toronto jail, record
the race of the offender and the race of the victim. This is illegal; you could go to jail
yourself for publishing the results. It’s totally unclear which is the explanatory variable
and which is the response variable, so I’ll make up another example.

For each of the graduating students from a university, record main field of study and
and gender of the student (male or female).

Sample Question 1.2.18 In your example, what is the explanatory variable (or vari-
ables)?

Answer to Sample Question 1.2.18 Gender

Sample Question 1.2.19 In your example, what is the response variable (or variables)?

Answer to Sample Question 1.2.19 Main field of study (many numeric codes).

Sample Question 1.2.20 Indicate how the data file would be set up.

Answer to Sample Question 1.2.20 The first column is Gender (0=Male, 1=F). The
second column is Field.

1 2
0 14
0 9
...

...

Correlation and Simple Regression

Correlation Start with a scatterplot showing the association between two (quantita-
tive, usually continuous) variables. A scatterplot is a set of Cartesian coordinates with
a dot or other symbol showing the location of each (x, y) pair. If one of the variables
is clearly the explanatory variable, it’s traditional to put it on the x axis. There are n
points on the scatterplot, where n is the number of cases in the data file.

Often, the points in a scatterplot cluster around a straight line. The correlation
coefficient (Pearson’s r) expresses how close the points are to the line.
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Here are some properties of the correlation coefficient r:

• −1 ≤ r ≤ 1

• r = +1 indicates a perfect positive linear relationship. All the points are exactly on
a line with a positive slope.

• r = −1 indicates a perfect negative linear relationship. All the points are exactly
on a line with a negative slope.

• r = 0 means no linear relationship (curve possible)

• r2 represents explained variation, reduction in (squared) error of prediction. For
example, the correlation between scores on the Scholastic Aptitude Test (SAT) and
first-year grade point average (GPA) is around +0.50, so we say that SAT scores
explain around 25% of the variation in first-year GPA.

The test of significance for Pearson’s r assumes a bivariate normal distribution for the
two variables; this means that the only possible relationship between them is linear. As
usual, the assumption of independent observations is always important.

Here are some examples of scatterplots and the associated correlation coefficients. The
number 2 on a plot means that two points are on top of each other, or at least too close
to be distinguished in this crude line printer graphic.
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Simple Regression One explanatory variable, one dependent. In the usual examples
both are quantitative (continuous). We fit a least-squares line to the cloud of points in
a scatterplot. The least-squares line is the unique line that minimizes the sum of squared
vertical distances between the line and the points in the scatterplot. That is, it minimizes
the total (squared) error of prediction.

Denoting the slope of the least-squares line by b1 and the intercept of the least-squares
line by b0,

b1 = r
sy
sx

and b0 = Y − b1X.

That is, the slope of the least squares has the same sign as the correlation coefficient, and
equals zero if and only if the correlation coefficient is zero.

Usually, you want to test whether the slope is zero. This is the same as testing
whether the correlation is zero, and mercifully yields the same p-value. Assumptions are
independent observations (again) and that within levels of the explanatory variable, the
response variable has a normal distribution with the same variance (variance does not
depend on value of the response variable). Robustness properties are similar to those of
the 2-sample t-test. The assumption of independent observations is always important.

Multiple Regression

Regression with several explanatory variables at once; we’re fitting a (hyper) plane rather
than a line. Multiple regression is very flexible; all the other techniques mentioned above
(except the chi-squared test) are special cases of multiple regression. More details will be
given later.
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1.3 Experimental versus observational studies

Why might someone want to predict a response variable from an explanatory variable?
There are two main reasons.

• There may be a practical reason for prediction. For example, a company might
wish to predict who will buy a product, in order to maximize the productivity of
its sales force. Or, an insurance company might wish to predict who will make a
claim, or a university computer centre might wish to predict the length of time a
type of hard drive will last before failing. In each of these cases, there will be some
explanatory variables that are to be used for prediction, and although the people
doing the study may be curious and may have some ideas about how things might
turn out and why, they don’t really care why it works, as long as they can predict
with some accuracy. Does variation in the explanatory variable cause variation in
the response variable? Who cares?

• This may be science (of some variety). The goal may be to understand how the
world works — in particular, to understand the response variable. In this case,
most likely we are implicitly or explicitly thinking of a causal relationship between
the explanatory variable and response variable. Think of attitude similarity and
interpersonal attraction . . . .

Sample Question 1.3.1 A study finds that high school students who have a computer at
home get higher grades on average than students who do not. Does this mean that parents
who can afford it should buy a computer to enhance their children’s chances of academic
success?

Here is an answer that gets zero points. “Yes, with a computer the student can become
computer literate, which is a necessity in our competitive and increasingly technological
society. Also the student can use the computer to produce nice looking reports (neatness
counts!), and obtain valuable information on the World Wide Web.” ZERO.

The problem with this answer is that while it makes some fairly reasonable points, it
is based on personal opinion, and fails to address the real question, which is “Does this
mean . . . ” Here is an answer that gets full marks.

Answer to Sample Question 1.3.1 Not necessarily. While it is possible that some
students are doing better academically and therefore getting into university because of
their computers, it is also possible that their parents have enough money to buy them a
computer, and also have enough money to pay for their education. It may be that an
academically able student who is more likely to go to university will want a computer
more, and therefore be more likely to get one somehow. Therefore, the study does not
provide good evidence that a computer at home will enhance chances of academic success.

Note that in this answer, the focus is on whether the study provides good evidence
for the conclusion, not whether the conclusion is reasonable on other grounds. And
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the answer gives specific alternative explanations for the results as a way of criticizing
the study. If you think about it, suggesting plausible alternative explanations is a very
damaging thing to say about any empirical study, because you are pointing out that the
investigators expended a huge amount of time and energy, but didn’t establish anything
conclusive. Also, suggesting alternative explanations is extremely valuable, because that
is how research designs get improved and knowledge advances.

In all these discussions of causality, it is important to understand what the term does
not mean. If we say that smoking cigarettes causes lung cancer, it does not mean that
you will get lung cancer if and only if you smoke cigarettes. It means that smoking
contributes to the chances that you will get cancer. So when we say “cause,” we really
mean “contributing factor.” And it is almost always one contributing factor among many.

Now here are some general principles. If X and Y are measured at roughly the
same time, X could be causing Y , Y could be causing X, or there might be some third
variable (or collection of variables) that is causing both X and Y . Therefore we say
that ”Correlation does not necessarily imply causation.” Here, by correlation we mean
association (lack of independence) between variables. It is not limited to situations where
you would compute a correlation coefficient.

A confounding variable is a variable not included as an explanatory variable, that
might be related to both the explanatory variable and the response variable – and that
might therefore create a seeming relationship between them where none actually exists,
or might even hide a relationship that is present. Some books also call this a “lurking
variable.” You are responsible for the vocabulary “confounding variable.”

An experimental study is one in which cases are randomly assigned to the different
values of an explanatory variable (or variables). An observational study is one in which
the values of the explanatory variables are not randomly assigned, but merely observed.

Some studies are purely observational, some are purely experimental, and many are
mixed. It’s not really standard terminology, but in this course we will describe explanatory
variables as experimental (i.e., randomly assigned, manipulated) or observed.

In an experimental study, there is no way the response variable could be causing the
explanatory variable, because values of the explanatory variable are assigned by the ex-
perimenter. Also, it can be shown (using the Law of Large Numbers) that when units of
observation are randomly assigned to values of an explanatory variable, all potential con-
founding variables are cancelled out as the sample size increases. This is very wonderful.
You don’t even have to know what they are!

Sample Question 1.3.2 Is it possible for a continuous variable to be experimental, that
is, randomly assigned?

Answer to Sample Question 1.3.2 Sure. In a drug study, let one of the explanatory
variables consist of n equally spaced dosage levels spanning some range of interest, where
n is the sample size. Randomly assign one participant to each dosage level.

Sample Question 1.3.3 Give an original example of a study with one quantitative ob-
served explanatory variable and one categorical manipulated explanatory variable. Make
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the study multivariate, with one response variable consisting of unordered categories and
two quantitative response variables.

Answer to Sample Question 1.3.3 Stroke patients in a drug study are randomly as-
signed to either a standard blood pressure drug or one of three experimental blood pressure
drugs. The categorical response variable is whether the patient is alive or not 5 years
after the study begins. The quantitative response variables are systolic and diastolic blood
pressure one week after beginning drug treatment.

In practice, of course there would be a lot more variables; but it’s still a good answer.
Because of possible confounding variables, only an experimental study can provide

good evidence that an explanatory variable causes a response variable. Words like effect,
affect, leads to etc. imply claims of causality and are only justified for experimental
studies.

Sample Question 1.3.4 Design a study that could provide good evidence of a causal
relationship between having a computer at home and academic success.

Answer to Sample Question 1.3.4 High school students without computers enter a
lottery. The winners (50% of the sample) get a computer to use at home. The response
variable is whether or not the student enters university.

Sample Question 1.3.5 Is there a problem with independent observations here? Can
you fix it?

Answer to Sample Question 1.3.5 Oops. Yes. Students who win may be talking to
each other, sharing software, etc.. Actually, the losers will be communicating too. There-
fore their behaviour is non-independent and standard significance tests will be invalid. One
solution is to hold the lottery in n separate schools, with one winner in each school. If the
response variable were GPA, we could do a matched t-test comparing the performance of
the winner to the average performance of the losers.

Sample Question 1.3.6 What if the response variable is going to university or not?

Answer to Sample Question 1.3.6 We are getting into deep water here. Here is how
I would do it. In each school, give a score of “1” to each student who goes to university,
and a “0” to each student who does not. Again, compare the scores of the winners to the
average scores of the losers in each school using a matched t-test. Note that the mean
difference that is to be compared with zero here is the mean difference in probability of
going to university, between students who get a computer to use and those who do not.
While the differences for each school will not be normally distributed, the central limit
theorem tells us that the mean difference will be approximately normal if there are more
than about 20 schools, so the t-test is valid. In fact, the t-test is conservative, because the
tails of the t distribution are heavier than those of the standard normal. This answer is
actually beyond the scope of the present course.
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Artifacts and Compromises

Random assignment to experimental conditions will take care of confounding variables,
but only if it is done right. It is amazingly easy for for confounding variables to sneak back
into a true experimental study through defects in the procedure. For example, suppose
you are interested in studying the roles of men and women in our society, and you have
a 50-item questionnaire that (you hope) will measure traditional sex role attitudes on a
scale from 0 = Very Non-traditional to 50 = Very Traditional. However, you suspect that
the details of how the questionnaire is administered could have a strong influence on the
results. In particular, the sex of the person administering the questionnaire and how he
or she is dressed could be important.

Your subjects are university students, who must participate in your study in order to
fulfill a course requirement in Introductory Psychology. You randomly assign your sub-
jects to one of four experimental conditions: Female research assistant casually dressed,
Female research assistant formally dressed, Male research assistant casually dressed, or
Male research assistant formally dressed. Subjects in each experimental condition are in-
structed to report to a classroom at a particular time, and they fill out the questionnaire
sitting all together.

This is an appealing procedure from the standpoint of data collection, because it is
fast and easy. However, it is so flawed that it may be a complete waste of time to do the
study at all. Here’s why. Because subjects are run in four batches, an unknown number
of confounding variables may have crept back into the study. To name a few, subjects
in different experimental conditions will be run at different times of day or different days
of the week. Suppose subjects in the the male formally dressed condition fill out the
questionnaire at 8 in the morning. Then all the subjects in that condition are exposed
to the stress and fatigue of getting up early, as well as the treatment to which they have
been randomly assigned.

There’s more, of course. Presumably there are just two research assistants, one male
and one female. So there can be order effects; at the very least, the lab assistant will be
more practiced the second time he or she administers the questionnaire. And, though the
research assistants will surely try to administer the questionnaire in a standard way, do
you really believe that their body language, facial expressions and tone of voice will be
identical both times?

Of course, the research assistants know what condition the subjects are in, they know
the hypotheses of the study, and they probably have a strong desire to please the boss —
the investigator (professor or whatever) who is directing this turkey, uh, excuse me, I mean
this research. Therefore, their behaviour could easily be slanted, perhaps unconsciously
so, to produce the hypothesized effects.

This kind phenomenon is well-documented. It’s called experimenter expectancy. Ex-
perimenters find what they expect to find. If they are led to believe that certain mice
are very intelligent, then those mice will do better on all kinds of learning tasks, even
though in fact the mice were randomly assigned to be labeled as “intelligent.” This kind
of thing applies all the way down to flatworms. The classic reference is Robert Rosen-
thal’s Experimenter expectancy in behavioral research [19]. Naturally, the expectancy
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phenomenon applies to teachers and students in a classroom setting, where it is called
teacher expectancy. The reference for this is Rosenthal and Jacobson’s Pygmalion in the
classroom [20].

It is wrong (and complacent) to believe that expectancy effects are confined to psycho-
logical research. In medicine, placebo effects are well-documented. Patients who are given
an inert substance like a sugar pill do better than patients who are not, provided that
they or their doctors believe that they are getting medicine that works. Is it the patients’
expectancies that matter, or the doctors’? Probably both. The standard solution, and
the only acceptable solution in clinical trials of new drugs, is the so called double blind,
in which subjects are randomly assigned to receive either the drug or a placebo, and nei-
ther the patient nor the doctor knows which it is. This is the gold standard. Accept no
substitutes.

Until now, we have been discussing threats to the Internal Validity of research. A
study has good internal validity if it’s designed to eliminate the influence of confounding
variables, so one can be reasonably sure that the observed effects really are being produced
by the explanatory variables of interest. But there’s also External Validity. External va-
lidity refers to how well the phenomena outside the laboratory or data-collection situation
are being represented by the study. For example, well-controlled, double-blind taste tests
indicated that the Coca-cola company had a recipe that consumers liked better than the
traditional one. But attempts to market “New” Coke were an epic disaster. There was
just more going on in the real world of soft drink consumption than in the artificial lab-
oratory setting of a taste test. Cook and Campbell’s Quasi-experimentation [7] contains
an excellent discussion of internal versus external validity.

In Industrial-Organizational psychology, we have the Hawthorne Effect, which takes
its name from the Hawthorne plant of General Electric, where some influential studies of
worker productivity were carried out in the 1930’s. The basic idea is that when workers
know that they are part of a study, almost anything you do will increase productivity.
Make the lights brighter? Productivity increases. Make the lights dimmer? Productivity
increases. This is how the Hawthorne Effect is usually described. The actual details of the
studies and their findings are more complex [18], but the general idea is that when people
know they are participating in a study, they tend to feel more valued, and act accordingly.
In this respect, the fact that the subjects know that a study is being carried can introduce
a serious distortion into the way things work, and make the results unrepresentative of
what normally happens.

Medical research on non-human animals is always at least subject to discussion on
grounds of external validity, as is almost any laboratory research in Psychology. Do you
know why the blood vessels running away from the heart are called “arteries?” It’s because
they were initially thought to contain air. Why? Because medical researchers were basing
their conclusions entirely on dissections of dead bodies. In live bodies, the arteries are
full of blood.

Generally speaking, the controlled environments that lead to the best internal validity
also produce the greatest threats to external validity. Is a given laboratory setup captur-
ing the essence of the phenomena under consideration, or is it artificial and irrelevant?
It’s usually hard to tell. The best way to make an informed judgement is to compare
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laboratory studies and field studies that are trying to answer the same questions. The
laboratory studies usually have better internal validity, and the field studies usually have
better external validity. When the results are consistent, we feel more comfortable.



Chapter 2

Introduction to SAS

SAS stands for “Statistical Analysis System.” Even though it runs on linux and Windows
PCs as well as on bigger computers, it is truly the last of the great old mainframe statistical
packages1. The first beta release was in 1971, and the SAS Institute, Inc. was spun off
from the University of North Carolina in 1976, the year after Bill Gates dropped out of
Harvard. This is a serious pedigree, and it has both advantages and disadvantages.

The advantages are that the number of statistical procedures SAS can do is truly
staggering, and the most commonly used ones have been tested so many times by so
many people that their correctness and numerical efficiency are beyond any question. For
the purposes of this course, there are no bugs. The disadvantages of SAS are all related
to the fact that it was designed to run in a batch-oriented mainframe environment. So,
for example, the SAS Institute has tried hard to make SAS an “interactive” program, but
as of January 2016, the interface is still basically file and text oriented, not graphical.

2.1 The Four Main File Types

A typical SAS job will involve four main types of file.

• The Raw Data File: A file consisting of rows and columns of numbers; or maybe
some of the columns have letters (character data) instead of numbers. The rows
represent observations and the columns represent variables, as described at the
beginning of Section 1.1. In the first example we will consider below, the raw data
file is a plain text file called studentsleep.data.txt.

In recent years it has become common for scientists to record their data using
Microsoft Excel, so that real (not textbook) data sets will often be in Excel spread-

1This discussion refers to the core applications that are used to conduct traditional statistical analysis:
Base SAS, SAS/STAT and SAS/ETS (Econometrics and Time Series). SAS also sells a variety of other
software products. They are almost all tools for data extraction, processing and analysis, so they fall
under the heading of Statistics broadly defined. However, the details are so shrouded in marketing and
corporate IT jargon that you would need specialized (and expensive) training to understand what they
do, and even then I assume the details are proprietary. This is a strategy that works well for the SAS
Institute.

27
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sheets. The best arrangement is for rows to be cases and columns to be variables.
SAS can read data directly from an Excel spreadsheet; this is illustrated for Stu-
dent’s sleep data in Section 2.3.6. Data sets coming from corporations and other
organizations may be in Excel format, or they may be in a relational database pro-
duced by software such as Microsoft Access. Databases can be imported using proc

sql (Structured Query Language).

• The Program File: The program file consists of commands that the SAS software
tries to follow. You create this file with a text editor, either an external editor
like Notepad, or a built-in editor. The program file contains a reference to the raw
data file (in the infile statement), so SAS knows where to find the data. In the
first example we will consider below, the program file is called sleep1.sas. SAS
expects program files to have the extension .sas, and you should always follow this
convention.

• The Log File: This file is produced by every SAS run, whether it is successful or
unsuccessful. It contains a listing of the command file, as well any error messages
or warnings. The name of the log file is automatically generated by SAS; It will be
something like reading1.log or reading1-log.html.

• The Output File: The output file contains the output of the statistical procedures
requested in the program file. Output files have names like reading1-Results.pdf,
reading1-Results.rtf, or reading1-Results.html. A successful SAS run will
almost always produce an output file. The absence of an output file indicates that
there was at least one fatal error. The presence of an output file file does not mean
there were no errors; it just means that SAS was able to do some of what you asked
it to do. Even if there are errors, the output file will usually not contain any error
messages; they will be in the log file.

2.2 SAS University Edition

The SAS Institute make a great deal of money selling software licences to corporations,
universities, government agencies, and to a lesser extent, individuals. Perhaps under
pressure from the free R statistical software, they have recently been offering their core
product free of charge to anyone with a university email address. It’s called SAS University
Edition. It’s so well-designed and so convenient that it’s difficult to imagine a professor
choosing any other version of SAS for a statistics class. Here’s the link:

http://www.sas.com/en us/software/university-edition.html

Regardless of operating system, SAS University Edition lives in a virtual linux machine.2

In addition to having SAS installed, the linux machine is a Web server. But the web pages

2A virtual computer is a set of software instructions that act like a complete, separate computer.
So, for example, you could have a software version of the original IBM PC with the DOS operating
system running on a modern laptop. Virtual machines are great for preserving legacy data and software,
experimenting with viruses, and many other uses. In the bad old days, all the hardware in a virtual

http://www.sas.com/en_us/software/university-edition.html


2.3. EXAMPLE 1: STUDENT’S SLEEP DATA 29

it hosts are not available to the entire internet. They are available only to you. Rather
than having a proper IP address, the virtual linux machine has a localhost address:
http://localhost:10080. With SAS running in the virtual machine, you point your
browser to this address. It looks like you are on the Internet, but really you are on a
network located within your computer. It’s entirely local, and would work at the bottom
of a coal mine.

The browser interface (actually a website located on the virtual linux machine) is
called SAS Studio. It’s really nice, with tabs rather than separate windows for the pro-
gram, log and output files. You can print files from the browser, or save output in pdf,
rtf or html format. Because you are interacting with SAS indirectly through Web pages,
the operating system on your computer does not matter much, if at all. If you are running
Firefox on a Windows PC and I am running Safari on a Mac, the only differences we will
experience are differences between Firefox and Safari. It’s truly platform independent.

You get your data into SAS via a shared folder – shared between your computer and
the virtual linux machine. In the infile sttement of your SAS job, begin the name of
the data file with ”/folders/myfolders/” That’s the path to the shared folder on the
virtual linux machine. The shared folder on your machine can be anywhere. When you
create the shared folder on your machine, make sure the spelling and capitalization of
the folder names is exactly according to instructions. On your machine, the shared folder
must be called SASUniversityEdition, with a sub-folder called myfolders. Sub-folders
inside the folder myfolders are okay.

2.3 Example 1: Student’s sleep data

2.3.1 The raw data file

The following illustrates a simple SAS run. The first step was to get the raw data file.
It’s a classic: the data that Student (William Gossett) used to illustrate the t-test in the
1908 Biometrika paper where he first reported it [22]. These data are given in Gossett’s
paper. I created a plain-text version of the raw data file called studentsleep.data.txt

by typing the numbers into a text editor and dragging the file to the myfolders sub-folder
of the shared folder SASUniversityEdition. Here’s the data file. Take a look.

Patient Drug 1 Drug 2

1 0.7 1.9

2 -1.6 0.8

3 -0.2 1.1

4 -1.2 0.1

5 -0.1 -0.1

6 3.4 4.4

7 3.7 5.5

machine was represented by software instructions, and they were slow. Now they can use the hardware
of the host computer more directly, and there’s not much of a performance hit.
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8 0.8 1.6

9 0.0 4.6

10 2.0 3.4

Actually, it’s so obvious that you should look at your data that it is seldom mentioned.
But experienced data analysts always do it — or else they assume everything is okay and
get a bitter lesson in something they already knew. This is so important that it gets the
formal status of a data analysis hint.

Data Analysis Hint 2 Always look at your raw data file. It the data file is big, do it
anyway. At least scroll through it, looking for anything strange. Check the values of all
the variables for a few cases. Do they make sense? If you have obtained the data file from
somewhere, along with a description of what’s in it, never believe that the description you
have been given is completely accurate.

The file studentsleep.data.txt contains two variables for ten patients suffering from
insomnia. Notice the variable names on the first line. Some software (like R) can use this
information. As far as I know, SAS cannot. Furthermore, if SAS tries to read the data
and encounters characters where it expects numbers, the results are unpleasant. One
solution is to edit the raw data file and get rid of the labels, but actually labels like this
can be useful. We’ll get SAS to skip the first line, and start reading data from line two.

Each variable is actually a difference, representing how much extra sleep a patient
got when taking a sleeping pill. Drug 1 is Dextro-hyoscyamine hydrobomide, while Drug
2 is Laevo-hyoscyamine hydrobomide. We want to know whether each drug is effective,
and also which drug is more effective. Following Gosset, we’ll use one-sample t-tests to
decide whether each drug is effective; since these one-sample t-tests are carried out on
differences, they are matched t-tests. We’ll also compute a matched t-test comparing
Drug 1 and Drug 2. Notice that this is a within-cases design.

To analyze the data with SAS, we need to create another plain text file containing
the SAS program. SAS Studio has a nice built-in editor, and you can compose the whole
SAS program with that. Or, you can do the first draft using an external text editor, drag
it to myfolders, and then edit it there using the built-in SAS editor. If you do it this
way, just make sure the program file has the extension .sas. For Student’s sleep data,
my program is called sleep1.sas.

2.3.2 Structure of the Program File

A SAS program file is composed of units called data steps and proc steps. The typical
SAS program has one data step and at least one proc step, though other structures are
possible.

• Most SAS commands belong either in data step or in a proc step; they will generate
errors if they are used in the wrong kind of step.

• Some statements, like the title and options commands, exist outside of the data

and proc steps, but there are relatively few of these.
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The Data Step The data step takes care of data acquisition and modification. It
almost always includes a reference to at least one raw data file, telling SAS where to
look for the data. It specifies variable names and labels, and provides instructions about
how to read the data; for example, the data might be read from fixed column locations.
Variables from the raw data file can be modified, and new variables can be created.

Each data step creates a SAS data table, a file consisting of the data (after mod-
ifications and additions), labels, and so on. Statistical procedures operate on SAS data
tables, so you must create a SAS data table before you can start computing any statistics.

A SAS data table is written in a binary format that is very convenient for SAS to
process, but is not readable by humans. In the old days, SAS data tables were written to
temporary scratch files on the computer’s hard drive; these days, they may be maintained
in RAM if they are small enough. In any case, the default is that a SAS data tab;e
disappears after the job has run. If the data step is executed again in a later run, the
SAS data set is re-created.

Actually, it is possible to save a SAS data table on disk for later use. We won’t do this
here, but it makes sense when the amount of processing in a data step is large relative
to the speed of the computer. As an extreme example, one of my colleagues uses SAS
to analyze data from Ontario hospital admissions; the data files have millions of cases.
Typically, it takes around 20 hours of CPU time on a very strong unix machine just to
read the data and create a SAS data table. The resulting file, hundreds of gigabytes in
size, is saved to disk, and then it takes just a few minutes to carry out each analysis. You
wouldn’t want to try this on a PC.

SAS data tables are not always created by SAS data steps. Some statistical procedures
can create SAS data tables, too. For example, proc standard can take an ordinary SAS
data tables as input, and produce an output data table that has all the original variables,
and also some of the variables converted to z-scores (by subtracting off the mean and
dividing by the standard deviation). Proc reg (the main multiple regression procedure)
can produce a SAS data table containing residuals for plotting and use in further analysis;
there are many other examples.

The proc Step “Proc” is short for procedure. Most procedures are statistical pro-
cedures; the most noticeable exception is proc format, which is used to provide labels
for the values of categorical variables. The proc step is where you specify a statistical
procedure that you want to carry out. A statistical procedures in the proc step will take
a SAS data table as input, and write the results (summary statistics, values of test statis-
tics, p-values, and so on) to the output file. The typical SAS program includes one data

step and several proc steps, because it is common to produce a variety of data displays,
descriptive statistics and significance tests in a single run.

2.3.3 sleep1.sas

Now we will look at sleep1.sas in some detail. This program is very simple; it has just
one data step and two proc steps.
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/* sleep1.sas */

title "t-tests on Student’s Sleep data";

data bedtime;

infile ’/folders/myfolders/studentsleep.data.txt’ firstobs=2; /* Skip the header */

input patient xsleep1 xsleep2;

sleepdif = xsleep2-xsleep1; /* Create a new variable */

proc print;

var patient xsleep1 xsleep2 sleepdif;

proc means n mean stddev t probt;

var xsleep1 xsleep2 sleepdif;

Here are some detailed comments about sleep1.sas.

• The first line is a comment. Anything between a /* and */ is a comment, and
will be listed on the log file but otherwise ignored by SAS. Comments can appear
anywhere in a program. You are not required to use comments, but it’s a good idea.

The most common error associated with comments is to forget to end them with
*/. In the case of sleep1.sas, leaving off the */ (or typing /* again by mistake)
would cause the whole program to be treated as a comment. It would generate
no errors, and no output — because as far as SAS would be concerned, you never
requested any. A longer program would eventually exceed the default length of a
comment (it’s some large number of characters) and SAS would end the “comment”
for you. At exactly that point (probably in the middle of a command) SAS would
begin parsing the program. Almost certainly, the first thing it examined would be a
fragment of a legal command, and this would cause an error. The log file would say
that the command caused an error, and not much else. It would be very confusing,
because probably the command would be okay, and there would be no indication
that SAS was only looking at part of it.

• The next two lines (the options statement and the title statement) exist outside
the proc step and outside the data step. This is fairly rare.

• All SAS statements end with a semi-colon (;). SAS statements can extend for several
physical lines in the program file. Spacing, indentation, breaking up s statement
into several lines of text – these are all for the convenience of the human reader,
and are not part of the SAS syntax.

• By far the most common error in SAS programming is to forget the semi-colon.
When this happens, SAS tries to interpret the following statement as part of the
one you forgot to end. This often causes not one error, but a cascading sequence
of errors. The rule is, if you have an error and you do not immediately understand
what it is, look for a missing semi-colon. It will probably be before the portion of
the program that (according to SAS) caused the first error.
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• Cascading errors are not caused just by the dreaded missing semi-colon. They are
common in SAS; for example, a runaway comment statement can easily cause a
chain reaction of errors (if the program is long enough for it to cause any error
messages at all). If you have a lot of errors in your log file, fix the first one and
re-run the job; and don’t waste time trying to figure out the others. Some or all of
them may well disappear.

• title This is optional, but recommended. The material between the quotes will
appear at the top of each page. This can be a lifesaver when you are searching
through a stack of old printouts for something you did a year or two ago.

• data bedtime; This begins the data step, specifying that the name of the SAS
data set being created is “bedtime.” The names of data sets are arbitrary, but you
should make them informative. They should begin with letters.

• infile Specifies the name of the raw data file. It must begin with /folders/myfolders/,
the path to the shared folder in the virtual linux machine.

• firstobs=2 Begin reading the data on line two, skipping the variable names. You
can skip any number of lines this way, so a data file could potentially begin with a
long description of how the data were collected.

• input Gives the names of the variables.

– Variable names should begin with a letter. Avoid special characters like $ or
#. The variable names will be used to specify statistical procedures requested
in the proc step. They should be meaningful (related to what the variable is),
and easy to remember.

– This is almost the simplest possible form of the input statement. It can be
very powerful; for example, you can read data from different locations and in
different orders, depending on the value of a variable you’ve just read, and so
on. It can get complicated, but if the data file has a simple structure, the input
statement can be simple too.

• sleepdif = xsleep2-xsleep1; Create a new variable, representing how much
more sleep the patient got with Drug 2, compared to Drug 1. This calculation
is performed for each case in the data file. Notice that the new variable sleepdif

does not appear in the input statement. When some variables are to be created
from others, it is a very good idea to do the computation within SAS. This makes
raw data files smaller and more manageable, and also makes it easier to correct or
re-define the computed variables.

• proc print; Now the first proc step begins. All we are doing is to list the data
to make sure we have computed sleepdif correctly. This is actually a good thing
to do whenever you compute a new variable. Of course you never (or very seldom)
make hard copy of the complete output of proc print, because it can be very long.
Once you’re confident the data are what you think, delete the proc print.
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• var patient xsleep1 xsleep2 sleepdif; List the variables you want to print.
The word “var” is obligatory, and is among a fairly large number of names reserved
by the SAS system. If you tried to name one of your variables var, it wouldn’t let
you.

• proc means; This is the second proc step. Proc means is most often used to
produce simple summary statistics for quantitative variables. The words n mean

stddev t probt are optional, and specify that we want to see the following for
each variable specified: the sample size, mean, standard deviation, t-test for testing
whether the mean is different from zero, and the two-tailed p-value for the t-test.
These are the paired t-tests we want. With just proc means; and not the option,
we would get the default statistics: n, mean, standard deviation, minimum and
maximum. These last two statistics are very useful, because they can alert you to
outliers and errors in the data.

• var is obligatory. It is followed by a list of the variables for which you want to see
means and other statistics.

2.3.4 sleep1.log

Log files are not very interesting when everything is okay, but here is an example anyway.
Notice that in addition to a variety of technical information (where the files are, how
long each step took, and so on), it contains a listing of the SAS program — in this case,
sleep1.sas. If there were syntax errors in the program, this is where the error messages
would appear.

1 OPTIONS NONOTES NOSTIMER NOSOURCE NOSYNTAXCHECK;

55

56 /* sleep1.sas */

57 title "t-tests on Student’s Sleep data";

58

59 data mylatebedtime;

60 infile ’/folders/myfolders/studentsleep.data.txt’ firstobs=2; /* Skip the header */

61 input patient xsleep1 xsleep2;

62 sleepdif = xsleep2-xsleep1; /* Create a new variable */

63

NOTE: The infile ’/folders/myfolders/studentsleep.data.txt’ is:

Filename=/folders/myfolders/studentsleep.data.txt,

Owner Name=root,Group Name=vboxsf,

Access Permission=-rwxrwx---,

Last Modified=05Jan2016:14:26:25,

File Size (bytes)=544



2.3. EXAMPLE 1: STUDENT’S SLEEP DATA 35

NOTE: 10 records were read from the infile ’/folders/myfolders/studentsleep.data.txt’.

The minimum record length was 47.

The maximum record length was 47.

NOTE: The data set WORK.MYLATEBEDTIME has 10 observations and 4 variables.

NOTE: DATA statement used (Total process time):

real time 0.01 seconds

cpu time 0.01 seconds

64 proc print;

65 var patient xsleep1 xsleep2 sleepdif;

66

NOTE: There were 10 observations read from the data set WORK.MYLATEBEDTIME.

NOTE: PROCEDURE PRINT used (Total process time):

real time 0.04 seconds

cpu time 0.05 seconds

67 proc means n mean stddev t probt;

68 var xsleep1 xsleep2 sleepdif;

69

70 OPTIONS NONOTES NOSTIMER NOSOURCE NOSYNTAXCHECK;

82

2.3.5 Output file

Here is the output file. Notice that the title specified in the title statement appears at
the top. Then we get statistical output — in this case, the listing of raw data and table
of means and t-tests.

t-tests on Student’s Sleep data 1

Obs patient xsleep1 xsleep2 sleepdif

1 1 0.7 1.9 1.2

2 2 -1.6 0.8 2.4

3 3 -0.2 1.1 1.3

4 4 -1.2 0.1 1.3

5 5 -0.1 -0.1 0.0

6 6 3.4 4.4 1.0

7 7 3.7 5.5 1.8

8 8 0.8 1.6 0.8
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9 9 0.0 4.6 4.6

10 10 2.0 3.4 1.4

t-tests on Student’s Sleep data 2

The MEANS Procedure

Variable N Mean Std Dev t Value Pr > |t|

---------------------------------------------------------------------

xsleep1 10 0.7500000 1.7890097 1.33 0.2176

xsleep2 10 2.3300000 2.0022487 3.68 0.0051

sleepdif 10 1.5800000 1.2299955 4.06 0.0028

---------------------------------------------------------------------

The output is pretty self-explanatory. The t-tests do not provide convincing evidence that
Drug 1 was effective. They suggest that Drug 2 was effective, and better than Drug 1.
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2.3.6 Reading from an Excel spreadsheet

For convenience (my convenience), most of the data files used in this textbook are in plain
text format. I have had most of them for quite a while. Data collected more recently
tend to be in Microsoft Excel spreadsheets. Whether you find this repulsive or not, it is
a fact of life. The following will serve as a model for reading data directly from an Excel
spreadsheet.

I pasted Student’s sleep data into a spreadsheet called sleep1.xlsx. Here it is. Notice
that the column names should be valid SAS names, with no embedded blanks. When the
file type is xlsx watch out for leading and trailing blanks too. If you ignore this advice,
SAS will convert the blanks to underscore characters ( )3, and you will need to look
carefully at your log file to see what the variable names are.

3This is true as of SAS Version 9.4
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Here’s the SAS program.

/* sleep1c.sas */

title "t-tests on Student’s Sleep data";

title2 ’Read data from Excel Spreadsheet’;

proc import datafile="/folders/myfolders/sleep1.xlsx"

out=sleepy dbms=xlsx replace;

getnames=yes;

/* Input data file is sleep1.xlsx

Ouput data table is called sleepy

dbms=xls The input file is an Excel spreadsheet.

Necessary to read an Excel spreadsheet directly under unix/linux

Works in PC environment too except for Excel 4.0 spreadsheets

If there are multiple sheets, use sheet="sheet1" or something.

replace If the data table already exists, replace it. Use this!

getnames=yes Use column names as variable names. Beware of

leading and trailing blanks */

/* proc print; */

data sleepy2;

set sleepy; /* Now sleepy2=sleepy */

sleepdif = Drug2-Drug1; /* Create a new variable */

proc print;

var patient Drug1 drug2 sleepdif;

proc means n mean stddev t probt;

var drug1 drug2 sleepdif;

After the title, the first part of the program is a proc import, which imports the data
into SAS. The code is thoroughly commented, but here are some details anyway.

• proc import

– out=sleepy creates a new data table called sleepy.

– dbms=xlsx specifies that it’s an xlsx spreadsheet. This specification is neces-
sary to read an Excel spreadsheet directly under unix/linux. According to the
manuals, it works in a Windows environment too except for Excel 4.0 spread-
sheets. If you are reading a spreadsheet in the older xls format, just replace
xlsx with xls throughout.

– replace: If the data table already exists, replace it. Always use this! If you
do not, any corrections you make to the spreadsheet will be ignored.
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– getnames=yes: Use column names as variable names. Beware of leading and
trailing blanks.

• proc print; This is commented out. It was used to verify that the data were
imported correctly. This is highly recommended. You will ultimately save time by
cross-checking everything you can.

• data sleepy2; This data step creates a new data table called sleepy2. The
proc import created the data table sleepy, but you can’t get at it directly to
do anything else. The solution is to put the contents of sleepy into a new data
table and modify that.

– set sleepy; This brings the contents of sleepy into sleepy2.

– sleepdif = Drug2-Drug1; This creates the new variable sleepdiff. Now
it’s possible to compute more new variables, add labels and do all the other
things you’d do in a data step.

The rest is the same as the original example, except that I played with the capitalization
of variable names to remind you that SAS is not very case sensitive.

2.4 SAS Example Two: The statclass data

These data come from a statistics class taught many years ago. Students took eight
quizzes, turned in nine computer assignments, and also took a midterm and final exam.
The data file also includes gender and ethnic background; these last two variables are just
guesses by the professor, and there is no way to tell how accurate they were. The data
file looks like this. There are 21 columns and 62 rows of data; columns are not aligned
and there are no column headers. Here are the first few lines.

1 2 9 1 7 8 4 3 5 2 6 10 10 10 5 0 0 0 0 55 43

0 2 10 10 5 9 10 8 6 8 10 10 8 9 9 9 9 10 10 66 79

1 2 10 10 5 10 10 10 9 8 10 10 10 10 10 10 9 10 10 94 67

1 2 10 10 8 9 10 7 10 9 10 10 10 9 10 10 9 10 10 81 65

0 1 10 1 0 0 8 6 5 2 10 9 0 0 10 6 0 5 0 54 .

1 1 10 6 7 9 8 8 5 7 10 9 10 9 5 6 4 8 10 57 52

0 1 0 0 9 9 10 5 2 2 8 7 7 10 10 6 3 7 10 49 .

0 1 10 9 5 8 9 8 5 6 8 7 5 6 10 6 5 9 9 77 64

0 1 10 8 6 8 9 5 3 6 9 9 6 9 10 6 5 7 10 65 42

1 1 10 5 6 7 10 4 6 0 10 9 10 9 10 6 7 8 10 73 .

0 1 9 0 4 6 10 5 3 3 10 8 10 5 10 10 9 9 10 71 37

...
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Notice the periods at the ends of lines 5, 7 and 10. The period is the SAS missing
value code. These people did not show up for the final exam. They may have taken a
makeup exam, but if so their scores did not make it into this data file. When a case has
a missing value recorded for a variable, SAS automatically excludes that case from any
statistical calculation involving the variable. If a new variable is being created based on
the value of a variable with a missing value, the new variable will usually have a missing
value for that case too.

Here is the SAS program statmarks1.sas. It reads and labels the data, and then
does a variety of significance tests. They are all elementary except the last one, which
illustrates testing for one set of explanatory variables controlling for another set in multiple
regression.

/* statmarks1.sas */

title ’Grades from STA3000 at Roosevelt University: Fall, 1957’;

title2 ’Illustrate Elementary Tests’;

proc format; /* Used to label values of the categorical variables */

value sexfmt 0 = ’Male’ 1 = ’Female’;

value ethfmt 1 = ’Chinese’

2 = ’European’

3 = ’Other’ ;

data grades;

infile ’/folders/myfolders/statclass1.data.txt’;

input sex ethnic quiz1-quiz8 comp1-comp9 midterm final;

/* Drop lowest score for quiz & computer */

quizave = ( sum(of quiz1-quiz8) - min(of quiz1-quiz8) ) / 7;

compave = ( sum(of comp1-comp9) - min(of comp1-comp9) ) / 8;

label ethnic = ’Apparent ethnic background (ancestry)’

quizave = ’Quiz Average (drop lowest)’

compave = ’Computer Average (drop lowest)’;

mark = .3*quizave*10 + .1*compave*10 + .3*midterm + .3*final;

label mark = ’Final Mark’;

diff = quiz8-quiz1; /* To illustrate matched t-test */

label diff = ’Quiz 8 minus Quiz 1’;

mark2 = round(mark);

/* Bump up at grade boundaries */

if mark2=89 then mark2=90;

if mark2=79 then mark2=80;

if mark2=69 then mark2=70;

if mark2=59 then mark2=60;

/* Assign letter grade */

if mark2=. then grade=’Incomplete’;

else if mark2 ge 90 then grade = ’A’;

else if 80 le mark2 le 89 then grade=’B’;
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else if 70 le mark2 le 79 then grade=’C’;

else if 60 le mark2 le 69 then grade=’D’;

else grade=’F’;

format sex sexfmt.; /* Associates sex & ethnic */

format ethnic ethfmt.; /* with formats defined above */

proc freq;

title3 ’Frequency distributions of the categorical variables’;

tables sex ethnic grade;

proc means;

title3 ’Means and SDs of quantitative variables’;

var quiz1 -- mark; /* single dash only works with numbered

lists, like quiz1-quiz8 */

proc ttest;

title3 ’Independent t-test’;

class sex;

var mark;

proc means n mean std t probt;

title3 ’Matched t-test: Quiz 1 versus 8’;

var quiz1 quiz8 diff;

proc glm;

title3 ’One-way anova’;

class ethnic;

model mark = ethnic;

means ethnic;

means ethnic / Tukey Bon Scheffe;

proc freq;

title3 ’Chi-squared Test of Independence’;

tables sex*ethnic sex*grade ethnic*grade / chisq;

proc freq; /* Added after seeing warning from chisq test above */

title3 ’Chi-squared Test of Independence: Version 2’;

tables sex*ethnic grade*(sex ethnic) / norow nopercent chisq expected;

proc corr;

title3 ’Correlation Matrix’;

var final midterm quizave compave;

proc plot;

title3 ’Scatterplot’;

plot final*midterm; /* Really should do all combinations */

proc reg;

title3 ’Simple regression’;

model final=midterm;

/* Predict final exam score from midterm, quiz & computer */
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proc reg simple;

title3 ’Multiple Regression’;

model final = midterm quizave compave / ss1;

smalstuf: test quizave = 0, compave = 0;

Noteworthy features of this program include

• options: Already discussed in connection with sleep1.sas.

• title2: Subtitle

• proc format: This is a non-statistical procedure – a rarity in the SAS language.
It is the way SAS takes care of labelling categorical variables when the categories
are coded as numbers. proc format defines printing formats. For any variable
associated with the printing format named sexfmt, any time it would print the value
“0” (in a table or something) it instead prints the string “Male.” The associations
between variables and printing formats are accomplished in the format statement
at the end of the data step. The names of formats have a period at the end to
distinguish them from variable names. Of course formats must be defined before
they can be associated with variables. This is why proc format precedes the data
step.

• quiz1-quiz8: One may refer to a range of variables ending with consecutive num-
bers using a minus sign. In the input statement, a range can be defined (named)
this way. It saves typing and is easy to read.

• Creating new variables with assignment statements. The variables quizave, compave
and mark are not in the original data file. They are created here, and they are ap-
pended to the end of the SAS data set in oder of creation. Variables like this should
never be in the raw data file.

Data Analysis Hint 3 When variables are exact mathematical functions of other
variables, always create them in the data step rather than including them in the raw
data file. It saves data entry, and makes the data file smaller and easier to read. If
you want to try out a different definition of the variable, it’s easy to change a few
statements in the data step.

• sum(of quiz1-quiz8): Without the word “of,” the minus sign is ambiguous. In
the SAS language, sum(quiz1-quiz8) is the sum of a single number, the difference
between quiz1 and quiz8.

• format sex sexfmt.; Associates the variable sex with its printing format. In ques-
tionnaire studies where a large number of items have the same potential responses
(like a scale from 1 = Strongly Agree to 7=Strongly Disagree), it is common to
associate a long list of variables with a single printing format.



2.4. SAS EXAMPLE TWO: THE STATCLASS DATA 43

• quiz1 -- mark in the first proc means: A double dash refers to a list of variables
in the order of their creation in the data step. Single dashes are for numerical order,
while double dashes are for order of creation; it’s very handy.

• Title inside a procedure labels just that procedure.

• proc means n mean std t A matched t-test is just a single-variable t-test carried
out on differences, testing whether the mean difference is equal to zero.

• proc glm

– class Tells SAS that the explanatory variable ethnic is categorical.

– model Response variable(s) = explanatory variable(s)

– means ethnic: Mean of mark separately for each value of ethnic.

– means ethnic / Tukey Bon Scheffe: Post hoc tests (multiple comparisons,
probing, follow-ups). Used if the overall F -test is significant, to see which
means are different from which other means.

• chisq option on proc freq: Gives a large collection of chisquare tests. The first one
is the familiar Pearson chisquare test of independence (the one comparing observed
and expected frequencies).

• tables sex*ethnic / norow nopercent chisq expected; In this second version
of the crosstab produced proc freq, we suppress the row and total percentages, and
look at the expected frequencies because SAS warned us that some of them were
too small. SAS issues a warning if any expected frequency is below 5; this is the
old-fashioned rule of thumb. But it has been known for some time that Type I error
rates are affected mostly by expected frequencies smaller than one, not five — so I
wanted to take a look.

• proc corr After var, list the variables you want to see in a correlation matrix.

• proc plot; plot final*midterm; Scatterplot: First variable named goes on the
y axis.

• proc reg: model Response variable(s) = explanatory variable(s) again

• simple option on proc reg gives simple descriptive statistics. This last procedure
is an example of multiple regression, and we will return to it later once we have
more background.
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The output file

_______________________________________________________________________________

Grades from STA3000 at Roosevelt University: Fall, 1957 1

Illustrate Elementary Tests

Frequency distributions of the categorical variables

The FREQ Procedure

Cumulative Cumulative

sex Frequency Percent Frequency Percent

-----------------------------------------------------------

Male 39 62.90 39 62.90

Female 23 37.10 62 100.00

Apparent ethnic background (ancestry)

Cumulative Cumulative

ethnic Frequency Percent Frequency Percent

-------------------------------------------------------------

Chinese 41 66.13 41 66.13

European 15 24.19 56 90.32

Other 6 9.68 62 100.00

Cumulative Cumulative

grade Frequency Percent Frequency Percent

---------------------------------------------------------------

A 3 4.84 3 4.84

B 6 9.68 9 14.52

C 18 29.03 27 43.55

D 21 33.87 48 77.42

F 10 16.13 58 93.55

Incomplete 4 6.45 62 100.00

_______________________________________________________________________________

Grades from STA3000 at Roosevelt University: Fall, 1957 2

Illustrate Elementary Tests

Means and SDs of quantitative variables

The MEANS Procedure

Variable Label N Mean Std Dev

----------------------------------------------------------------------------

quiz1 62 9.0967742 2.2739413

quiz2 62 5.8870968 3.2294995

quiz3 62 6.0483871 2.3707744

quiz4 62 7.7258065 2.1590022

quiz5 62 9.0645161 1.4471109

quiz6 62 7.1612903 1.9264641

quiz7 62 5.7903226 2.1204477

quiz8 62 6.3064516 2.3787909

comp1 62 9.1451613 1.1430011

comp2 62 8.8225806 1.7604414

comp3 62 8.3387097 2.5020880

comp4 62 7.8548387 3.2180168

comp5 62 9.4354839 1.7237109

comp6 62 7.8548387 2.4350364

comp7 62 6.6451613 2.7526248

comp8 62 8.8225806 1.6745363

comp9 62 8.2419355 3.7050497

midterm 62 70.1935484 13.6235557

final 58 50.3103448 17.2496701
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quizave Quiz Average (drop lowest) 62 7.6751152 1.1266917

compave Computer Average (drop lowest) 62 8.8346774 1.1204997

mark Final Mark 58 68.4830049 10.3902874

----------------------------------------------------------------------------

Variable Label Minimum Maximum

------------------------------------------------------------------------

quiz1 0 10.0000000

quiz2 0 10.0000000

quiz3 0 10.0000000

quiz4 0 10.0000000

quiz5 4.0000000 10.0000000

quiz6 3.0000000 10.0000000

quiz7 0 10.0000000

quiz8 0 10.0000000

comp1 6.0000000 10.0000000

comp2 0 10.0000000

comp3 0 10.0000000

comp4 0 10.0000000

comp5 0 10.0000000

comp6 0 10.0000000

comp7 0 10.0000000

comp8 0 10.0000000

comp9 0 10.0000000

midterm 44.0000000 103.0000000

final 15.0000000 89.0000000

quizave Quiz Average (drop lowest) 4.5714286 9.7142857

compave Computer Average (drop lowest) 5.0000000 10.0000000

mark Final Mark 48.4821429 95.4571429

------------------------------------------------------------------------

_______________________________________________________________________________

Grades from STA3000 at Roosevelt University: Fall, 1957 3

Illustrate Elementary Tests

Independent t-test

The TTEST Procedure

Statistics

Lower CL Upper CL Lower CL

Variable sex N Mean Mean Mean Std Dev Std Dev

mark Male 36 65.604 68.57 71.535 7.1093 8.7653

mark Female 22 62.647 68.341 74.036 9.8809 12.843

mark Diff (1-2) -5.454 0.2284 5.9108 8.8495 10.482

Statistics

Upper CL

Variable sex Std Dev Std Err Minimum Maximum

mark Male 11.434 1.4609 54.057 89.932

mark Female 18.354 2.7382 48.482 95.457

mark Diff (1-2) 12.859 2.8366

T-Tests

Variable Method Variances DF t Value Pr > |t|

mark Pooled Equal 56 0.08 0.9361

mark Satterthwaite Unequal 33.1 0.07 0.9418
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Equality of Variances

Variable Method Num DF Den DF F Value Pr > F

mark Folded F 21 35 2.15 0.0443

_______________________________________________________________________________

Grades from STA3000 at Roosevelt University: Fall, 1957 4

Illustrate Elementary Tests

Matched t-test: Quiz 1 versus 8

The MEANS Procedure

Variable Label N Mean Std Dev t Value

---------------------------------------------------------------------------

quiz1 62 9.0967742 2.2739413 31.50

quiz8 62 6.3064516 2.3787909 20.87

diff Quiz 8 minus Quiz 1 62 -2.7903226 3.1578011 -6.96

---------------------------------------------------------------------------

Variable Label Pr > |t|

-----------------------------------------

quiz1 <.0001

quiz8 <.0001

diff Quiz 8 minus Quiz 1 <.0001

-----------------------------------------

_______________________________________________________________________________

Grades from STA3000 at Roosevelt University: Fall, 1957 5

Illustrate Elementary Tests

One-way anova

The GLM Procedure

Class Level Information

Class Levels Values

ethnic 3 Chinese European Other

Number of Observations Read 62

Number of Observations Used 58

_______________________________________________________________________________

Grades from STA3000 at Roosevelt University: Fall, 1957 6

Illustrate Elementary Tests

One-way anova

The GLM Procedure

Dependent Variable: mark Final Mark

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 2 1238.960134 619.480067 6.93 0.0021

Error 55 4914.649951 89.357272

Corrected Total 57 6153.610084
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R-Square Coeff Var Root MSE mark Mean

0.201339 13.80328 9.452898 68.48300

Source DF Type I SS Mean Square F Value Pr > F

ethnic 2 1238.960134 619.480067 6.93 0.0021

Source DF Type III SS Mean Square F Value Pr > F

ethnic 2 1238.960134 619.480067 6.93 0.0021

_______________________________________________________________________________

Grades from STA3000 at Roosevelt University: Fall, 1957 7

Illustrate Elementary Tests

One-way anova

The GLM Procedure

Level of -------------mark------------

ethnic N Mean Std Dev

Chinese 37 65.2688224 7.9262171

European 15 76.0142857 11.2351562

Other 6 69.4755952 13.3097753

_______________________________________________________________________________

Grades from STA3000 at Roosevelt University: Fall, 1957 8

Illustrate Elementary Tests

One-way anova

The GLM Procedure

Tukey’s Studentized Range (HSD) Test for mark

NOTE: This test controls the Type I experimentwise error rate.

Alpha 0.05

Error Degrees of Freedom 55

Error Mean Square 89.35727

Critical Value of Studentized Range 3.40649

Comparisons significant at the 0.05 level are indicated by ***.

Difference

ethnic Between Simultaneous 95%

Comparison Means Confidence Limits

European - Other 6.539 -4.460 17.538

European - Chinese 10.745 3.776 17.715 ***

Other - European -6.539 -17.538 4.460

Other - Chinese 4.207 -5.814 14.228

Chinese - European -10.745 -17.715 -3.776 ***

Chinese - Other -4.207 -14.228 5.814
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_______________________________________________________________________________

Grades from STA3000 at Roosevelt University: Fall, 1957 9

Illustrate Elementary Tests

One-way anova

The GLM Procedure

Bonferroni (Dunn) t Tests for mark

NOTE: This test controls the Type I experimentwise error rate, but it

generally has a higher Type II error rate than Tukey’s for all pairwise

comparisons.

Alpha 0.05

Error Degrees of Freedom 55

Error Mean Square 89.35727

Critical Value of t 2.46941

Comparisons significant at the 0.05 level are indicated by ***.

Difference

ethnic Between Simultaneous 95%

Comparison Means Confidence Limits

European - Other 6.539 -4.737 17.814

European - Chinese 10.745 3.600 17.891 ***

Other - European -6.539 -17.814 4.737

Other - Chinese 4.207 -6.067 14.480

Chinese - European -10.745 -17.891 -3.600 ***

Chinese - Other -4.207 -14.480 6.067

_______________________________________________________________________________

Grades from STA3000 at Roosevelt University: Fall, 1957 10

Illustrate Elementary Tests

One-way anova

The GLM Procedure

Scheffe’s Test for mark

NOTE: This test controls the Type I experimentwise error rate, but it

generally has a higher Type II error rate than Tukey’s for all pairwise

comparisons.

Alpha 0.05

Error Degrees of Freedom 55

Error Mean Square 89.35727

Critical Value of F 3.16499

Comparisons significant at the 0.05 level are indicated by ***.

Difference

ethnic Between Simultaneous 95%

Comparison Means Confidence Limits

European - Other 6.539 -4.950 18.027

European - Chinese 10.745 3.466 18.025 ***

Other - European -6.539 -18.027 4.950
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Other - Chinese 4.207 -6.260 14.674

Chinese - European -10.745 -18.025 -3.466 ***

Chinese - Other -4.207 -14.674 6.260

_______________________________________________________________________________
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Illustrate Elementary Tests

Chi-squared Test of Independence

The FREQ Procedure

Table of sex by ethnic

sex ethnic(Apparent ethnic background (ancestry))

Frequency|

Percent |

Row Pct |

Col Pct |Chinese |European|Other | Total

---------+--------+--------+--------+

Male | 27 | 7 | 5 | 39

| 43.55 | 11.29 | 8.06 | 62.90

| 69.23 | 17.95 | 12.82 |

| 65.85 | 46.67 | 83.33 |

---------+--------+--------+--------+

Female | 14 | 8 | 1 | 23

| 22.58 | 12.90 | 1.61 | 37.10

| 60.87 | 34.78 | 4.35 |

| 34.15 | 53.33 | 16.67 |

---------+--------+--------+--------+

Total 41 15 6 62

66.13 24.19 9.68 100.00

Statistics for Table of sex by ethnic

Statistic DF Value Prob

------------------------------------------------------

Chi-Square 2 2.9208 0.2321

Likelihood Ratio Chi-Square 2 2.9956 0.2236

Mantel-Haenszel Chi-Square 1 0.0000 0.9949

Phi Coefficient 0.2170

Contingency Coefficient 0.2121

Cramer’s V 0.2170

WARNING: 33% of the cells have expected counts less

than 5. Chi-Square may not be a valid test.

Sample Size = 62
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Grades from STA3000 at Roosevelt University: Fall, 1957 12

Illustrate Elementary Tests

Chi-squared Test of Independence

The FREQ Procedure

Table of sex by grade

sex grade

Frequency|

Percent |

Row Pct |

Col Pct |A |B |C |D |F |Incomple| Total

| | | | | |te |

---------+--------+--------+--------+--------+--------+--------+

Male | 1 | 3 | 13 | 14 | 5 | 3 | 39

| 1.61 | 4.84 | 20.97 | 22.58 | 8.06 | 4.84 | 62.90

| 2.56 | 7.69 | 33.33 | 35.90 | 12.82 | 7.69 |

| 33.33 | 50.00 | 72.22 | 66.67 | 50.00 | 75.00 |

---------+--------+--------+--------+--------+--------+--------+

Female | 2 | 3 | 5 | 7 | 5 | 1 | 23

| 3.23 | 4.84 | 8.06 | 11.29 | 8.06 | 1.61 | 37.10

| 8.70 | 13.04 | 21.74 | 30.43 | 21.74 | 4.35 |

| 66.67 | 50.00 | 27.78 | 33.33 | 50.00 | 25.00 |

---------+--------+--------+--------+--------+--------+--------+

Total 3 6 18 21 10 4 62

4.84 9.68 29.03 33.87 16.13 6.45 100.00

Statistics for Table of sex by grade

Statistic DF Value Prob

------------------------------------------------------

Chi-Square 5 3.3139 0.6517

Likelihood Ratio Chi-Square 5 3.2717 0.6582

Mantel-Haenszel Chi-Square 1 0.2342 0.6284

Phi Coefficient 0.2312

Contingency Coefficient 0.2253

Cramer’s V 0.2312

WARNING: 58% of the cells have expected counts less

than 5. Chi-Square may not be a valid test.

Sample Size = 62
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Grades from STA3000 at Roosevelt University: Fall, 1957 13

Illustrate Elementary Tests

Chi-squared Test of Independence

The FREQ Procedure

Table of ethnic by grade

ethnic(Apparent ethnic background (ancestry)) grade

Frequency|

Percent |

Row Pct |

Col Pct |A |B |C |D |F |Incomple| Total

| | | | | |te |

---------+--------+--------+--------+--------+--------+--------+

Chinese | 0 | 2 | 11 | 17 | 7 | 4 | 41

| 0.00 | 3.23 | 17.74 | 27.42 | 11.29 | 6.45 | 66.13

| 0.00 | 4.88 | 26.83 | 41.46 | 17.07 | 9.76 |

| 0.00 | 33.33 | 61.11 | 80.95 | 70.00 | 100.00 |

---------+--------+--------+--------+--------+--------+--------+

European | 2 | 4 | 5 | 3 | 1 | 0 | 15

| 3.23 | 6.45 | 8.06 | 4.84 | 1.61 | 0.00 | 24.19

| 13.33 | 26.67 | 33.33 | 20.00 | 6.67 | 0.00 |

| 66.67 | 66.67 | 27.78 | 14.29 | 10.00 | 0.00 |

---------+--------+--------+--------+--------+--------+--------+

Other | 1 | 0 | 2 | 1 | 2 | 0 | 6

| 1.61 | 0.00 | 3.23 | 1.61 | 3.23 | 0.00 | 9.68

| 16.67 | 0.00 | 33.33 | 16.67 | 33.33 | 0.00 |

| 33.33 | 0.00 | 11.11 | 4.76 | 20.00 | 0.00 |

---------+--------+--------+--------+--------+--------+--------+

Total 3 6 18 21 10 4 62

4.84 9.68 29.03 33.87 16.13 6.45 100.00

Statistics for Table of ethnic by grade

Statistic DF Value Prob

------------------------------------------------------

Chi-Square 10 18.2676 0.0506

Likelihood Ratio Chi-Square 10 19.6338 0.0329

Mantel-Haenszel Chi-Square 1 5.6222 0.0177

Phi Coefficient 0.5428

Contingency Coefficient 0.4771

Cramer’s V 0.3838

WARNING: 78% of the cells have expected counts less

than 5. Chi-Square may not be a valid test.

Sample Size = 62
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Grades from STA3000 at Roosevelt University: Fall, 1957 14

Illustrate Elementary Tests

Chi-squared Test of Independence: Version 2

The FREQ Procedure

Table of sex by ethnic

sex ethnic(Apparent ethnic background (ancestry))

Frequency|

Expected |

Col Pct |Chinese |European|Other | Total

---------+--------+--------+--------+

Male | 27 | 7 | 5 | 39

| 25.79 | 9.4355 | 3.7742 |

| 65.85 | 46.67 | 83.33 |

---------+--------+--------+--------+

Female | 14 | 8 | 1 | 23

| 15.21 | 5.5645 | 2.2258 |

| 34.15 | 53.33 | 16.67 |

---------+--------+--------+--------+

Total 41 15 6 62

Statistics for Table of sex by ethnic

Statistic DF Value Prob

------------------------------------------------------

Chi-Square 2 2.9208 0.2321

Likelihood Ratio Chi-Square 2 2.9956 0.2236

Mantel-Haenszel Chi-Square 1 0.0000 0.9949

Phi Coefficient 0.2170

Contingency Coefficient 0.2121

Cramer’s V 0.2170

WARNING: 33% of the cells have expected counts less

than 5. Chi-Square may not be a valid test.

Sample Size = 62
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Grades from STA3000 at Roosevelt University: Fall, 1957 15

Illustrate Elementary Tests

Chi-squared Test of Independence: Version 2

The FREQ Procedure

Table of grade by sex

grade sex

Frequency |

Expected |

Col Pct |Male |Female | Total

-----------+--------+--------+

A | 1 | 2 | 3

| 1.8871 | 1.1129 |

| 2.56 | 8.70 |

-----------+--------+--------+

B | 3 | 3 | 6

| 3.7742 | 2.2258 |

| 7.69 | 13.04 |

-----------+--------+--------+

C | 13 | 5 | 18

| 11.323 | 6.6774 |

| 33.33 | 21.74 |

-----------+--------+--------+

D | 14 | 7 | 21

| 13.21 | 7.7903 |

| 35.90 | 30.43 |

-----------+--------+--------+

F | 5 | 5 | 10

| 6.2903 | 3.7097 |

| 12.82 | 21.74 |

-----------+--------+--------+

Incomplete | 3 | 1 | 4

| 2.5161 | 1.4839 |

| 7.69 | 4.35 |

-----------+--------+--------+

Total 39 23 62

Statistics for Table of grade by sex

Statistic DF Value Prob

------------------------------------------------------

Chi-Square 5 3.3139 0.6517

Likelihood Ratio Chi-Square 5 3.2717 0.6582

Mantel-Haenszel Chi-Square 1 0.2342 0.6284

Phi Coefficient 0.2312

Contingency Coefficient 0.2253

Cramer’s V 0.2312

WARNING: 58% of the cells have expected counts less

than 5. Chi-Square may not be a valid test.

Sample Size = 62
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Grades from STA3000 at Roosevelt University: Fall, 1957 16

Illustrate Elementary Tests

Chi-squared Test of Independence: Version 2

The FREQ Procedure

Table of grade by ethnic

grade ethnic(Apparent ethnic background (ancestry))

Frequency |

Expected |

Col Pct |Chinese |European|Other | Total

-----------+--------+--------+--------+

A | 0 | 2 | 1 | 3

| 1.9839 | 0.7258 | 0.2903 |

| 0.00 | 13.33 | 16.67 |

-----------+--------+--------+--------+

B | 2 | 4 | 0 | 6

| 3.9677 | 1.4516 | 0.5806 |

| 4.88 | 26.67 | 0.00 |

-----------+--------+--------+--------+

C | 11 | 5 | 2 | 18

| 11.903 | 4.3548 | 1.7419 |

| 26.83 | 33.33 | 33.33 |

-----------+--------+--------+--------+

D | 17 | 3 | 1 | 21

| 13.887 | 5.0806 | 2.0323 |

| 41.46 | 20.00 | 16.67 |

-----------+--------+--------+--------+

F | 7 | 1 | 2 | 10

| 6.6129 | 2.4194 | 0.9677 |

| 17.07 | 6.67 | 33.33 |

-----------+--------+--------+--------+

Incomplete | 4 | 0 | 0 | 4

| 2.6452 | 0.9677 | 0.3871 |

| 9.76 | 0.00 | 0.00 |

-----------+--------+--------+--------+

Total 41 15 6 62

Statistics for Table of grade by ethnic

Statistic DF Value Prob

------------------------------------------------------

Chi-Square 10 18.2676 0.0506

Likelihood Ratio Chi-Square 10 19.6338 0.0329

Mantel-Haenszel Chi-Square 1 5.6222 0.0177

Phi Coefficient 0.5428

Contingency Coefficient 0.4771

Cramer’s V 0.3838

WARNING: 78% of the cells have expected counts less

than 5. Chi-Square may not be a valid test.

Sample Size = 62
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Illustrate Elementary Tests

Correlation Matrix

The CORR Procedure

4 Variables: final midterm quizave compave

Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum

final 58 50.31034 17.24967 2918 15.00000 89.00000

midterm 62 70.19355 13.62356 4352 44.00000 103.00000

quizave 62 7.67512 1.12669 475.85714 4.57143 9.71429

compave 62 8.83468 1.12050 547.75000 5.00000 10.00000

Simple Statistics

Variable Label

final

midterm

quizave Quiz Average (drop lowest)

compave Computer Average (drop lowest)

Pearson Correlation Coefficients

Prob > |r| under H0: Rho=0

Number of Observations

final midterm quizave compave

final 1.00000 0.47963 0.41871 0.06060

0.0001 0.0011 0.6513

58 58 58 58

midterm 0.47963 1.00000 0.59294 0.41277

0.0001 <.0001 0.0009

58 62 62 62

quizave 0.41871 0.59294 1.00000 0.52649

Quiz Average (drop lowest) 0.0011 <.0001 <.0001

58 62 62 62

compave 0.06060 0.41277 0.52649 1.00000

Computer Average (drop lowest) 0.6513 0.0009 <.0001

58 62 62 62

_______________________________________________________________________________
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Grades from STA3000 at Roosevelt University: Fall, 1957 18

Illustrate Elementary Tests

Scatterplot

Plot of final*midterm. Legend: A = 1 obs, B = 2 obs, etc.

final |

|

90 + A

| A

|

|

|

80 + A A A

|

|

|

| A

70 + A A A

| A

| A A

| A A A

|

60 + A

| A AA

| A A

| A A B A A

| A A A A

50 + AA

| A

| A

| AA

| A C

40 + A A A A

| A A A

|

|

|

30 + A A A

| A

| A

| AA

| A

20 + A

|

| A

|

|

10 +

|

-+---------+---------+---------+---------+---------+---------+---------+-

40 50 60 70 80 90 100 110

midterm

NOTE: 4 obs had missing values.
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Illustrate Elementary Tests

Simple regression

The REG Procedure

Model: MODEL1

Dependent Variable: final

Number of Observations Read 62

Number of Observations Used 58

Number of Observations with Missing Values 4

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 1 3901.64751 3901.64751 16.73 0.0001

Error 56 13059 233.19226

Corrected Total 57 16960

Root MSE 15.27063 R-Square 0.2300

Dependent Mean 50.31034 Adj R-Sq 0.2163

Coeff Var 30.35287

Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 6.88931 10.80304 0.64 0.5263

midterm 1 0.61605 0.15061 4.09 0.0001

_______________________________________________________________________________
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Illustrate Elementary Tests

Multiple Regression

The REG Procedure

Number of Observations Read 62

Number of Observations Used 58

Number of Observations with Missing Values 4

Descriptive Statistics

Uncorrected Standard

Variable Sum Mean SS Variance Deviation

Intercept 58.00000 1.00000 58.00000 0 0

midterm 4088.00000 70.48276 298414 180.35935 13.42979

quizave 451.57143 7.78571 3576.51020 1.06498 1.03198

compave 515.50000 8.88793 4641.50000 1.04862 1.02402

final 2918.00000 50.31034 163766 297.55112 17.24967
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Descriptive Statistics

Variable Label

Intercept Intercept

midterm

quizave Quiz Average (drop lowest)

compave Computer Average (drop lowest)

final

_______________________________________________________________________________

Grades from STA3000 at Roosevelt University: Fall, 1957 21

Illustrate Elementary Tests

Multiple Regression

The REG Procedure

Model: MODEL1

Dependent Variable: final

Number of Observations Read 62

Number of Observations Used 58

Number of Observations with Missing Values 4

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 3 4995.04770 1665.01590 7.51 0.0003

Error 54 11965 221.58085

Corrected Total 57 16960

Root MSE 14.88559 R-Square 0.2945

Dependent Mean 50.31034 Adj R-Sq 0.2553

Coeff Var 29.58754

Parameter Estimates

Parameter Standard

Variable Label DF Estimate Error

Intercept Intercept 1 9.01839 19.02591

midterm 1 0.50057 0.18178

quizave Quiz Average (drop lowest) 1 4.80199 2.46469

compave Computer Average (drop lowest) 1 -3.53028 2.17562

Parameter Estimates

Variable Label DF t Value Pr > |t| Type I SS

Intercept Intercept 1 0.47 0.6374 146806

midterm 1 2.75 0.0080 3901.64751

quizave Quiz Average (drop lowest) 1 1.95 0.0566 509.97483

compave Computer Average (drop lowest) 1 -1.62 0.1105 583.42537

_______________________________________________________________________________
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Grades from STA3000 at Roosevelt University: Fall, 1957 22

Illustrate Elementary Tests

Multiple Regression

The REG Procedure

Model: MODEL1

Test smalstuf Results for Dependent Variable final

Mean

Source DF Square F Value Pr > F

Numerator 2 546.70010 2.47 0.0943

Denominator 54 221.58085

Data in fixed columns When the data values have at least one space between them,
the variables are recorded in the same order for each case, and missing values are indicated
by periods, the default version of the input statement (list input) does the job perfectly.
It is a bonus that the variables need not always be separated by the same number of
spaces for each case. Also, there can be more than one line of data for each case, and in
fact there need not even be the same number of data lines for all the cases, just as long
as there are the same number of variables.

Another common situation is for the data to be lined up in fixed columns, with blanks
for missing values. Sometimes, especially when there are many variables, the data are
packed together, without spaces between values. For example, the Minnesota Multiphasic
Personality Inventory (MMPI) consists of over 300 questions, all to be answered True or
False. It would be quite natural to code 1=True and 0=False, and pack the data together.
There would still be quite a few data lines for each case.

Here is the beginning of the file statclass2.dat. It is the same as statclass1.dat,
except that the data are packed together. Most of the blanks occur because two columns
are reserved for the marks on quizzes and computer assignments, because 10 out of 10 is
possible. Three columns are reserved for the midterm and final scores, because 100% is
possible. For all variables, missing values are represented by blanks. That is, if the field
occupied by a variable is completely blank, it’s a missing value.

12 9 1 7 8 4 3 5 2 6101010 5 0 0 0 0 55 43

021010 5 910 8 6 81010 8 9 9 9 91010 66 79

121010 5101010 9 8101010101010 91010 94 67

121010 8 910 710 9101010 91010 91010 81 65

0110 1 0 0 8 6 5 210 9 0 010 6 0 5 0 54

1110 6 7 9 8 8 5 710 910 9 5 6 4 810 57 52

01 0 0 9 910 5 2 2 8 7 71010 6 3 710 49

0110 9 5 8 9 8 5 6 8 7 5 610 6 5 9 9 77 64

0110 8 6 8 9 5 3 6 9 9 6 910 6 5 710 65 42

1110 5 6 710 4 6 010 910 910 6 7 810 73

01 9 0 4 610 5 3 310 810 51010 9 910 71 37

...
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Now we will take a look at statread.sas. It contains just the proc format and the
data step; There are no statistical procedures. This file will be read by programs that
invoke statistical procedures, as you will see.

/* statread.sas

Read the statclass data in fixed format, define and label variables. Use

with %include ’/folders/myfolders/statread.sas’; */

title ’Grades from STA3000 at Roosevelt University: Fall, 1957’;

proc format; /* Used to label values of the categorical variables */

value sexfmt 0 = ’Male’ 1 = ’Female’;

value ethfmt 1 = ’Chinese’

2 = ’European’

3 = ’Other’ ;

data grades;

infile ’/folders/myfolders/statclass2.data’ missover;

input (sex ethnic) (1.)

(quiz1-quiz8 comp1-comp9) (2.)

(midterm final) (3.);

/* Drop lowest score for quiz & computer */

quizave = ( sum(of quiz1-quiz8) - min(of quiz1-quiz8) ) / 7;

compave = ( sum(of comp1-comp9) - min(of comp1-comp9) ) / 8;

label ethnic = ’Apparent ethnic background (ancestry)’

quizave = ’Quiz Average (drop lowest)’

compave = ’Computer Average (drop lowest)’;

mark = .3*quizave*10 + .1*compave*10 + .3*midterm + .3*final;

label mark = ’Final Mark’;

diff = quiz8-quiz1; /* To illustrate matched t-test */

label diff = ’Quiz 8 minus Quiz 1’;

mark2 = round(mark);

/* Bump up at grade boundaries */

if mark2=89 then mark2=90;

if mark2=79 then mark2=80;

if mark2=69 then mark2=70;

if mark2=59 then mark2=60;

/* Assign letter grade */

if mark2=. then grade=’Incomplete’;

else if mark2 ge 90 then grade = ’A’;

else if 80 le mark2 le 89 then grade=’B’;

else if 70 le mark2 le 79 then grade=’C’;

else if 60 le mark2 le 69 then grade=’D’;
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else grade=’F’;

format sex sexfmt.; /* Associates sex & ethnic */

format ethnic ethfmt.; /* with formats defined above */

/*************************************************************/

The data step in statread.sas differs from the one in statmarks1.sas in only two
respects. First, the missover option on the infile statement causes blanks to be read as
missing values even if they occur at the end of a line and the line just ends rather than
being filled in with space characters. That is, such lines are shorter than the others in the
file, and when SAS over-reads the end of the line, it sets all the variables it would have
read to missing. This is what we want, so you should always use the missover option
when missing values are represented by blanks.

The other difference between this data step and the one in statmarks1.sas is in the
input statement. Here, we are using formatted input. sex and ethnic each occupy 1
column. quiz1-quiz8 and comp1-comp9 each occupy 2 columns. midterm and final

each occupy 3 columns. You can supply a list of formats for each list of variables in
parentheses, but if the number of formats is less than the number of variables, they are
re-used. That’s what’s happening in the present case. It is also possible to specify the
exact column location in which each variable resides. The input statement is very rich
and powerful.

The program statread.sas reads and defines the data, but it requests no statisti-
cal output; statdescribe.sas pulls in statread.sas using a %include statement, and
produces basic descriptive statistics. Significance tests would be produced by other short
programs.

Keeping the data definition in a separate file and using %include (the only part of the
powerful SAS macro language presented here) is often a good strategy, because most data
analysis projects involve a substantial number of statistical procedures. It is common to
have maybe twenty program files that carry out various analyses. You could have the
data step at the beginning of each program, but in many cases the data step is long.
And, what happens when (inevitably) you want to make a change in the data step and
re-run your analyses? You find yourself making the same change in twenty files. Probably
you will forget to change some of them, and the result is a big mess. If you keep your
data definition in just one place, you only have to edit it once, and a lot of problems are
avoided.

/* statdescribe.sas */

%include ’/folders/myfolders/statread.sas’;

title2 ’Basic Descriptive Statistics’;

proc freq;

title3 ’Frequency distributions of the categorical variables’;

tables sex ethnic grade;
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proc means n mean std;

title3 ’Means and SDs of quantitative variables’;

var quiz1 -- mark2; /* single dash only works with numbered

lists, like quiz1-quiz8 */

proc univariate normal; /* the normal option gives a test for normality */

title3 ’Detailed look at mark and bumped mark (mark2)’;

var mark mark2;

2.5 SAS Example Three: The Math data

The Math data come from a large multi-campus North American university. These are
real data, and a fairly complete analysis will be spread throughout parts of this book. The
objective is to illustrate some principles of data analysis that have practical importance,
but are not exactly part of Statistics.

The Math study came about because some professors and administrators at one of
the campuses wanted to predict performance in first-year calculus so they could give
better advice to students. For this purpose, one of the professors made up a 20-question
multiple choice test; nine questions were on pre-calculus material, and eleven questions
were based on the local cirriculum in high school calculus. The main question was whether
this diagnostic test was useful. That is, if you knew what courses the students took in
high school and how well they did, would your predictions be more accurate if you also
had their scores on the diagnostic test? And is so, how much more accurate would the
predictions be?

To find out, all the students who signed up for first-year calculus at one of the campuses
were asked to take the diagnostic test in the week before classes started. Most of them (a
total of ) did so. At the end of the school year their calculus marks were recorded. This
this mark, a number from zero to one hundred, was the main dependent variable.

But of course not all students remained in the class; some withdrew, and some disap-
peared in other ways. The reasons for their disappearance were varied, and not part of the
data set. Obviously, predictions of numerical grade can only be based on students who
stayed in the course until the end, and any advice given to students about marks would
have to start out with something like “Assuming you stay in the course until the end, our
best guess of your mark is . . . ” So a second, very important response variable was simply
whether the student passed the course, Yes or No. Another potentially useful possibility
would be Pass-Fail-Disappear, a categorical response variable with three categories.

The diagnostic test provides at least two explanatory variables: number of pre-calculus
questions correct, and number of calculus questions correct. In addition, high school
transcripts were available. It is important to recognize that the information in these
transcripts was not in a form that could be used directly in statistical analysis. Each
transcript was a sizable plain text file — actually, the disk image of old fashioned line
printer output, designed to be printed on big sheets of paper 132 characters wide. There
was a cumulative high school grade point average for most students, and also a mark
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in an upper level high school English course because it was required for admission to
the university. In addition, most students in the sample had taken high school Calculus.
Beyond that, they had mostly taken different courses from one another, including similar
courses with names that were quite different, and different courses with names that were
quite similar. Courses were listed in the order taken. Some students had withdrawn from
certain courses more than once before completing them for credit, and some took the
same course for credit more than once in an attempt to improve their mark. The second
mark was usually higher, but not always.

The point of all this is that while eventually we will analyze a nice orderly data file
with rows corresponding to cases and columns corresponding to variables, data do not
naturally come that way, most of the time. As mentioned in Data Analysis Hint 1 on
page 10, the row-by-column arrangement is something that is imposed on the data by the
researchers who gather or analyze the data.

Typically, this process involves a large number of semi-arbitrary but critically impor-
tant decisions. In the math study, the number of variables that might have been extracted
from the high school transcripts is difficult even to estimate. For example, number of math
courses taken was an obvious possibility, but it was eliminated on the basis of preliminary
analysis. Many other choices were made, and the details are largely undocumented and
forgotten4. In the end, the following variables were recorded for each student who took
the diagnostic test.

•

•

•

•

2.6 SAS Reference Materials

This course is trying to teach you SAS by example, without full explanation, and cer-
tainly without discussion of all the options. If you need more detail, the SAS Institute
provides online documentation at http://support.sas.com/documentation. Most of
the standard statistical procedures you are likely to use are under “SAS/STAT.” For in-
formation about the data step (for example, reading a complex data set), choose “Base
SAS Software” and then either “SAS Language Reference: Concepts” or “SAS Language
Reference: Dictionary.” The SAS Institute also publishes hard copy manuals, but most
students will prefer the online version.

Note that this is reference material. The SAS Institute also publishes a variety of
manual-like books that are intended to be more instructional, most of them geared to

4This may be too bad, but it is typical of most research. On the positive side, it will be described shortly
how the data were randomly divided into two sub-samples, and exploratory sample and a confirmatory
sample. All the semi-arbitrary decisions were based on the exploratory sample only
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specific statistical topics (like The SAS system for multiple regression and The SAS system
for linear models). These are more readable than the reference manuals, though it helps
to have a real textbook on the topic to fill in the gaps.

A better place to start learning about SAS is a wonderful book by Cody and Smith [5]
entitled Applied statistics and the SAS programming language. They do a really good job
of presenting and documenting the language of the data step, and and they also cover a
set of statistical procedures ranging from elementary to moderately advanced. If you had
to own just one SAS book, this would be it.

If you consult any SAS book or manual, you’ll need to translate and filter out some
details. Here is the main case. Many of the examples you see in Cody and Smith’s book
and elsewhere will not have separate files for the raw data and the program. They include
the raw data in the program file in the data step, after a datalines or cards statement.
Here is an example from page 3 of [5].

data test;

input subject 1-2 gender $ 4 exam1 6-8 exam2 10-12 hwgrade $ 14;

datalines;

10 M 80 84 A

7 M 85 89 A

4 F 90 86 B

20 M 82 85 B

25 F 94 94 A

14 F 88 84 C

;

proc means data=test;

run;

Having the raw data and the SAS code together in one display is so attractive for
small datasets that most textbook writers cannot resist it. But think how unpleasant it
would be if you had 10,000 lines of data. The way we would do this example is to have
the data file (named, say, example1.dat) in a separate file. The data file would look like
this.

10 M 80 84 A

7 M 85 89 A

4 F 90 86 B

20 M 82 85 B

25 F 94 94 A

14 F 88 84 C

and the program file would look like this.

data test;
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infile ’/folders/myfolders/example1.dat’; /* Read data from example1.dat */

input subject 1-2 gender $ 4 Exam1 6-8 exam2 10-12 hwgrade $ 14;

proc means data=test;

Using this as an example, you should be able to translate any textbook example into
the program-file data-file format used in this book.



Chapter 3

Comparing Several Means

3.1 One-way analysis of variance

This chapter starts with the humble one-way (one-factor) analysis of variance (ANOVA).
It is called one way because there is a single categorical explanatory variable. This categor-
ical explanatory variable, which may be either observed or experimentally manipulated,
divides the sample into groups of observations. The objective is to test for differences
among means. Note that because the explanatory variable divides the cases into groups,
it is a between-subjects factor. Within-subjects (repeated measures) techniques will be
discussed later.

Assumptions The test assumes independent random sampling from each sub-population,
and also that the response variable has a conditional distribution that is normal, with
equal variances. That is, for each value of the categorical explanatory variable, there is a
sub-population (perhaps hypothetical), and the response variable is normally distributed
within that sub-population. While the population means of all the normal distributions
may differ, their population variances are all identical.

A normal distribution is completely specified by its mean and variance, and we are
assuming that the variances are all equal. So if the means of the conditional distributions
are also equal, then the conditional distributions are identical. This makes the explana-
tory and response variable unrelated by the definition in Chapter 1. Thus we see that
in the one-way ANOVA, the only possible kind of population relationship between the
explanatory variable and the response variable is a difference among group means.

The “assumptions” of a statistical test actually represent a mathematical model for
the data, and that model is used to formally derive the test. Such derivations are always
hidden in applied classes. But it makes a practical difference, because some assumptions
are often violated in practice, and frequently these assumptions were adopted in the first
place to make the model mathematically tractable, not because anybody seriously believed
they would be true for the typical data set.

Sometimes, the assumptions that allow the mathematical derivation of a test are not
really necessary. The test might work, or anyway work pretty well, even if the assumptions

66
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are violated. When this is the case, the test is said to be robust with respect to those
assumptions. Usually, robustness is something that starts to happen as the sample size
gets large, if it happens at all.

When we say a test “works,” we mean two things

• It protects against Type I error (false significance) at something close to the stated
level. That is, if nothing is really going on, significant effects will be falsely detected
at the 0.05 level not much more than 5% of the time.

• The power of the test is reasonably good. At the very least, power (the probability
of correctly rejecting the null hypothesis) increases when the relationship between
explanatory variable and response variable becomes stronger, and also increases
with the sample size, approaching one as the sample size approaches infinity for any
non-zero relationship between variables.

For the one-way analysis of variance (and for factorial1 ANOVA in general) if the
assumption of equal variances holds but the normal assumption does not, the test is
robust for large samples. The rough rule would be n = 20 to 25 for each group, though
for data that are sufficiently non-normal, an arbitrarily large sample might be required.
If the equal variances assumption is violated, then the test is robust for large samples if
the sample sizes for each group are approximately equal. Here, the meaning of “large” is
murky.

Analysis of variance The word analysis means to take apart or split up, and in
the analysis of variance, variation in the response variable is split into two components:
variation of the data values that is explained by the explanatory variable (Sum of Squares
Between groups), and variation that is left unexplained (Sum of Squares Within groups).
Here’s how it goes.

Suppose we want to predict the value of a response variable, without using any ex-
planatory variables yet. The best prediction (in the sense of least squares) is the sample
mean. Subtract the sample mean from each response variable value, and we obtain a set
of deviations representing errors of prediction. Squaring these deviations to remove the
sign and adding them up yields a measure of the total variation in the sample data. We
call it the Total Sum of Squares, or SSTO.

The total sum of squares is the total amount of variation in the response variable. It is
what any potential predictor would seek to explain. Here, the word “explain” really means
“reduce.” To the extent that the total squared error of prediction around a predictor is
less than SSTO, the predictor is effective. It has “explained” part of the variation in the
response variable — at least in the sense of taking care of it.

Now consider a categorical explanatory variable as a predictor of the response variable.
This variable (which could be either an experimental treatment or an existing variable
that is merely assessed, like breed of dog) subdivides the cases into two or more groups.

1The term “factor” is another term for categorical explanatory variable. Factorial research designs
imply analyses with one or more categorical explanatory variables, usually more than one.
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Now, if you want to predict the response variable, you would use the group mean rather
than the overall mean. For example, if you want to predict the amount of food eaten by
an Irish wolfhound, you would use the mean consumption of the Irish wolfhounds in your
sample, not the mean consumption of all the dogs combined.

No matter how good a predictor is, it will not be perfect for real data. For each
value of the response variable, subtract off the group mean (not the overall mean, this
time). Square those errors of prediction, add them up, and we have the Sum of Squared
error of prediction Within groups, where the response variable is being predicted from
group membership. The initials SSW stand for Sum of Squares Within. This quantity
represents the variation in the response variable that is not explained by the explanatory
variable. It is left over, or residual.2

If SSTO is the total amount of variation that could be explained, and SSW is the
amount of variation that is left unexplained, then the difference between them must be
the variation that is explained. Now suppose that by some amazing coincidence, all the
group means were exactly equal. Then SSW = SSTO, and absolutely no variation is
explained by the explanatory variable. This suggests that explained variation must be
linked to variation between group means, and we write

SSTO = SSB + SSW,

where SSB, which stands for “Sum of Squares Between,” is the variation that is explained
by the categorical explanatory variable.

The notation SSB for the explained sum of squares is supported by a set of formulas,
which are given because they may be illuminating for some readers, not because you will
ever have to use them for calculation. First, suppose that there are p groups3, with nj
cases in each group, j = 1, . . . , p. The total sample size is n =

∑p
j=1 nj. Observation i in

group j is denoted by Yi,j, and the sample means are

Y j =

∑nj
i=1 Yi,j
nj

and Y =

∑p
j=1

∑nj
i=1 Yi,j

n
.

2The differences between the data values and group means are residuals. In regression, the predictions
are points on the regression line or surface, and again the residuals are differences between observed and
predicted values. In regression, the initials SSE stand for Sum of Squared Error of prediction. SSW is
a special kind of SSE.

3This p is different from the p-value. It connects so well with standard notation in multiple regression
that we’re going to use it for the number of groups, even though it’s unfortunate when the same symbol
is used for two different things. You’ll just have to realize which p is meant from the context.
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Then, the formulas for the sums of squares are

SSB =

p∑
j=1

nj(Y j − Y )2

SSW =

p∑
j=1

nj∑
i=1

(Yi,j − Y j)
2

SSTO =

p∑
j=1

nj∑
i=1

(Yi,j − Y )2.

You can see that the Sum of Squares Between groups is literally the variation of the
group means around the overall mean, with the contribution of each squared deviation
determined by the group sample size. Again, the sums of squares add up: SSTO =
SSB + SSW .

ANOVA summary tables Sums of squares and related quantities are often presented
in an Analysis of variance summary table. In the old days, these were given in the results
sections of journal articles; today, they appear only in the output printed by statistics
packages. There are minor differences in detail. SAS proc glm produces one in this
format.

Sum of

Source DF Squares Mean Square F Value Pr > F

Model p− 1 SSB MSB = SSB/(k − 1) MSB/MSW p-value

Error n− p SSW MSW = SSW/(n− k)

Corrected Total n− 1 SSTO

Sums of squares add up, degrees of freedom add up, Mean Square = SS/df, and F is the
ratio of two Mean Squares. The F ratio is the test statistic for

H0 : µ1 = . . . = µp.

That is, under the null hypothesis all the population means are equal.

For a particular data set, the analysis of variance summary table will be filled with
numbers. It allows you to calculate a very useful descriptive statistic:

R2 =
SSB

SSTO
.
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R2 is the proportion of the variation in the response variable that is explained
by the explanatory variable.4 This is exactly the interpretation we give to the square
of the correlation coefficient; R2 is a reasonable index of how strongly the response variable
is related to the explanatory variable.

If the sample size is small, it is possible for R2 to be fairly large, but the differences
among means are not statistically significant. Or, if the sample size is huge, even a very
weak, trivial relationship can be “significant.” To take an extreme example, one fabled
analysis of U. S. census data found virtually everything to be statistically significant, even
average shoe size East versus West of the Mississippi River. You might say that there are
really two kinds of significance: statistical significance and substantive significance. R2

can help you assess substantive significance. Confidence intervals can be useful, too.
What’s a good value of R2? Traditions vary in different scientific disciplines. Not

surprisingly, areas dominated by noisy data and weak relationships are more tolerant of
small R2 values. My personal preference is guided by the correlation coefficient. In a
scatterplot, the correlation has to be around 0.30 in absolute value before I can really
tell whether the relationship is positive or negative. Since 0.302 = 0.09, I start taking
explanatory variables seriously once they explain around nine or ten percent of the vari-
ation (or of the remaining variation, if there are multiple explanatory variables). But
opinions differ. Cohen’s (1988) authoritative Statistical power analysis for the behavioral
sciences [6] suggests a much more modest standard.

3.2 Testing Contrasts

The F -test from a one-way ANOVA is useful, but it usually does not tell you all you need
to know. For example, if the test is significant, the conclusion is that not all the group
means are equal in the population. But you do not know which means are different from
each other. Or, specific comparisons might be of interest. For example, you may have
reason to believe that the response to drug A is better than the average response to drugs
B, C and D. Fortunately, analysis of variance technology can do much more than simply
test for equality of several group means. First, we need a few definitions.

A linear combination is a weighted sum of several quantities. It has the general form

Linear Combination = a1Q1 + a2Q2 + . . .+ akQp.

The symbols a1 through ap stand for numerical constants. We will call these the weights
of the linear combination.

Suppose there are p treatments (groups, values of the categorical explanatory variable,
whatever you want to call them). A contrast is a special kind of linear combination of
means in which the weights add up to zero. A population contrast has the form

c = a1µ1 + a2µ2 + · · ·+ apµp

4Psychologists often call it the proportion of variance that is explained, while statisticians usually call
it proportion of sum of squares. The “proportion of variance” terminology can be justified in a couple of
different ways, and is perfectly okay.
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where a1 + a2 + · · ·+ ap = 0. The case where all of the a values are zero is uninteresting,
and is excluded. A population contrast is estimated by a sample contrast:

ĉ = a1Y 1 + a2Y 2 + · · ·+ apY p.

With the right software (and that definitely includes SAS), it is easy to test whether any
contrast equals zero, and to obtain a confidence interval for a contrast. It is also easy to
test several contrasts at once.

By setting a1 = 1, a2 = −1, and the rest of the a values to zero we get L = Y 1 − Y 2,
so it’s easy to see that any difference between two means is a contrast.5 Also, the average
of one set of means minus the average of another set is a contrast.

The F test for equality of p means can be viewed as a simultaneous test of p − 1
contrasts. For example, suppose there are four treatments, and the null hypothesis of the
initial test is H0 : µ1 = µ2 = µ3 = µ4. The table gives the a1, a2, a3, a4 values for three
contrasts; if all three contrasts equal zero then the four population means are equal, and
vice versa.

a1 a2 a3 a4
1 -1 0 0
0 1 -1 0
0 0 1 -1

The way you read this table is

µ1 - µ2 = 0
µ2 - µ3 = 0

µ3 - µ4 = 0

Clearly, if µ1 = µ2 and µ2 = µ3 and µ3 = µ4, then µ1 = µ2 = µ3 = µ4, and if
µ1 = µ2 = µ3 = µ4, then µ1 = µ2 and µ2 = µ3 and µ3 = µ4. The simultaneous F test
for the three contrasts is 100% equivalent to what you get from a one-factor ANOVA; it
yields the same F statistic, the same degrees of freedom, and the same p-value.

There is always more than one way to set up the contrasts to test a given hypothesis.
Staying with the example of testing differences among four means, we could have specified

a1 a2 a3 a4
1 0 0 -1
0 1 0 -1
0 0 1 -1

so that all the means are equal to the last one,6 and thus equal to each other. No matter
how you set up collection of contrasts, if you do it correctly you always get the same test
statistic and p-value.

5The test of a contrast between two means is not exactly the same as what you would get if you
ignored all the data from the other groups, and just did a two-sample t-test or a one-way analysis with
two groups. This is because the test of a contrast uses data from all the groups to estimate the common
within-group variance; it uses Mean Squared Within from the full one-way ANOVA.

6These contrasts (differences between means) are actually equal to the regression coefficients in a
multiple regression with indicator dummy variables, in which the last category is the reference category.
More on this later.
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3.3 The Tubes Data

In the tubes data (kindly provided by Linda Kohn of the University of Toronto’s Botany
department), the investigators were studying sclerotial fungi. The fungus they were study-
ing is nasty black stuff that looks much like the fungus that grows between the tiles above
your bathtub (well, okay, my bathtub). The fungus is called “sclerotial” because that is
how they reproduce. Sclerotia are little pods that produce spores. When the pod opens
and the spores are released, they float through the air, land somewhere, and maybe start
to grow.

Ordinarily, these sclerotial fungi grow on plants. In fact, they often grow on canola
plants, and kill them or impair their growth. The canola plant produces a high-quality
vegetable oil, and is one of Canada’s biggest cash crops. So this makes a difference,
because it is about food.

All these fungi look the same, but they are not. There are different strains of fungus,
and the investigators know how to do genetic fingerprinting to tell them apart. The
different types are called “mycelial compatibility groups” (MCG for short), because if you
grow two different genetic types together in a dish, they will separate into two visibly
distinct colonies, and stay separated. The stuff that grows together is compatible. Before
techniques of genetic fingerprinting were developed, this was the only way to tell the
strains of apart.

The MCGs are genetically and spatially distinct, but do some grow faster than others?
This could have implications for agricultural practice as well as science. In this experiment,
the fungus is not growing on plants; it’s growing in “race tubes,” in a nutrient solution.
The implicit assumption here is that types of fungus that grow better in test tubes will
also grow better on plants. Is this true? It’s definitely an empirical question, because
plants fight off these infestations with something like an immune system response, and
the fungus that grows best on a completely passive host is not necessarily the one that
will grow best on a host that is fighting back. This is an issue of external validity; see
Section 1.3.

There are six MCGs, with four test tubes each. So, there are n = 24 cases in all.
This may seem like a very small sample size, and in fact the sample size was not chosen
by a power analysis (see Section 1.2.1 in Chapter 1 for a brief discussion) or any other
systematic method. It was entirely intuitive — but this is the intuition of scientists with
well-deserved international reputations in their field. Here’s how they thought about it.

The samples of each fungus type are genetically identical, the test tubes in which they
are placed are exactly identical, and the nutrient solution in the tubes comes from one
well-mixed batch; it’s exactly the same in all tubes. The amount of nutrient solution in
each tube is placed by hand, but it’s done very carefully, by highly trained and experi-
enced personnel. The temperature and humidity of the tubes in the lab are also carefully
controlled, so they are the same, except for microscopic differences. Really, the only pos-
sible source of variation in measured growth (except for very tiny errors of measurement)
is the genetic makeup of the fungus. Under the circumstance, one tube for each fungus
type might seem adequate to a biologist (though you couldn’t do any significance tests),
two tubes would be replicating the study, and four tubes per condition might seem like



3.3. THE TUBES DATA 73

overkill.7 We will see presently that this intuition is supported by how the statistical
analysis turned out.

Every day for two weeks, a lab assistant (maybe a graduate student) measured each
tube, once in the morning and once in the evening. She measured the length of fungus
in centimeters, and also counted the sclerotia, as well as taking other measurements. We
will confine ourselves to a single response variable – length of the fungus on the evening
of day 10. After that point, the fastest-growing strains spread past the end of the test
tubes, creating a pattern of missing data that is too challenging to be considered here.
So, we have fungus type, a categorical explanatory variable called MCG that takes on six
values (the codes are numerical, and they are informative to the botanists); and we have
the single response variable pmlng10, which roughly indicates growth rate.

The The SAS program tubes09f.sas contains a one-way analysis of variance with
many (not all) of the bells and whistles. The strategy will to present the complete SAS
program first and then go over it piece by piece and explain what is going on – with one
major statistical digression. Here is the program.

/*************** tubes09f.sas ****************/

/* One-way analysis of tubes data */

/*********************************************/

%include ’/folders/myfolders/tuberead2.sas’;

title2 ’One-way analysis of tubes data’;

proc freq;

tables mcg;

proc glm;

title3 ’Just the defaults’;

class mcg;

model pmlng10 = mcg;

/* For convenience, MCGs are: 198 205 213 221 223 225 */

proc glm;

7It is true that with this small sample, the assumptions of normal distribution and equal variance are
basically uncheckable. But they can be justified as follows. The only reason that the length measurement
for a particular type of fungus would not be completely identical would be a multitude of tiny, more
or less independent random shocks arising from tiny errors of measurement (the lab assistant is using a
ruler) and even smaller differences in the chemical composition of the nutrient solution and micro-climate
within the growth chamber. These random shocks may not be identically distributed, but as long as they
are independent and fairly numerous, a version of the Central Limit Theorem assures us that their sum
is normally distributed. Also, since code numbers were used to label the test tubes (the lab assistants
were blind to experimental condition), there is no reason to expect that the nature of the random shocks
would differ for the different fungus types. This justifies the assumption of equal variances.
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title3 ’With contrasts and multiple comparisons’;

class mcg;

model pmlng10 = mcg / clparm; /* clparm give CI for contrasts down in

the estimate statement. */

means mcg;

/* Test custom contrasts, or "planned comparisons" */

contrast ’198vs205’ mcg 1 -1 0 0 0 0;

contrast "223vs225" mcg 0 0 0 0 1 -1;

contrast ’223n225vsRest’ mcg -1 -1 -1 -1 2 2;

/* Test equality of mcgs excluding 198: a COLLECTION of contrasts */

contrast ’AllBut198’ mcg 0 1 -1 0 0 0,

mcg 0 0 1 -1 0 0,

mcg 0 0 0 1 -1 0,

mcg 0 0 0 0 1 -1;

/* Replicate overall F test just to check. */

contrast ’OverallF=76.70’ mcg 1 -1 0 0 0 0,

mcg 0 1 -1 0 0 0,

mcg 0 0 1 -1 0 0,

mcg 0 0 0 1 -1 0,

mcg 0 0 0 0 1 -1;

/* Estimate will print the value of a sample contrast and do a t-test

of H0: Contrast = 0 */

/* F = t-squared */

estimate ’223n225vsRest’ mcg -.25 -.25 -.25 -.25 .5 .5;

estimate ’AnotherWay’ mcg -3 -3 -3 -3 6 6 / divisor=12;

/* Multiple Comparisons */

means mcg / Tukey Bon Scheffe; /* Simultaneous Confidence Intervals */

/* Tables of adjusted p-values -- more convenient */

lsmeans mcg / pdiff adjust=bon;

lsmeans mcg / pdiff adjust=tukey;

lsmeans mcg / pdiff adjust=scheffe;

/* Get Scheffe critical value from proc iml */

proc iml;

title2 ’Scheffe critical value for all possible contrasts’;

numdf = 5; /* Numerator degrees of freedom for initial test */

dendf = 17; /* Denominator degrees of freedom for initial test */

alpha = 0.05;

critval = finv(1-alpha,numdf,dendf);

scrit = critval * numdf;

print "Initial test has" numdf " and " dendf "degrees of freedom."

"----------------------------------------------------------"
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"Using significance level alpha = " alpha

"------------------------------------------------"

"Critical value for the initial test is " critval

"------------------------------------------------"

"Critical value for Scheffe tests is " scrit

"------------------------------------------------";

The program begins with %include ’/folders/myfolders/tuberead2.sas’; the
data step is contained in a separate file called tuberead2.sas, not shown here. The
%include statement reads in the external file. This is what was done with the statclass

data presented in Section 2.4 of Chapter 2. More detail about %include is given there.
Then (after the second title line) we request a frequency distribution of the explanatory

variable – always a good idea.

proc freq;

tables mcg;

Here is the output of proc freq.

Fungus Tube data with line1=113 eliminated 1

One-way analysis of tubes data

The FREQ Procedure

Mycelial Compatibility Group

Cumulative Cumulative

mcg Frequency Percent Frequency Percent

--------------------------------------------------------

198 4 17.39 4 17.39

205 4 17.39 8 34.78

213 3 13.04 11 47.83

221 4 17.39 15 65.22

223 4 17.39 19 82.61

225 4 17.39 23 100.00

The first line of the title contains a reminder that one of the cases (tubes) has been
eliminated from the data. In the full data set, there was an outlier; when the biologists saw
it, they were absolutely convinced that in spite of the great care taken in the laboratory,
the tube in question had been contaminated with the wrong strain of fungus. So we set
it aside. This is why there are only three test tubes in the mcg=213, group, and four in
all the others.

Next, we have a bare-bones proc glm. The initials stand for “General Linear Model,”
and indeed the procedure is very general. Especially in this first example, we are just
scratching the surface. All the parts are obligatory except title3, which produces a third
title line that is displayed only for the output of this procedure.
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proc glm;

title3 ’Just the defaults’;

class mcg;

model pmlng10 = mcg;

The class statement declares package to be categorical. Without it, proc glm would do
a regression with mcg as a quantitative explanatory variable. The syntax of the minimal
model statement is

model Response variable(s) = Explanatory variable(s);

Here is the output; it’s part of the output file.

_______________________________________________________________________________

Fungus Tube data with line1=113 eliminated 2

One-way analysis of tubes data

Just the defaults

The GLM Procedure

Class Level Information

Class Levels Values

mcg 6 198 205 213 221 223 225

Number of Observations Read 23

Number of Observations Used 23

_______________________________________________________________________________

Fungus Tube data with line1=113 eliminated 3

One-way analysis of tubes data

Just the defaults

The GLM Procedure

Dependent Variable: pmlng10



3.3. THE TUBES DATA 77

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 5 55.43902174 11.08780435 76.70 <.0001

Error 17 2.45750000 0.14455882

Corrected Total 22 57.89652174

R-Square Coeff Var Root MSE pmlng10 Mean

0.957554 1.500224 0.380209 25.34348

Source DF Type I SS Mean Square F Value Pr > F

mcg 5 55.43902174 11.08780435 76.70 <.0001

Source DF Type III SS Mean Square F Value Pr > F

mcg 5 55.43902174 11.08780435 76.70 <.0001

First, proc glm gives “Class Level Information: ” the name of the explanatory vari-
able, the number of “Levels” (groups), and the actual values taken on by the explanatory
variable. Then we get the sample size (n = 23). That’s all for Page 2 of the output. If
not for the formdlim option, SAS would print the next page of output on a new physical
sheet of paper.

On the next page of output (that is, the next logical page, as opposed to physical
page), SAS first prints the title lines, then the name of the response variable, and the first
of three analysis of variance summary tables. It’s a standard one, and leads to the F value
of 76.70; this is the “numerical value of the test statistic (so often requested in homework
problems) for testing equality of means. The p-value is tiny (p < 0.0001). The differences
among means are statistically significant, but with this minimal output we cannot even
guess which means might be significantly different from which others; the sample means
are not even displayed.

On the other hand, we do get some other statistics. Reading from right to left, we
see the sample mean of the response variable, Root MSE (literally the square root of the
Mean Square Within groups), The Coefficient of Variation (100 times Root MSE divided
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by Y , for what that’s worth), and

R2 =
SSB

SSTO
=

55.4390

57.8965
= 0.957554.

That is, nearly 96% of the variation in growth rate is explained by genetic the type
of the fungus. This is an overwhelmingly strong relationship between the explanatory
and response variables, and completely justifies the investigators’ judgement that a small
sample was all they needed. You’d never see anything this strong outside the laboratory
(say, in a canola field).

Next in the SAS program comes the real proc glm — one that illustrates testing and
confidence intervals for contrasts, and also multiple comparisons (sometimes called post
hoc tests, or probing). It starts like the one we’ve just examined.

/* For convenience, MCGs are: 198 205 213 221 223 225 */

proc glm;

title3 ’With contrasts and multiple comparisons’;

class mcg;

model pmlng10 = mcg / clparm; /* clparm give CI for contrasts down in

the estimate statement. */

means mcg;

The comment lists the mcgs (values of the explanatory variable) in order; it’s useful
here for setting up contrasts and remembering what they mean. This proc glm starts out
just like the last one, except for the clparm option on the model statement; clparm stands
for “confidence limits for parameters.” The parameters in question are contrasts (which
are actually functions of several model parameters), requested later in the estimate

statements. This is the best way to obtain confidence intervals for contrasts.
There’s also an optional means statement that goes means mcg. It requests a display

of the sample means of the response variable, separately for each value of the explanatory
variable named. A means statement is really necessary in any oneway ANOVA with proc

glm if you are to have any idea of what is going on. But the SAS syntax does not require
it. Here is the table of means generated by the means statement.

The GLM Procedure

Level of -----------pmlng10-----------

mcg N Mean Std Dev

198 4 28.3250000 0.35939764

205 4 25.8500000 0.28867513

213 3 25.0000000 0.26457513

221 4 23.4000000 0.48304589

223 4 24.8000000 0.16329932

225 4 24.6000000 0.54772256
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Next, we request test of some contrasts, and also tests of two collections of contrasts.
As the comment in the program indicates, these are sometimes called “planned compar-
isons” of treatment means. The implication is that they are tests of specific hypotheses
that were developed before looking at the data – maybe the hypotheses that the study
was designed to test in the first place. Maybe.

/* Test custom contrasts, or "planned comparisons" */

contrast ’198vs205’ mcg 1 -1 0 0 0 0;

contrast "223vs225" mcg 0 0 0 0 1 -1;

contrast ’223n225vsRest’ mcg -1 -1 -1 -1 2 2;

/* Test equality of mcgs excluding 198: a COLLECTION of contrasts */

contrast ’AllBut198’ mcg 0 1 -1 0 0 0,

mcg 0 0 1 -1 0 0,

mcg 0 0 0 1 -1 0,

mcg 0 0 0 0 1 -1;

/* Replicate overall F test just to check. */

contrast ’OverallF=76.70’ mcg 1 -1 0 0 0 0,

mcg 0 1 -1 0 0 0,

mcg 0 0 1 -1 0 0,

mcg 0 0 0 1 -1 0,

mcg 0 0 0 0 1 -1;

The syntax of the contrast statement is (reading left to right):

1. The word contrast

2. A label for the contrast (or set of contrasts), enclosed in single or double quotation
marks

3. The name of the categorical explanatory variable. If there is more than one cat-
egorical explanatory variable (factor), you’ll get a contrast of the marginal means
averaging across the other factors.

4. The weights of the contrast — the constants a1, . . . , ap described in Section 3.2.

5. If you want to test more than one contrast simultaneously, separate the contrasts by
commas, as in the example. You must repeat the name of the categorical explanatory
variable each time.

6. End the statement with a semicolon, as usual.

If the weights a1, . . . , ap do not add up to zero, you won’t get a test of whether
the resulting linear combination equals zero. You don’t even get an error message or
warning, just a ”Note” on the log file saying something like “CONTRAST LC is not
estimable.” This actually makes perfectly good sense if you understand the way that
proc glm parameterizes linear models that have categorical explanatory variables. But
the waters are a bit deep here, so we’ll let it go for now.
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The output of the contrast statement comes after the ANOVA summary table and
after the output of the means statement (and lsmeans), even if you request means after
you’ve requested contrasts. They are nicely labelled, using the labels supplied in the
contrast statements. Naturally, the overall F value of 76.70 appearing in the label of
the last test was obtained in an earlier run.

The GLM Procedure

Dependent Variable: pmlng10

Contrast DF Contrast SS Mean Square F Value Pr > F

198vs205 1 12.25125000 12.25125000 84.75 <.0001

223vs225 1 0.08000000 0.08000000 0.55 0.4671

223n225vsRest 1 4.62182432 4.62182432 31.97 <.0001

AllBut198 4 12.39526316 3.09881579 21.44 <.0001

OverallF=76.70 5 55.43902174 11.08780435 76.70 <.0001

Next we have the estimate statement, which has a syntax similar to contrast. It is
limited to single contrasts. They have to be actual contrasts, and not just generic linear
combinations of cell means. The estimate statement prints the value of the sample
contrast, a number that is an estimate of the population contrast. You also get a two-
sided t-test of the null hypothesis that the contrast equals zero in the population. This is
equivalent to the F -test generated by contrast; F = t2, and the p-values are identical.

Notice that if you are just interested in a test for whether a contrast equals zero,
multiplying by a constant has no effect – so the test of −0.5,−0.5, 1.0 is the same as
the test for 1, 1,−2; you’d probably use contrast. But if you are using estimate, you
probably are interested in the numerical value of the contrast, often the difference between
two means or averages of means. Some of these can be awkward to specify in decimal
form, so you can use integers and give a divisor, as shown below.

/* Estimate will print the value of a sample contrast and do a t-test

of H0: Contrast = 0 */

/* F = t-squared */

estimate ’223n225vsRest’ mcg -.25 -.25 -.25 -.25 .5 .5;

estimate ’AnotherWay’ mcg -3 -3 -3 -3 6 6 / divisor=12;

Here is the output of estimate. As mentioned earlier, the confidence limits were produced
by the clparm option on the model statement.
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Standard

Parameter Estimate Error t Value Pr > |t|

223n225vsRest -0.94375000 0.16690623 -5.65 <.0001

AnotherWay -0.94375000 0.16690623 -5.65 <.0001

Parameter 95% Confidence Limits

223n225vsRest -1.29589137 -0.59160863

AnotherWay -1.29589137 -0.59160863

3.4 Multiple Comparisons

The means statement of proc glm lets you look at the group means, but it does not
tell you which means are significantly different from which other means. Before we lose
control and start doing all possible t-tests, consider the following.

The curse of a thousand t-tests Significance tests are supposed to help screen out
random garbage, so we can disregard “trends” that could easily be due to chance. But
all the common significance tests are designed in isolation, as if each one were the only
test you would ever be doing. The chance of getting significant results when nothing is
going on may well be about 0.05, depending on how well the assumptions of the test
are met. But suppose you do a lot of tests on a data set that is purely noise, with no
true relationships between any explanatory variable and any response variable. Then the
chances of false significance mount up. It’s like looking for your birthday in tables of stock
market prices. If you look long enough, you will find it.

This problem definitely applies when you have a significant difference among more than
two treatment means, and you want to know which ones are different from each other. For
example, in an experiment with 10 treatment conditions (this is not an unusually large
number, for real experiments), there are 45 pairwise differences among means. In the tubes
data, there are 6 different fungus types, and thus 15 potential pairwise comparisons.

You have to pity the poor scientist8 who learns about this and is honest enough to take
the problem seriously. On one hand, good scientific practice and common sense dictate
that if you have gone to the trouble to collect data, you should explore thoroughly and
try to learn something from the data. But at the same time, it appears that some stern
statistical entity is scolding you, and saying that you’re naughty if you peek.

There are several ways to resolve the problem. One way is to basically ignore it, while
perhaps acknowledging that it is there. According to this point of view, well, you’re crazy
if you don’t explore the data. Maybe the true significance level for the entire process is

8Let’s use the term “scientist” generously to apply to anyone trying to obtain informmation from a
set of numerical data.
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greater than 0.05, but still the use of significance tests is a useful way to decide which
results might be real. Nothing’s perfect; let’s carry on.

My favourite solution is to collect enough data so that they can be randomly split
into an exploratory and a replication sample. You explore one of the samples thoroughly,
doing all sorts of tests, maybe re-defining the variables in the process. The result is a set
of very specific hypotheses. Then you test the hypotheses on the second data set. This
is great, unless the data are very time-consuming or expensive to collect. In that case,
you’re lucky to have one small data set, and you have to use all of it at once or you won’t
have enough power to detect anything.

Taking this unfortunate reality into account, statisticians have looked for ways that
significance tests can be modified to allow for the fact that we’re doing a lot of them. What
we want are methods for holding the chances of false significance to a single low level for a
set of tests, simultaneously. The general term for such methods is multiple comparison
procedures. Often, when a significance test (like a one-way ANOVA) tests several things
simultaneously and turns out to be significant, multiple comparison procedures are used
as a second step, to investigate where the effect came from. In cases like this, the multiple
comparisons are called follow-up tests, or post hoc tests, or sometimes probing.

It is generally acknowledged that multiple comparison methods are often helpful (even
necessary) for following up significant F -tests in order to see where an effect comes from.
For now, let’s concentrate on following up a significant F test in a one-way analysis of
variance. Three approaches will be presented, named after their originators: Bonferroni9,
Tukey and Scheffé. There are many more.

3.4.1 Bonferroni

The Bonferroni method is very general, and extends far beyond pairwise comparisons of
means. It is a simple correction that can be applied when you are performing multiple
tests, and you want to hold the chances of false significance to a single low level for all the
tests simultaneously. It applies when you are testing multiple sets of explanatory variables,
multiple response variables, or both.

The Bonferroni correction consists of simply dividing the desired significance level
(that’s α, the maximum probability of getting significant results when actually nothing is
happening, usually α = 0.05) by the number of tests. In a way, you’re splitting the alpha
equally among the tests you do.

For example, if you want to perform 5 tests at joint significance level 0.05, just do
everything as usual, but only declare the results significant at the joint 0.05 level if one
of the tests gives you p < 0.01 (0.01=0.05/5). If you want to perform 20 tests at joint
significance level 0.05, do the individual tests and calculate individual p-values as usual,
but only believe the results of tests that give p < 0.0025 (0.0025=0.05/20). Say something
like “Protecting the 20 tests at joint significance level 0.05 by means of a Bonferroni

9Actually, Mr. Bonferroni is only indirectly responsible for the Bonferroni method of multiple com-
parisons. He gets credit for the probability inequality that says P (∪kj=1Aj) ≤

∑k
j=1 P (Aj). Letting Aj

be the event that null hypothesis j is rejected (assume they are all true), we get the Bonferroni multiple
comparison method quite easily.



3.4. MULTIPLE COMPARISONS 83

correction, the difference in reported liking between worms and spinach soufflé was the
only significant food category effect.”

The Bonferroni correction is conservative. That is, if you perform 20 tests, the prob-
ability of getting significance at least once just by chance with a Bonferroni correction
is less than or equal to 0.05 – almost always less. The big advantages of the Bonferroni
approach are simplicity and flexibility. It is the only way I know to analyze quantitative
and categorical response variables simultaneously.

The main disadvantages of the Bonferroni approach are

1. You have to know how many tests you want to perform in advance, and you have
to know what they are. In a typical data analysis situation, not all the significance
tests are planned in advance. The results of one test will give rise to ideas for other
tests. If you do this and then apply a Bonferroni correction to all the tests that you
happened to do, it no longer protects all the tests simultaneously at the level you
want10.

2. The Bonferroni correction can be too conservative, especially when the number of
tests becomes large. For example, to simultaneously test all 780 correlations in a
40 by 40 correlation matrix at joint α = 0.05, you’d only believe correlations with
p < 0.0000641 = 0.05/780.

Is this “too” conservative? Well, with n = 200 in that 40 by 40 example, you’d need
r = 0.27 for significance (compared to r = .14 with no correction). With n = 100
you’d need r = .385, or about 14.8% of one variable explained by another single
variable. Is this too much to ask? You decide.

3.4.2 Tukey

This is Tukey’s Honestly Significant Difference (HSD) method. It is not his Least Sig-
nificant Different (LSD) method, which has a better name but does not really get the
job done. Tukey tests apply only to pairwise differences among means in ANOVA. It is
based on a deep study of the probability distribution of the difference between the largest
sample mean and the smallest sample mean, assuming the population means are in fact
all equal.

• If you are interested in all pairwise differences among means and nothing else, and
if the sample sizes are equal, Tukey is the best (most powerful) test, period.

• If the sample sizes are unequal, the Tukey tests still get the job of simultaneous
protection done, but they are a bit conservative. When sample sizes are unequal,
Bonferroni or Scheffé can sometimes be more powerful.

10On the other hand, you could randomly split your data into an exploratory sample and a replication
sample. Test to your heart’s content on the first sample, without any correction for multiple testing. Then,
when you think you know what your results are, perform only those tests on the replication sample, and
protect them simultaneously with a Bonferroni correction. This could be called ”Bonferroni-protected
cross-validation.” It sounds good, eh? This will be illustrated using the Math data described at the end
of Chapter 2
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3.4.3 Scheffé

It is very easy for me to say too much about Scheffé tests, so this discussion will be limited
to testing whether certain linear combinations of treatment means (in a one-way design)
are significantly different from zero. The Scheffé tests allow testing whether any contrast
of treatment means differs significantly from zero, with the tests for all possible contrasts
simultaneously protected.

When asked for Scheffé followups to a one-way ANOVA, SAS tests all pairwise dif-
ferences between means, but there are infinitely many more contrasts in the same family
that it does not do — and they are all jointly protected against false significance at the
0.05 level. You can do as many of them as you want easily, with SAS and a calculator.

It’s a miracle. You can do infinitely many tests, all simultaneously protected. You do
not have to know what they are in advance. It’s a license for unlimited data fishing, at
least within the class of contrasts of treatment means.

Two more miracles:

• If the initial one-way ANOVA is not significant, it’s impossible for any of the Scheffé
follow-ups to be significant. This is not quite true of Bonferroni or Tukey.

• If the initial one-way ANOVA is significant, there must be a single contrast that is
significantly different from zero. It may not be a pairwise difference, you may not
think of it, and if you do find one it may not be easy to interpret, but there is at
least one out there. Well, actually, there are infinitely many, but they may all be
extremely similar to one another.

Here’s how you do it. First find the critical value of F for the initial oneway ANOVA
(Recall that if a test statistic is greater than the critical value, it’s statistically significant).
This is part of the default output from proc glm when you request Scheffé tests using
the means statement – or you can use proc iml11.

A contrast is significantly different from zero by a Scheffé test if the F statistic is
greater than the usual critical value multiplied by p− 1, where p is the number of groups.
You can get the F statistics with contrast. Keep doing tests until you run out of ideas.

Notice that multiplying by the number of means (minus one) is a kind of penalty
for the richness of the infinite family of tests you could do. As soon as Mr. Scheffé
discovered these tests, people started complaining that the penalty was very severe, and
it was too hard to get significance. In my opinion, what’s remarkable is not that a license
for unlimited fishing is expensive, but that it’s for sale at all. The power of a Scheffé test
is the probability of getting a value of F that is bigger than the critical value multiplied
by p− 1. You can pay for it by increasing the sample size.

Which method should you use? In most practical data analysis situations, you
would only use one of the three multiple comparison methods. Here are some guidelines.

11Or, you could even use a table of critical values in the back of a Statistics text book. The exact
degrees of freedom you want probably won’t be in there, so you’ll have to interpolate. Yuk.
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• If the sample sizes are nearly equal and you are only interested in pairwise compar-
isons, use Tukey because it’s most powerful in this situation.

• If the sample sizes are not close to equal and you are only interested in pairwise
comparisons, there is (amazingly, just this once) no harm in applying all three
methods and picking the one that gives you the greatest number of significant results.
This is because you could calculate the three types of adjusted critical value in
advance before seeing the data, and choose the smallest one.

• If you are interested in testing contrasts that go beyond pairwise comparisons and
you can specify all of them (exactly what they are, not just how many) before
seeing the data, Bonferroni is almost always more powerful than Scheffé. Tukey is
out, because it applies only to pairwise comparisons.

• If you want lots of special contrasts but you don’t know exactly what they all are,
Scheffé is the only honest way to go, unless you have a separate replication data set.

3.4.4 Simultaneous confidence intervals and adjusted p-values

The Bonferroni and Scheffé methods allow you to test an arbitrary family of contrasts
simultaneously, while holding down the joint Type I error rate. If you want to test a con-
trast that is a little special or unusual, you’d use the test from the contrast or estimate
statement, along with an adjusted critical value. But if you’re only interested in com-
paring all possible pairs of group means, you don’t have to specify all those contrasts;
SAS does it for you. Two equivalent formats are available, simultaneous confidence inter-
vals and adjusted p-values. Equivalent means that both methods label exactly the same
differences as significant;the only difference is in how the results are printed.

Simultaneous confidence intervals When you invoke multiple comparisons using the
means statement (this is the older way), as in

means package / Tukey Bon Scheffe;

you get our three favourite kinds of multiple comparisons for all pairwise differences
among means. (SAS is not case sensitive, so capitalizing the names is not necessary.) The
multiple comparisons are presented in the form of simultaneous confidence intervals. If
the 95% confidence interval does not include zero, the test (Bonferroni, Tukey or Scheffé)
is significant at the joint 0.05 level. The confidence intervals are correct, but they are ugly
to look at and not recommended. No output from the command above will be shown.

Adjusted p-values Adjusted p-values are adjusted for the fact that you are doing
multiple tests; you believe the results when the adjusted p-value is less than 0.05. The
adjustment is easy to describe for the Bonferroni method; just multiply the ordinary p-
value by the number of tests, and if the resulting value is more than one, call it 1.00.
For the Scheffé method, divide the computed value of F by p − 1; the Scheffé adjusted
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p-value is the tail area of the F distribution above this value. I don’t know exactly how
the Tukey p-value adjustment works, but if you really need to know you can look it up in
the SAS documentation.

While the means statement allows you to request several different multiple comparison
methods at once, lsmeans must be invoked separately for each method you want. Here
is the syntax.

lsmeans mcg / pdiff adjust=bon;

lsmeans mcg / pdiff adjust=tukey;

lsmeans mcg / pdiff adjust=scheffe;

The keyword lsmeans stands for “least squares means,” which are the group means ad-
justed for one or more quantitative explanatory variables (covariates). Since there are no
quantitative explanatory variables here, the least squares means are the same as ordinary
means.12

The syntax of the lsmeans is (reading from left to right)

• lsmeans

• The name of the explanatory variable

• A slash; options are given to the right of the slash.

• pdiff requests a table of p-values for testing all pairwise differences between means.

• adjust= and the name of the method. Use “bon” or “Bon” instead of the full name.

Here is the Scheffé output. First we get the (least squares) means, and then a table
showing the adjusted p-values. The number in row j, column k contains the adjusted
p-value for the test of mean j against mean k.

The GLM Procedure

Least Squares Means

Adjustment for Multiple Comparisons: Scheffe

pmlng10 LSMEAN

mcg LSMEAN Number

198 28.3250000 1

205 25.8500000 2

213 25.0000000 3

221 23.4000000 4

223 24.8000000 5

225 24.6000000 6

12Least squares means will be explained properly in a later chapter, using concepts from multiple
regression.
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Least Squares Means for effect mcg

Pr > |t| for H0: LSMean(i)=LSMean(j)

Dependent Variable: pmlng10

i/j 1 2 3 4 5 6

1 <.0001 <.0001 <.0001 <.0001 <.0001

2 <.0001 0.1854 <.0001 0.0381 0.0101

3 <.0001 0.1854 0.0021 0.9918 0.8559

4 <.0001 <.0001 0.0021 0.0037 0.0142

5 <.0001 0.0381 0.9918 0.0037 0.9884

6 <.0001 0.0101 0.8559 0.0142 0.9884

For comparison, here is the table of adjusted p-values for the Tukey method.

i/j 1 2 3 4 5 6

1 <.0001 <.0001 <.0001 <.0001 <.0001

2 <.0001 0.0838 <.0001 0.0122 0.0026

3 <.0001 0.0838 0.0005 0.9808 0.7392

4 <.0001 <.0001 0.0005 0.0008 0.0039

5 <.0001 0.0122 0.9808 0.0008 0.9732

6 <.0001 0.0026 0.7392 0.0039 0.9732

You can see that the Tukey p-values are almost all smaller than the Scheffé p-values, except
when the values are near one. This is to be expected; the Tukey method is theoretically
more powerful because the sample sizes are almost equal. Still, the two methods point
to exactly the same conclusions for these particular data (and so does the Bonferroni
method).

How would you describe these conclusions? This is the answer to the standard question
“Which means are different from each other?” or just “What do you conclude?” If the
question asks for “plain, non-statistical language,” then you don’t mention the multiple
comparison method at all. Otherwise, you should add something like “These conclusions
are based on a set of Bonferroni multiple comparisons using a joint 0.05 significance level.”

But how much detail do you give, and what do you say? You can see that the Tables
of adjusted p-values may be almost okay for a technical audience, but one can do a lot
better. Here is an example. The format is based on one that SAS produces in connection
with some multiple comparison methods you seldom want to do. Curiously, it is not
available with lsmeans. I started by editing the list of means from lsmeans to put them
in numerical order.
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The table below shows mean length on the evening of day 10. Means that are not
significantly different by a Scheffé test are connected by a common letter.

mcg Mean Length on Day 10 (pm)

198 28.3250000

205 25.8500000 a

213 25.0000000 a b

223 24.8000000 b

225 24.6000000 b

221 23.4000000

Here are the conclusions in plain language.

1. mcg 198 grows fastest.

2. mcg 221 grows slowest.

3. We cannot conclude that the growth rates of mcgs 205 and 213 are different.

4. mcg 205 grows faster than mcgs 221, 223 and 225.

5. mcg 213 grows faster than 221, but there is not enough evidence to conclude that it
is different from 223 or 225.

6. There is little difference between the growth rates of mcgs 223 and 225.

This example illustrates something that can be a source of discomfort. The conclusions
of multiple significance tests, even when they are multiple comparisons, need not be
logically consistent with one another. Here, growth for mcg 205 is not different from 213,
and 213 is not different from 223 — but 205 is different from 223. All I can say is that it
would be worse if you were formally accepting the null hypothesis. Another weird thing is
that it’s mathematically possible for the overall F test to be significant, so you conclude
that the population means are not all equal. But then none of the pairwise comparisons
are significant, no matter what multiple comparison method you use. Ouch.

If you plan to use Scheffé’s method to test contrasts other than (or in addition to)
pairwise comparisons, it helps to have the adjusted critical value in front of you. Then you
can just compare the F values from your contrast statements to the critical value. You
could do it with a table of the F distribution and a calculator, but proc iml (which stands
for “Interactive Matrix Language,” and is very powerful) is more convenient, because the
critical value appears on your output. Here is the code.

proc iml;

title3 ’Scheffe critical value for all possible contrasts’;

numdf = 5; /* Numerator degrees of freedom for initial test */
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dendf = 17; /* Denominator degrees of freedom for initial test */

alpha = 0.05;

critval = finv(1-alpha,numdf,dendf);

scrit = critval * numdf;

print "Initial test has" numdf " and " dendf "degrees of freedom."

"----------------------------------------------------------"

"Using significance level alpha = " alpha

"------------------------------------------------"

"Critical value for the initial test is " critval

"------------------------------------------------"

"Critical value for Scheffe tests is " scrit

"------------------------------------------------";

And here is the output.

Scheffe critical value for all possible contrasts

numdf dendf

Initial test has 5 and 17 degrees of freedom.

----------------------------------------------------------

alpha

Using significance level alpha = 0.05

------------------------------------------------

critval

Critical value for the initial test is 2.8099962

------------------------------------------------

scrit

Critical value for Scheffe tests is 14.049981

------------------------------------------------

3.4.5 Scheffé tests for collections of contrasts

Scheffé tests actually protect a family of tests that include tests for infinitely many collec-
tions of contrasts, not just single contrasts. Suppose the initial F test is significant, and
you have a follow-up null hypothesis saying that s non-redundant13 contrasts all equal
zero. In the TUBES example, such a null hypothesis would be that the population means
for all MCGs except 198 are equal – in other words, the test of whether the MCGs other

13Linearly independent.
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than 198 have different growth rates. This involves s = 4 contrasts. We did it as a
one-at-a-time test in tubes09f.sas; the contrast was named AllBut198.

To convert such a “planned” comparison to a Scheffé test, just use the adjusted critical
value

fSch = fcrit
p− 1

s
, (3.1)

where fcrit is the usual critical value for the initial test. Then, considered as a Scheffé
follow-up, the test is significant at the joint 0.05 level if the computed value of F for the
collection of contrasts is greater than fSch.

For the example of AllBut198, fcrit = 2.81, p = 6 and s = 4. So

fSch = 2.81
5

4
= 3.51.

The test we got from contrast gave us F = 21.44, which is bigger than 3.51. So we
conclude that those other growth rates are not all equal.

If you plan to test collections of contrasts with Scheffé tests, it is helpful to have a
table of all the adjusted critical values you might need. Here is a proc iml that does the
job. The details are not explained, but the code can easily be adapted to fit any example.
All you need are the numerator degrees of freedom (p − 1) and denominator degrees of
freedom (n− p) from an ANOVA summary table.

proc iml;

title3 ’Table of Scheffe critical values for COLLECTIONS of contrasts’;

numdf = 5; /* Numerator degrees of freedom for initial test */

dendf = 17; /* Denominator degrees of freedom for initial test */

alpha = 0.05;

critval = finv(1-alpha,numdf,dendf);

zero = {0 0}; S_table = repeat(zero,numdf,1); /* Make empty matrix */

/* Label the columns */

namz = {"Number of Contrasts in followup test"

" Scheffe Critical Value"};

mattrib S_table colname=namz;

do i = 1 to numdf;

s_table(|i,1|) = i;

s_table(|i,2|) = numdf/i * critval;

end;

reset noname; /* Makes output look nicer in this case */

print "Initial test has" numdf " and " dendf "degrees of freedom."

"Using significance level alpha = " alpha;

print s_table;

Here is the output.
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Table of Scheffe critical values for COLLECTIONS of contrasts

Initial test has 5 and 17 degrees of freedom.

Using significance level alpha = 0.05

Number of Contrasts in followup test Scheffe Critical Value

1 14.049981

2 7.0249904

3 4.683327

4 3.5124952

5 2.8099962

When you do Scheffé tests for collections of contrasts, several comforting rules apply.

• If the initial test is not significant, it’s a mathematical fact that no test for a collec-
tion of contrasts can be significant by a Scheffé test, so don’t even bother.

• Suppose the Scheffé test for a collection is significant. Now consider the collection
of all single contrasts that are equal to zero if all members of the collection equal
zero14. The Scheffé test for at least one of those contrasts will be significant — if
you can find it.

• Suppose the Scheffé test for a collection of s contrasts is not significant. If the truth
of H0 for the collection implies that a contrast is equal to zero, then the Scheffé test
for that contrast cannot be significant either.

• The last point applies to smaller collections of contrasts, that is, to collections
involving fewer than s contrasts.

3.4.6 Proper Follow-ups

We will describe a set of tests as proper follow-ups to to an initial test if

1. The null hypothesis of the initial test logically implies the null hypotheses of all the
tests in the follow-up set.

2. All the tests are jointly protected against Type I error (false significance) at a known
significance level, usually α = 0.05.

The first property requires explanation. First, consider that the Tukey tests, which are
limited to pairwise differences between means, automatically satisfy this, because if all

14Technically, the set of all vectors of weights that lie in the linear subspace spanned by the weights of
the collection.
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the population means are equal, then each pair is equal to each other. But it’s possible
to make mistakes with Bonferroni and Scheffé if you’re not careful.

Here’s why the first property is important. Suppose the null hypothesis of a follow-
up test does follow logically from the null hypothesis of the initial test. Then, if the
null hypothesis of the follow-up is false (there’s really something going on), then the null
hypothesis of the initial test must be incorrect too, and this is one way in which the initial
null hypothesis is false. Thus if we correctly reject the follow-up null hypothesis, we have
uncovered one of the ways in which the initial null hypothesis is false. In other words, we
have (partly, perhaps) identified where the initial effect comes from.

On the other hand, if the null hypothesis of a potential follow-up test is not implied
by the null hypothesis of the initial test, then the truth or untruth of the follow-up null
hypothesis does not tell us anything about the null hypothesis of the initial test. They are
in different domains. For example, suppose we conclude 2µ1 is different from 3µ2. Great,
but if we want to know how the statement µ1 = µ2 = µ3 might be wrong, it’s irrelevant.

If you stick to testing contrasts as a follow-up to a one-way ANOVA, you’re fine. This
is because if a set of population means are all equal, then any contrast of those means is
equal to zero. That is, the null hypothesis of the initial test automatically implies the null
hypotheses of any potential follow-up test, and everything is okay. Furthermore, if you try
to specify a linear combination that is not a contrast with the contrast statement of proc
glm, SAS will just say something like NOTE: CONTRAST SOandSO is not estimable in
the log file. There is no other error message or warning; the test just does not appear in
your output file.



Chapter 4

More Than One Explanatory
Variable at a Time

The standard elementary tests typically involve one explanatory variable and one response
variable. Now we will see why this can make them very misleading. The lesson you
should take away from this discussion is that when important variables are ignored in a
statistical analysis — particularly in an observational study — the result can be that we
draw incorrect conclusions from the data. Potential confounding variables really need to
be included in the analysis.

4.1 The chi-squared test of independence

In order to make sure the central example in this chapter is clear, it may be helpful to give
a bit more background on the common Pearson chi-square test of independence. As stated
earlier, the chi-square test of independence is for judging whether two categorical variables
are related or not. It is based upon a cross-tabulation, or joint frequency distribution of
the two variables. For example, suppose that in the statclass data, we are interested in the
relationship between sex and apparent ethnic background. If the ratio of females to males
depended upon ethnic background, this could reflect an interesting cultural difference in
sex roles with respect to men and women going to university (or at least, taking Statistics
classes). In statmarks1.sas, we did this test and obtained a chisquare statistic of 2.92
(df=2, p = 0.2321), which is not statistically significant. Now we’ll do it just a bit
differently to illustrate the details. First, here is the program ethsex.sas.

/* ethsex.sas */

%include ’/folders/myfolders/statread.sas’;

title2 ’Sex by Ethnic’;

proc freq;

tables sex*ethnic / chisq norow nocol nopercent expected;

And here is the output.
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_______________________________________________________________________________

Grades from STA3000 at Roosevelt University: Fall, 1957 1

Sex by Ethnic 19:55 Tuesday, August 30, 3005

The FREQ Procedure

Table of sex by ethnic

sex ethnic(Apparent ethnic background (ancestry))

Frequency|

Expected |Chinese |European|Other | Total

---------+--------+--------+--------+

Male | 27 | 7 | 5 | 39

| 25.79 | 9.4355 | 3.7742 |

---------+--------+--------+--------+

Female | 14 | 8 | 1 | 23

| 15.21 | 5.5645 | 2.2258 |

---------+--------+--------+--------+

Total 41 15 6 62

Statistics for Table of sex by ethnic

Statistic DF Value Prob

------------------------------------------------------

Chi-Square 2 2.9208 0.2321

Likelihood Ratio Chi-Square 2 2.9956 0.2236

Mantel-Haenszel Chi-Square 1 0.0000 0.9949

Phi Coefficient 0.2170

Contingency Coefficient 0.2121

Cramer’s V 0.2170

WARNING: 33% of the cells have expected counts less

than 5. Chi-Square may not be a valid test.

Sample Size = 62

In each cell of the table, we have an observed frequency and an expected frequency. The
expected frequency is the frequency one would expect by chance if the two variables were
completely unrelated.1 If the observed frequencies are different enough from the expected

1The formula for the expected frequency in a given cell is (row total) × (column total)/(sample size).
This follows from the definition of independent events given in introductory probability: the events A
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frequencies, one would tend to disbelieve the null hypothesis that the two variables are
unrelated. But how should one measure the difference, and what is the meaning of
different “enough?”

The Pearson chi-square statistic (named after Karl Pearson, a famous racist, uh, I
mean statistician) is defined by

χ2 =
∑
cells

(fo − fe)2

fe
, (4.1)

where fo refers to the observed frequence, fe refers to expected frequency, and as indicated,
the sum is over all the cells in the table.

If the two variables are really independent, then as the total sample size increases, the
probability distribution of this statistic approaches a chisquare with degrees of freedom
equal to (Number of rows - 1)×(Number of columns - 1). Again, this is an approximate,
large-sample result, one that obtains exactly only in the limit as the sample size approaches
infinity. A traditional “rule of thumb” is that the approximation is okay if no expected
frequency is less than five. This is why SAS gave us a warning.

More recent research suggests that to avoid inflated Type I error (false significance
at a rate greater than 0.05), all you need is for no expected frequency to be less than
one. You can see from formula (4.1) why an expected frequency less than one would be
a problem. Division by a number close to zero can yield a very large quantity even when
the observer and expected frequencies are fairly close, and the so-called chisquare value
will be seriously inflated.

Anyway, The p-value for the chisquare test is the upper tail area, the area under the
chi-square curve beyond the observed value of the test statistic. In the example from the
statclass data, the test was not significant and we conclude nothing.

4.2 The Berkeley Graduate Admissions data

Now we’re going to look at another example, one that should surprise you. In the 1970’s
the University of California at Berkeley was accused of discriminating against women in
graduate admissions. Data from a large number of applicants are available. The three
variables we will consider are sex of the person applying for graduate study, department
to which the person applied, and whether or not the person was admitted. First, we will
look at the table of sex by admission.

and B are independent if P (A∩B) = P (A)P (B). But this is too much detail, and we’re not going there.
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Table of sex by admit

sex admit

Frequency|

Row Pct |No |Yes | Total

---------+--------+--------+

Male | 1493 | 1198 | 2691

| 55.48 | 44.52 |

---------+--------+--------+

Female | 1278 | 557 | 1835

| 69.65 | 30.35 |

---------+--------+--------+

Total 2771 1755 4526

The FREQ Procedure

Statistics for Table of sex by admit

Statistic DF Value Prob

------------------------------------------------------

Chi-Square 1 92.2053 <.0001

It certainly looks suspicious. Roughly forty-five percent of the male applicants were
admitted, compared to thirty percent of the female applicants. This difference in per-
centages (equivalent to the relationship between variables here) is highly significant; with
n = 4526, the p-value is very close to zero.

4.3 Controlling for a variable by subdivision

However, things look different when we take into account the department to which the
person applied. Think of a three-dimensional table in which the rows are sex, the columns
are admission, and the third dimension (call it layers) is department. Such tables are easy
to generate with SAS and other statistical packages.

The three-dimensional table is displayed by printing each layer on a separate page,
along with test statistics (if requested) for each sub-table. This is equivalent to dividing
the cases into sub-samples, and doing the chisquare test separately for each sub-sample.
A useful way to talk about this is to say that that we are controlling for the third variable;
that is, we are looking at the relationship between the other two variables with the third
variable held constant. We will have more to say about controlling for collections of
explanatory variables when we get to regression.
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Here are the six sub-tables of sex by admit, one for each department, with a brief
comment after each table. The SAS output is edited a bit to save paper.

Table 1 of sex by admit

Controlling for dept=A

sex admit

Frequency|

Row Pct |No |Yes | Total

---------+--------+--------+

Male | 313 | 512 | 825

| 37.94 | 62.06 |

---------+--------+--------+

Female | 19 | 89 | 108

| 17.59 | 82.41 |

---------+--------+--------+

Total 332 601 933

Statistics for Table 1 of sex by admit

Controlling for dept=A

Statistic DF Value Prob

------------------------------------------------------

Chi-Square 1 17.2480 <.0001

For department A, 62% of the male applicants were admitted, while 82% of the female
applicants were admitted. That is, women were more likely to get in than men. This is a
reversal of the relationship that is observed when the data for all departments are pooled!
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Table 2 of sex by admit

Controlling for dept=B

sex admit

Frequency|

Row Pct |No |Yes | Total

---------+--------+--------+

Male | 207 | 353 | 560

| 36.96 | 63.04 |

---------+--------+--------+

Female | 8 | 17 | 25

| 32.00 | 68.00 |

---------+--------+--------+

Total 215 370 585

Statistics for Table 2 of sex by admit

Controlling for dept=B

Statistic DF Value Prob

------------------------------------------------------

Chi-Square 1 0.2537 0.6145

For department B, women were somewhat more likely to be admitted (another reversal),
but it’s not statistically significant.
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Table 3 of sex by admit

Controlling for dept=C

sex admit

Frequency|

Row Pct |No |Yes | Total

---------+--------+--------+

Male | 205 | 120 | 325

| 63.08 | 36.92 |

---------+--------+--------+

Female | 391 | 202 | 593

| 65.94 | 34.06 |

---------+--------+--------+

Total 596 322 918

Statistics for Table 3 of sex by admit

Controlling for dept=C

Statistic DF Value Prob

------------------------------------------------------

Chi-Square 1 0.7535 0.3854

For department C, men were slightly more likely to be admitted, but the 3% difference is
much smaller than we observed for the pooled data. Again, it’s not statistically significant.
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Table 4 of sex by admit

Controlling for dept=D

sex admit

Frequency|

Row Pct |No |Yes | Total

---------+--------+--------+

Male | 279 | 138 | 417

| 66.91 | 33.09 |

---------+--------+--------+

Female | 244 | 131 | 375

| 65.07 | 34.93 |

---------+--------+--------+

Total 523 269 792

Statistics for Table 4 of sex by admit

Controlling for dept=D

Statistic DF Value Prob

------------------------------------------------------

Chi-Square 1 0.2980 0.5852

For department D, women were a bit more likely to be admitted (a reversal), but it’s
far from statistically significant. Now department E:
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Table 5 of sex by admit

Controlling for dept=E

sex admit

Frequency|

Row Pct |No |Yes | Total

---------+--------+--------+

Male | 138 | 53 | 191

| 72.25 | 27.75 |

---------+--------+--------+

Female | 299 | 94 | 393

| 76.08 | 23.92 |

---------+--------+--------+

Total 437 147 584

Statistics for Table 5 of sex by admit

Controlling for dept=E

Statistic DF Value Prob

------------------------------------------------------

Chi-Square 1 1.0011 0.3171

This time it’s a non-significant tendency for men to get in more. Finally, department F :

Table 6 of sex by admit

Controlling for dept=F

sex admit

Frequency|

Row Pct |No |Yes | Total

---------+--------+--------+

Male | 351 | 22 | 373

| 94.10 | 5.90 |

---------+--------+--------+

Female | 317 | 24 | 341

| 92.96 | 7.04 |

---------+--------+--------+

Total 668 46 714

Statistic DF Value Prob

------------------------------------------------------

Chi-Square 1 0.3841 0.5354
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Table 4.1: Percentage of female applicants and overall percentage of applicants accepted
for six departments

Department Percent applicants female Percentage applicants accepted
A 11.58% 64.42%
B 4.27 63.25
C 64.60 35.08
D 47.35 33.96
E 67.29 25.17
F 47.76 6.44

For department F , women were slightly more likely to get in, but once again it’s not
significant.

So in summary, the pooled data show that men were more likely to be admitted
to graduate study. But when take into account the department to which the student
is applying, there is a significant relationship between sex and admission for only one
department, and in that department, women are more likely to be accepted.

How could this happen? I generated two-way tables of sex by department and depart-
ment by admit; both relationships were highly significant. Instead of displaying the SAS
output, I have assembled some numbers from these two tables. The same thing could be
accomplished with SAS proc tabulate, but it’s too much trouble, so I did it by hand.

Now it is clear. The two departments with the lowest percentages of female applicants
(A and B) also had the highest overall percentage of applicants accepted, while the
department with the highest percentage of female applicants (E) also had the second-
lowest overall percentage of applicants accepted. That is, the departments most popular
with men were easiest to get into, and those most popular with women were more difficult.
Clearly, this produced the overall tendency for men to be admitted more than women.

By the way, does this mean that the University of California at Berkeley was not
discriminating against women? By no means. Why does a department admit very few
applicants relative to the number who apply? Because they do not have enough professors
and other resources to offer more classes. This implies that the departments popular with
men were getting more resources, relative to the level of interest measured by number of
applicants. Why? Maybe because men were running the show. The “show,” by the way
definitely includes the U. S. military, which funds a lot of engineering and similar stuff at
big American universities.

The Berkeley data, a classic example of Simpson’s paradox, illustrate the following
uncomfortable fact about observational studies. When you include a new variable in an
analysis, the results you have could get weaker, they could get stronger, or they could
reverse direction — all depending upon the inter-relations of the explanatory variables.
Basically, if an observational study does not include every potential confounding variable
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you can think of, there is going to be trouble.2

Now, the distinguishing feature of the “elementary” tests is that they all involve one
explanatory variable and one response variable. Consequently, they can be extremely
misleading when applied to the data from observational studies, and are best used as
tools for preliminary exploration.

Pooling the chi-square tests When using sub-tables to control for a categorical ex-
planatory variable, it is helpful to have a single test that allows you to answer a question
like this: If you control for variable A, is B related to C? For the chi-square test of
independence, it’s quite easy. Under the null hypothesis that B is unrelated to C for
each value of A, the test statistics for the sub-tables are independent chisquare random
variables. Therefore, there sum is also chisquare, with degrees of freedom equal to the
sum of degrees of freedom for the sub-tables.

In the Berkeley example, we have a pooled chisquare value of

17.2480 + 0.2537 + 0.7535 + 0.2980 + 1.0011 + 0.3841 = 19.9384

with 6 degrees of freedom. Using any statistics text (except this one), we can look up the
critical value at the 0.05 significance level. It’s 12.59; since 19.9 ¿ 12.59, the pooled test
is significant at the 0.05 level. To get a p-value for our pooled chisquare test, we can use
SAS. See the program in the next section.

In summary, we need to use statistical methods that incorporate more than one ex-
planatory variable at the same time; multiple regression is the central example. But even
with advanced statistical tools, the most important thing in any study is to collect the
right data in the first place. Looking at it the right way is critical too, but no statistical
analysis can compensate for having the wrong data.

For more detail on the Berkeley data, see the 1975 article in Science by Bickel Hammel
and O’Connell [1]. For the principle of adding chisquare values and adding degrees of
freedom from sub-tables, a good reference is Feinberg’s (1977) The analysis of cross-
classified categorical data [8].

4.4 The SAS program

Here is the program berkeley.sas. It has several features that you have not seen yet, so
a discussion follows the listing of the program.

2And even if you do include all the potential confounding variables, there is trouble if those confounding
variables are measured with error. More on this in a moment.
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/*************************** berkeley.sas *********************************/

title ’Berkeley Graduate Admissions Data: ’;

proc format;

value sexfmt 1 = ’Female’ 0 = ’Male’;

value ynfmt 1 = ’Yes’ 0 = ’No’;

data berkley;

input line sex dept $ admit count; %$

format sex sexfmt.; format admit ynfmt.;

datalines;

1 0 A 1 512

2 0 B 1 353

3 0 C 1 120

4 0 D 1 138

5 0 E 1 53

6 0 F 1 22

7 1 A 1 89

8 1 B 1 17

9 1 C 1 202

10 1 D 1 131

11 1 E 1 94

12 1 F 1 24

13 0 A 0 313

14 0 B 0 207

15 0 C 0 205

16 0 D 0 279

17 0 E 0 138

18 0 F 0 351

19 1 A 0 19

20 1 B 0 8

21 1 C 0 391

22 1 D 0 244

23 1 E 0 299

24 1 F 0 317

;

proc freq;

tables sex*admit / nopercent nocol chisq;

tables dept*sex / nopercent nocol chisq;

tables dept*admit / nopercent nocol chisq;

tables dept*sex*admit / nopercent nocol chisq;

weight count;

/* Get p-value */
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proc iml;

x = 19.9384;

pval = 1-probchi(x,6);

print "Chisquare = " x "df=6, p = " pval;

The first unusual feature of berkeley.sas is in spite of recommendations to the
contrary in Chapter 2, the data are in the program itself rather than in a separate file.
The data are in the data step, following the datalines command and ending with a
semicolon. You can always do this, but usually it’s a bad idea; here, it’s a good idea.
This is why.

I did not have access to a raw data file, just a 2 by 6 by 2 table of sex by department
by admission. So I just created a data set with 24 lines, even though there are 4526 cases.
Each line of the data set has values for the three variables, and also a variable called
count, which is just the observed cell frequency for that combination of sex, department
and admission. Then, using the weight statement in proc freq, I just “weighted” each
of the 24 cases in the data file by count, essentially multiplying the sample size by count
for each case.

The advantages are several. First, such a data set is easy to create from published
tables, and is much less trouble than a raw data file with thousands of cases. Second, the
data file is so short that it makes sense to put it in the data set for portability and ease of
reference. Finally, this is the way you can get the data from published tables (which may
not include any significance tests at all) into SAS, where you can compute any statistics
you want, including sophisticated analyses based on log-linear models.

The last tables statement in the proc freq gives us the three-dimensional table.
For a two-dimensional table, the first variable you mention will correspond to rows and
the second will correspond to columns. For higher-dimensional tables, the second-to-last
variable mentioned is rows, the last is columns, and combinations of the variables listed
first are the control variables for which sub-tables are produced.

Finally, the iml in proc iml stands for “Interactive Matrix Language,” and you can
use it to perform useful calculations in a syntax that is very similar to standard matrix
algebra notation; this can be very convenient when formulas you want to compute are
in that notation. Here, we’re just using it to calculate the area under the curve of the
chisquare density with 6 degrees of freedom, beyond the observed test statistic of 19.9384.
The probchi function is the cumulative distribution function of the chisquare distribution;
the second argument (6 in this case) is the degrees of freedom. probchi(x,6) gives the
area under the curve between zero and x, and 1-probchi(x,6) gives the tail area above
x – that is, the p-value.

Summary The example of the Berkeley graduate admissions data teaches us that po-
tential confounding variables need to be explicitly included in a statistical analysis. Oth-
erwise, the results can be very misleading. In the Berkeley example, first we ignored
department and there was a relationship between sex and admission that was statistically
significant in one direction. Then, when we controlled for department — that is, when we
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took it into account — the relationship was either significant in the opposite direction, or
it was not significant (depending on which department).

We also saw how to pool chi-square values and degrees of freedom by adding over
sub-tables, obtaining a useful test of whether two categorical variables are related, while
controlling for one or more other categorical variables. This is something SAS will not do
for you, but it’s easy to do with proc freq output and a calculator.

Measurement Error In this example, the confounding variable Department was mea-
sured without error; there was no uncertainty about the department to which the student
applied. But sometimes, categorical explanatory variables are subject to classification
error. That is. the actual category to which a case belongs may not correspond to what’s
in your data file. For example, if you want to “control” for whether people have ever been
to prison and you determine this by asking them, what you see is not necessarily what
you get.

The rule, which applies to all sorts of measurement error and to all sorts of statistical
analysis, is simple, and very unpleasant. If you want to test explanatory variable A
controlling for B, and

• B is related to the response variable,

• A and B are related to each other, and

• B is measured with error,

then the results you get from standard methods do not quite work. In particular, when
there is really no relationship between A and the response variable for any value of B (the
null hypothesis is true), can will still reject the null hypothesis more than 5% of the time.
In fact, the chance of false significance may approach 1.00 (not 0.05) for large samples.
Full details are given in a 2009 article by Brunner and Austin [3]. We will return to this
ugly truth in connection with multiple regression.



Chapter 5

Multiple Regression

5.1 Three Meanings of Control

In this course, we will use the word control to refer to procedures designed to reduce
the influence of extraneous variables on our results. The definition of extraneous is “not
properly part of a thing,” and we will use it to refer to variables we’re not really inter-
ested in, and which might get in the way of understanding the relationship between the
explanatory variable and the response variable.

There are two ways an extraneous variable might get in the way. First, it could
be a confounding variable – related to both the explanatory variable and the response
variable, and hence capable of creating masking or even reversing relationships that would
otherwise be evident. Second, it could be unrelated to the explanatory variable and hence
not a confounding variable, but it could still have a substantial relationship to the response
variable. If it is ignored, the variation that it could explain will be part of the ”background
noise,” making it harder to see the relationship between explanatory variable and response
variable, or at least causing it to appear relatively weak, and possibly to be non-significant.

The main way to control potential extraneous variables is by holding them constant. In
experimental control, extraneous variables are literally held constant by the procedure
of data collection or sampling of cases. For example, in a study of problem solving
conducted at a high school, background noise might be controlled by doing the experiment
at the same time of day for each subject (and not when classes are changing). In learning
experiments with rats, males are often employed because their behavior is less variable
than that of females. And a very good example is provided by the TUBES data of Chapter 3,
where experimental conditions were so tightly controlled that there was practically no
available source of variation in growth rate except for the genetic character of the fungus.

An alternative to experimental control is statistical control, which takes two main
forms. One version, subdivision, is to subdivide the sample into groups with identical or
nearly identical values of the extraneous variable(s), and then to examine the relationship
between explanatory and response variable separately in each subgroup – possibly pooling
the subgroup analyses in some way. The analysis of the Berkeley graduate admissions
data in Chapter 4 is our prime example. As another example where the relationship
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of interest is between quantitative rather than categorical variables, the correlation of
education with income might be studied separately for men and women. The drawback of
this subdivision approach is that if extraneous variables have many values or combinations
of values, you need a very large sample.

The second form of statistical control, model-based control, is to exploit details of the
statistical model to accomplish the same thing as the subdivision approach, but without
needing a huge sample size. The primary example is multiple linear regression, which is
the topic of this chapter.

5.2 Population Parameters

Recall we said two variables are “related” if the distribution of the response variable
depends on the value of the explanatory variable. Classical regression and analysis of
variance are concerned with a particular way in which the explanatory and response
variables might be related, one in which the population mean of Y depends on the value
of X.

Think of a population histogram manufactured out of a thin sheet of metal. The
point (along the horizontal axis) where the histogram balances is called the expected
value or population mean; it is usually denoted by E[Y ] or µ (the Greek letter mu). The
conditional population mean of Y given X = x is just the balance point of the conditional
distribution. It will be denoted by E[Y |X = x]. The vertical bar — should be read as
”given.”

Again, for every value of X, there is a separate distribution of Y , and the expected
value (population mean) of that distribution depends on the value of X. Furthermore,
that dependence takes a very specific and simple form. When there is only one explanatory
variable, the population mean of Y is

E[Y |X = x] = β0 + β1x. (5.1)

This is the equation of a straight line. The slope (rise over run) is β1 and the intercept
is β0. If you want to know the population mean of Y for any given x value, all you need
are the two numbers β0 and β1.

But in practice, we never know β0 and β1. To estimate them, we use the slope and
intercept of the least-squares line:

Ŷ = b0 + b1x. (5.2)

If you want to estimate the population mean of Y for any given x value, all you need are
the two numbers b0 and b1, which are calculated from the sample data.

This has a remarkable implication, one that carries over into multiple regression. Ordi-
narily, if you want to estimate a population mean, you need a reasonable amount of data.
You calculate the sample mean of those data, and that’s your estimate of the population
mean. If you want to estimate a conditional population mean, that is, the population
mean of the conditional distribution of Y given a particular X = x, you need a healthy
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amount of data with that value of x. For example, if you want to estimate the average
weight of 50 year old women, you need a sample of 50 year old women — unless you are
willing to make some assumptions.

What kind of assumptions? Well, the simple structure of (5.1) means that you can use
formula (5.2) to estimate the population mean of Y for a given value of X = x without
having any data at that x value. This is not “cheating,” or at any rate, it need not be. If

• the x value in question is comfortably within the range of the data in your sample,
and if

• the straight-line model is a reasonable approximation of reality within that range,

then the estimate can be quite good.

The ability to estimate a conditional population mean without a lot of data at any
given x value means that we will be able to control for extraneous variables, and remove
their influence from a given analysis without having the massive amounts of data required
by the subdivision approach to statistical control.

We are getting away with this because we have adopted a model for the data that
makes reasonably strong assumptions about the way in which the population mean of Y
depends on X. If those assumptions are close to the truth, then the conclusions we draw
will be reasonable. If the assumptions are badly wrong, we are just playing silly games.
There is a general principle here, one that extends far beyond multiple regression.

Data Analysis Hint 4 There is a direct tradeoff between amount of data and the strength
(restrictiveness) of model assumptions. If you have a lot of data, you do not need to as-
sume as much. If you have a small sample, you will probably have to adopt fairly restrictive
assumptions in order to conclude anything from your data.

Multiple Regression Now consider the more realistic case where there is more than
one explanatory variable. With two explanatory variables, the model for the population
mean of Y is

E[Y |X = x] = β0 + β1x1 + β2x2,

which is the equation of a plane in 3 dimensions (x1, x2, y). The general case is

E[Y |X = x] = β0 + β1x1 + . . .+ βp−1xp−1,

which is the equation of a hyperplane in p dimensions.

Comments

• Since there is more than one explanatory variable, there is a conditional distribu-
tion of Y for every combination of explanatory variable values. Matrix notation
(boldface) is being used to denote a collection of explanatory variables.
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• There are p − 1 explanatory variables. This may seem a little strange, but we’re
doing this to keep the notation consistent with that of standard regression texts
such as [16]. If you want to think of an explanatory variable X0 = 1, then there are
p explanatory variables.

• What is β0? It’s the height of the population hyperplane when all the explanatory
variables are zero, so it’s the intercept.

• Most regression models have an intercept term, but some do not (X0 = 0); it
depends on what you want to accomplish.

• β0 is the intercept. We will now see that the other β values are slopes.

Consider

E[Y |X = x] = β0 + β1x1 + β2x2 + β3x3 + β4x4

What is β3? If you speak calculus, ∂
∂x3
E[Y ] = β3, so β3 is the rate at which the population

mean is increasing as a function of x3, when other explanatory variables are held constant
(this is the meaning of a partial derivative).

If you speak high school algebra, β3 is the change in the population mean of Y when
x3 is increased by one unit and all other explanatory variables are held constant. Look at

β0 + β1x1 + β2x2 +β3(x3 + 1) +β4x4
− (β0 + β1x1 + β2x2 +β3x3 +β4x4)

(5.3)

= β0 + β1x1 + β2x2 + β3x3 +β3 +β4x4
− β0 − β1x1 − β2x2 − β3x3 −β4x4

= β3

The mathematical device of holding other variables constant is very important. This
is what is meant by statements like “Controlling for parents’ education, parents’ in-
come and number of siblings, quality of day care is still positively related to academic
performance in Grade 1.” We have just seen the prime example of model-based statistical
control — the third type of control in the “Three meanings of control” section that began
this chapter.

We will describe the relationship between Xk and Y as positive (controlling for the
other explanatory variables) if βk > 0 and negative if βk < 0.

Recall from Chapter 3 that a quantity (say w) is a linear combination of quantities
z1, z2 and z3 if w = a1z1+a2z2+a3z3, where a1, a2 and a3 are constants. Common multiple
regression is linear regression because the population mean of Y is a linear combination
of the β values. It does not refer to the shape of the curve relating x to E[Y |X = x]. For
example,
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E[Y |X = x] = β0 + β1x Simple linear regression
E[Y |X = x] = β0 + β1x

2 Also simple linear regression
E[Y |X = x] = β0 + β1x+ β2x

2 + β3x
3 Polynomial regression – still linear

E[Y |X = x] = β0 + β1x+ β2 cos(1/x) Still linear in the β values
E[Y |X = x] = β0 + β1 cos(β2x) Truly non-linear

When the relationship between the explanatory and response variables is best repre-
sented by a curve, we’ll call it curvilinear, whether the regression model is linear or not.
All the examples just above are curvilinear, except the first one.

Notice that in the polynomial regression example, there is really only one explanatory
variable, x. But in the regression model, x, x2 and x3 are considered to be three separate
explanatory variables in a multiple regression. Here, fitting a curve to a cloud of points in
two dimensions is accomplished by fitting a hyperplane in four dimensions. The origins of
this remarkable trick are lost in the mists of time, but whoever thought of it was having
a good day.

5.3 Estimation by least squares

In the last section, the conditional population mean of the response variable was modelled
as a (population) hyperplane. It is natural to estimate a population hyperplane with a
sample hyperplane. This is easiest to imagine in three dimensions. Think of a three-
dimensional scatterplot, in a room. The explanatory variables are X1 and X2. The
(x1, x2) plane is the floor, and the value of Y is height above the floor. Each subject
(case) in the sample contributes three coordinates (x1, x2, y), which can be represented
by a soap bubble floating in the air.

In simple regression, we have a two-dimensional scatterplot, and we seek the best-
fitting straight line. In multiple regression, we have a three (or higher) dimensional
scatterplot, and we seek the best fitting plane (or hyperplane). Think of lifting and
tilting a piece of plywood until it fits the cloud of bubbles as well as possible.

What is the “best-fitting” plane? We’ll use the least-squares plane, the one that
minimizes the sum of squared vertical distances of the bubbles from the piece of plywood.
These vertical distances can be viewed as errors of prediction.

It’s hard to visualize in higher dimension, but the algebra is straightforward. Any
sample hyperplane may be viewed as an estimate (maybe good, maybe terrible) of the
population hyperplane. Following the statistical convention of putting a hat on a popu-
lation parameter to denote an estimate of it, the equation of a sample hyperplane is

β̂0 + β̂1x1 + . . .+ β̂p−1xp−1,

and the error of prediction (vertical distance) is the difference between y and the quantity
above. So, the least squares plane must minimize

Q =
n∑
i=1

(
yi − β̂0 − β̂1xi,1 − . . .− β̂p−1xi,p−1

)2
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over all combinations of β̂0, β̂1, . . . , β̂p−1.
Provided that no explanatory variable (including the peculiar X0 = 1) is a perfect

linear combination of the others, the β̂ quantities that minimize the sum of squares Q
exist and are unique. We will denote them by b0 (the estimate of β0, b1 (the estimate of
β1), and so on.

Again, a population hyperplane is being estimated by a sample hyperplane.

E[Y |X = x] = β0 + β1x1 + β2x2 + β3x3 + β4x4
Ŷ = b0 + b1x1 + b2x2 + b3x3 + b4x4

• Ŷ means predicted Y . It is the height of the best-fitting (least squares) piece of
plywood above the floor, at the point represented by the combination of x values.
The equation for Ŷ is the equation of the least-squares hyperplane.

• “Fitting the model” means calculating the b values.

5.4 Residuals

A residual, or error of prediction, is

ei = Yi − Ŷi.

The residuals (there are n of them) represent errors of prediction. Each one is the vertical
distance of Yi (the value of the response variable) from the regression hyper-plane. It can
be shown that for any regression analysis, the sample mean of the residuals is exactly zero.
A positive residual means over-performance (or under-prediction). A negative residual
means under-performance. Examination of residuals can reveal a lot, since we can’t look
at 12-dimensional scatterplots.

Single-variable plots of the residuals (histograms, box plots, stem and leaf diagrams
etc.) can identify possible outliers. These might reveal data errors or be a source of new
ideas. Theoretically, residuals should be normally distributed, though they are not quite
independent and do not have equal variances. Testing for normality of residuals is an
indirect way of checking the normal assumption of the regression model1. It is easy with
SAS proc univariate. Application of standard time-series diagnostiics to residuals is
promising too.

Outlier Detection

Looking at plots, it is sometimes easy to see residuals that seem very large in absolute
value. But this can be a bit subjective, and it would be nice to know exactly what it
means for a residual to be “big.” There are various ways to re-scale the residuals, so they
have a variance close to one. This way, the value of the residual tells you how many
standard deviations it is from the mean.

1What might a bimodal distribution of residuals indicate?
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When each residual is divided by its standard error (estimated standard deviation) to
standardize, sometimes they are called Studentized, because of the connection to Student’s
t distribution (all the usual t-tests are based on normally distributed quantities divided
by their standard errors). Here are some typical ways to re-scale residuals, along with
fairly standard terminology. Remember that the residuals already have a mean of zero.

• Standardized residuals: Calculate the sample standard deviation of the residuals,
and divide by that. The resulting variable has a sample mean of zero and a sample
variance of one.

• Semi-Studentized residuals: Divide each residual by the square root of Mean
Square Error (MSE) from the regression.

• Studentized residuals: Theoretically, the variances of the residuals are not all
the same. But they are easy to derive. The only problem is that they depend on
the unkown parameter σ2 the common variance of all the conditional distributions
of the response variable in the regression model. So estimate the variance of each
residual bt substituting MSE for σ2, and divide each residual by the square root of
its estimated variance.

• Studentized deleted residuals: These are like Studentized residuals, except that
for each observation (case) in the data, the response variable is estimated from all
the other cases, but not the one in question. That is, one performs n regressions2,
leaving out each observation in turn. Then each response variable value is pre-
dicted from the other n− 1 observations. The difference between the observed and
predicted Yi values are called deleted residuals. Dividing the deleted residuals by
their respective estimated standard deviations, we obtain the Studentized deleted
residuals.

The Studentized deleted residuals deserve extra discussion, and even a bit of notation.
First of all, think of a high-dimensional scatterplot, with a least-squares hyperplane fitting
the points as well as possible. Suppose one of the points is extremely far from the plane.
It’s a true outlier. Not only might the plane be pulled out of an optimal position to
accomodate that one point, but the squared distance of the point from the plane will still
be huge. Thus MSE (roughly, the average squared distance of the points from the plane)
will be inflated. So an ordinary Studentized residual (with

√
MSE somewhere in the

denominator) might not stand out from the pack as much as it should. But a regression
analysis without that point would not only have a larger absolute error of prediction for
the deleted observaton, but the denominator would be based on a smaller Mean Square
Error. This is why the Studentized deleted residual is a promising way to detect potential
outliers.

Another advantage is that if the statistical assumptions of the regression model are
correct, the Studentized deleted residual has a probability distributon that is exactly

2Not literally. There is a mathematical shortcut.
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Student’s t. Probability statements about the other kinds of re-scaled residual are just
approximations.

The predicted value of Yi based on the other n− 1 observations will be denoted Ŷi(i).
Then the deleted residual may be written

di = Yi − Ŷi(i).

The estimated standard deviation of the deleted residual is s{di}; the exact way to cal-
culate it may be left to your favourite software3. Then the Studentized deleted residual
is

ti =
di

s{di}
.

If the regression model is correct, the Studentized deleted residual has a t distribution
with n− p− 1 degrees of freedom.

But what if ti is very large in absolute value? Maybe the observation really comes
from a different population, one where a different regression model applies. Most likely,
in this case the expected value (population mean) of the deleted residual would not be
zero. So the Studentized deleted residual may be used directly as a test statistic. The
null hypothesis is that the regression model is true for observation i, and it will be a
good, sensitive (powerful) test when the model is true for the other observations, but not
observation i.

So it seems clear what we should do. Compare the absolute value of the Studentized
deleted residual to the critical value of a t distribution with n−p−1 degrees of freedom. If
it’s bigger than the critical value, conclude that there’s something funny about observation
i and look into it more closely.

This would be fine if we were only suspicious about one of the n observations, and
we had identified it in advance before looking at the actual data. But in practice we will
be carrying out n non-independent significance tests, and all the discussion of multiple
comparisons in Section 3.4 of Chapter 3 (starting on Page 81) applies. The simplest thing
to do is to apply a Bonferroni correction, and use the 0.05/n significance level in place of
the usual 0.05 level. This means that if the model is correct, the chances of incorrectly
designating one or more observations as outliers will be less than 0.05.

In summary, we let the software calculate the Studentized deleted residuals. Then we
obtain the critical value of a t distribution with n−p−1 degrees of freedom at the 0.05/n
significance level — easy with proc iml. Then we are concerned about an observation
and look into it further if the absolute value of the Studentized deleted residual is bigger
than the critical value. This treatment of outlier detection as a multiple comparison
problem is satisfying and pretty sophisticated.

Studentized deleted residuals have another important application. They are the basis
of prediction intervals, a topic that will be addressed in Section 5.5.

3Details may be found in almost any Regresssion text, such as Neter et al.’s Applied linear statistical
models. [16]
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Plots against other variables

Plot of Y vs Y-hat: corelations cannot be negative, and the square ofthe correlation
coefficient is exactly R2.

• Single variable plots (histograms, box plots, stem and leaf diagrams etc.) can iden-
tify possible outliers. (Data errors? Source of new ideas? What might a bimodal
distribution of residuals indicate?)

• Plot (scatterplot) of residuals versus potential explanatory variables not in the model
might suggest they be included, or not. How would you plot residuals vs a categorical
explanatory variable?

• Plot of residuals vs. variables that are in the model may reveal

– Curvilinear trend (may need transformation of x, or polynomial regression, or
even real non-linear regression)

– Non-constant variance over the range of x, so the response variable may depend
on the explanatory variable not just through the mean. May need transforma-
tion of Y , or weighted least squares, or a different model.

• Plot of residuals vs. Ŷ may also reveal unequal variance.

5.5 Prediction Intervals
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5.6 Categorical Explanatory Variables

5.6.1 Indicator Dummy Variables

Explanatory variables need not be continuous – or even quantitative. For example, sup-
pose subjects in a drug study are randomly assigned to either an active drug or a placebo.
Let Y represent response to the drug, and

x =

{
1 if the subject received the active drug, or
0 if the subject received the placebo.

The model is E[Y |X = x] = β0 + β1x. For subjects who receive the active drug (so
x = 1), the population mean is

β0 + β1x = β0 + β1

For subjects who receive the placebo (so x = 0), the population mean is

β0 + β1x = β0.

Therefore, β0 is the population mean response to the placebo, and β1 is the difference
between response to the active drug and response to the placebo. We are very interested
in testing whether β1 is different from zero, and guess what? We get exactly the same
t value as from a two-sample t-test, and exactly the same F value as from a one-way
ANOVA for two groups.

Exercise Suppose a study has 3 treatment conditions. For example Group 1 gets Drug
1, Group 2 gets Drug 2, and Group 3 gets a placebo, so that the Explanatory Variable is
Group (taking values 1,2,3) and there is some Response Variable Y (maybe response to
drug again).

Sample Question 5.6.1 Why is E[Y |X = x] = β0 + β1x (with x = Group) a silly
model?

Answer to Sample Question 5.6.1 Designation of the Groups as 1, 2 and 3 is com-
pletely arbitrary.

Sample Question 5.6.2 Suppose x1 = 1 if the subject is in Group 1, and zero otherwise,
and x2 = 1 if the subject is in Group 2, and zero otherwise, and E[Y |X = x] = β0 +
β1x1 + β2x2. Fill in the table below.

Group x1 x2 β0 + β1x1 + β2x2
1 µ1 =
2 µ2 =
3 µ3 =
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Answer to Sample Question 5.6.2

Group x1 x2 β0 + β1x1 + β2x2
1 1 0 µ1 = β0 + β1
2 0 1 µ2 = β0 + β2
3 0 0 µ3 = β0

Sample Question 5.6.3 What does each β value mean?

Answer to Sample Question 5.6.3 β0 = µ3, the population mean response to the
placebo. β1 is the difference between mean response to Drug 1 and mean response to
the placebo. β2 is the difference between mean response to Drug 21 and mean response to
the placebo.

Sample Question 5.6.4 Why would it be nice to simultaneously test whether β1 and β2
are different from zero?

Answer to Sample Question 5.6.4 This is the same as testing whether all three pop-
ulation means are equal; this is what a one-way ANOVA does. And we get the same F
and p values (not really part of the sample answer).

Notice that x1 and x2 contain the same information as the three-category variable
Group. If you know Group, you know x1 and x2, and if you know x1 and x2, you know
Group. In models with an intercept term, a categorical explanatory variable with k
categories is always represented by k − 1 dummy variables. If the dummy variables are
indicators, the category that does not get an indicator is actually the most important.
The intercept is that category’s mean, and it is called the reference category, because
the remaining regression coefficients represent differences between the reference category
and the other category. To compare several treatments to a control, make the control
group the reference category by not giving it an indicator.

It is worth noting that all the traditional one-way and higher-way models for analysis
of variance and covariance emerge as special cases of multiple regression, with dummy
variables representing the categorical explanatory variables.

Add a quantitative explanatory variable

Now suppose we include patient’s age in the regression model. When there are both
quantitative and categorical explanatory variables, the quantitative variables are often
called covariates, particularly if the categorical part is experimentally manipulated. Tests
of the categorical variables controlling for the quantitative variables are called analysis of
covariance.

The usual practice is to put the covariates first. So, we’ll let X1 represent age, and let
X2 and X3 be the indicator dummy variables for experimental condition. The model now
is that all conditional distributions are normal with the same variance σ2, and population
mean

E[Y |X = x] = β0 + β1x1 + β2x2 + β3x3.
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Sample Question 5.6.5 Fill in the table.

Group x2 x3 β0 + β1x1 + β2x2 + β3x3
A µ1 =
B µ2 =

Placebo µ3 =

Answer to Sample Question 5.6.5

Group x2 x3 β0 + β1x1 + β2x2 + β3x3
A 1 0 µ1 = (β0 + β2) + β1x1
B 0 1 µ2 = (β0 + β3) + β1x1

Placebo 0 0 µ3 = β0 +β1x1

This is a parallel slopes model. That is, there is a least-squares regression line for each
group, with the same slope β1 for each line. Only the intercepts are different. This means
that for any fixed value of x1 (age), the differences among population means are the same.
For any value of age (that is, holding age constant, or controlling for age), the difference
between response to Drug A and the placebo is β2. And controlling for age), the difference
between response to Drug B and the placebo is β3. The three group means are equal for
each constant value of age if (and only if) β2 = β3 = 0. This is the null hypothesis for the
analysis of covariance.

It is easy (and often very useful) to have more than one covariate. In this case we have
parallel planes or hyper-planes. And at any fixed set of covariate values, the distances
among hyperplanes correspond exactly to the differences among the intercepts. This
means we are usually interested in testing null hypotheses about the regression coefficients
corresponding to the dummy variables.

Sample Question 5.6.6 Suppose we want to test the difference between response to Drug
A and Drug B, controlling for age. What is the null hypothesis?

Answer to Sample Question 5.6.6 H0 : β2 = β3

Sample Question 5.6.7 Suppose we want to test whether controlling for age, the aver-
age response to Drug A and Drug B is different from response to the placebo. What is
the null hypothesis?

Answer to Sample Question 5.6.7 H0 : β2 + β3 = 0

Sample Question 5.6.8 Huh? Show your work.

Answer to Sample Question 5.6.8
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1
2
[ (β0 + β2 + β1x1) + (β0 + β3 + β1x1) ] = β0 + β1x1

⇐⇒ β0 + β2 + β1x1 + β0 + β3 + β1x1 = 2β0 + 2β1x1

⇐⇒ 2β0 + β2 + β3 + 2β1x1 = 2β0 + 2β1x1

⇐⇒ β2 + β3 = 0

The symbol ⇐⇒ means “if and only if.” The arrows can logically be followed in both
directions.

This last example illustrates several important points.

• Contrasts can be tested with indicator dummy variables.

• If there are covariates, the ability to test contrasts controlling for the covariates is
very valuable.

• Sometimes, the null hypothesis for a contrast of interest might not be what you
expect, and you might have to derive it algebraically. This can be inconvenient, and
it is too easy to make mistakes.

5.6.2 Cell means coding

When students are setting up dummy variables for a categorical explanatory variable
with p categories, the most common mistake is to define an indicator dummy variable for
every category, resulting in p dummy variables rather than p − 1 — and of course there
is an intercept too, because it’s a regression model and regression software almost always
includes an intercept unless you explicitly suppress it. But then the p population means
are represented by p + 1 regression coefficients, and mathematically, the representation
cannot be unique. In this situation the least-squares estimators are not unique either,
and all sorts of technical problems arise. Your software might try to save you by throwing
one of the dummy variables out, but which one would it discard? And would you notice
that it was missing from your output?

Suppose, however, that you used p dummy variables but no intercept in the regres-
sion model. Then there are p regression coefficients corresponding to the p population
means, and all the technical problems go away. The correspondence between regression
coefficients and population means is unique, and the model can be handy. In particular,
null hypotheses can often be written down immediately without any high school algebra.
Here is how it would look for the study with two drugs and a placebo. The conditional
population means is

E[Y |X = x] = β1x1 + β2x2 + β3x3,

and the table of population means has a very simple form:

Drug x1 x2 x3 β1x1 + β2x2 + β3x3
A 1 0 0 µ1 = β1
B 0 1 0 µ2 = β2

Placebo 0 0 1 µ3 = β3
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The regression coefficients correspond directly to population (cell) means for any num-
ber of categories; this is why it’s called cell means coding. Contrasts are equally easy to
write in terms of µ or β quantities.

Cell means coding works nicely in conjunction with quantitative covariates. In the
drug study example, represent age by X4. Now the conditional population mean is

E[Y |X = x] = β1x1 + β2x2 + β3x3 + β4x4,

and the cell means (for any fixed value of age equal to x4) are

Drug x1 x2 x3 β1x1 + β2x2 + β3x3 + β4x4
A 1 0 0 β1 + β4x4
B 0 1 0 β2 + β4x4

Placebo 0 0 1 β3 + β4x4

This is another parallel slopes model, completely equivalent to the earlier one. The
regression coefficients for the dummy variables are the intercepts, and because the lines
are parallel, the differences among population means at any fixed value of x4 are exactly
the differences among intercepts. Note that

• It is easy to write the null hypothesis for any contrast of collection of contrasts.
Little or no algebra is required.

• This extends to categorical explanatory variables with any number of categories.

• With more than one covariate, we have a parallel planes model, and it is still easy
to express the null hypotheses.

• The test statement of proc reg is a particularly handy tool.

5.6.3 Effect Coding

In effect coding there are p − 1 dummy variables for a categorical explanatory variable
with p categories, and the intercept is included. Effect coding look just like indicator
dummy variable coding with an intercept, except that the last (reference) category gets
-1 instead of zero. Here’s how it looks for the hypothetical drug study.

Group x1 x2 E[Y |X = x] = β0 + β1x1 + β2x2
A 1 0 µ1 = β0 + β1
B 0 1 µ2 = β0 + β2

Placebo -1 -1 µ3 = β0 − β1 − β2

To see what the regression coefficients mean, first define µ to be the average of the three
population means. Then

µ =
1

3
(µ1 + µ2 + µ3) = β0,

so that the intercept is the mean of population means — sometimes called the grand
mean. Now we can see right away that
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• β1 is the difference between µ1 and the grand mean.

• β2 is the difference between µ2 and the grand mean.

• −β1 − β2 is the difference between µ3 and the grand mean.

• Equal population means is equivalent to zero coefficients for all the dummy variables.

• The last category is not a reference category. It’s just the category with the least
convenient expression for the deviation from the grand mean.

• This pattern holds for any number of categories.

In the standard language of analysis of variance, effects are deviations from the grand
mean. That’s why this dummy variable coding scheme is called “effect coding.” When
there is more than one categorical explanatory variable, the average cell mean for a par-
ticular category (averaging across other explanatory variables) is called a marginal mean,
and the so-called main effects are deviations of the marginal means from the grand mean;
these are represented nicely by effect coding. Equality of marginal means implies that all
main effects for the variable are zero, and vice versa.

Sometimes, people speak of testing for the “main effect” of a categorical explanatory
variable. This is a loose way of talking, because there is not just one main effect for a
variable. There are at least two, one for each marginal mean. Possibly, this use of “effect”
blends the effect of an experimental variable with the technical statistical meaning of
effect. However, it’s a way of talking that does no real harm, and you may see it from
time to time in this text.

We will see later that effect coding is very useful when there is more than one cate-
gorical explanatory variable and we are interested in interactions — ways in which the
relationship of an explanatory variable with the response variable depends on the value
of another explanatory variable.

Covariates work nicely with effect coding. There is no need to make a table of expected
values, unless a question explicitly asks you to do so. For example, suppose you add the
covariate X1 = Age to the drug study. The treatment means (which depend on X1 are
as follows:

Group x2 x3 E[Y |X = x] = β0 + β1x1 + β2x2 + β3x3
A 1 0 µ1 = β0 + β2 + β1x1
B 0 1 µ2 = β0 + β3 + β1x1

Placebo -1 -1 µ3 = β0 − β2 − β3 + β1x1

Regression coefficients are deviations from the average conditional population mean (con-
ditional on x1). So, if the regression coefficients for all the dummy variables equal zero, the
categorical explanatory variable is unrelated to the response variable, when one controls
for the covariates.

Finally, it’s natural for a student to wonder: What dummy variable coding scheme
should I use? Use whichever is most convenient. They are all equivalent, if done correctly.
They yield the same test statistics, and the same conclusions.
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5.7 Explained Variation

Before considering any explanatory variables, there is a certain amount of variation in the
response variable. The sample mean is the value around which the sum of squared errors
of prediction is at a minimum, so it’s a least squares estimate of the population mean of
Y when there are no explanatory variables. We will measure the total variation to be
explained by the sum of squared deviations around the mean of the response variable.

When we do a regression, variation of the data around the least-squares plane repre-
sents errors of prediction. It is variation that is unexplained by the regression. But it’s
always less than the variation around the sample mean (Why? Because the least-squares
plane could be horizontal). So, the explanatory variables in the regression have explained
some of the variation in the response variable. Variation in the residuals is variation that
is still unexplained.

Variation to explain: Total Sum of Squares

SSTO =
n∑
i=1

(Yi − Y )2

Variation that the regression does not explain: Error Sum of Squares

SSE =
n∑
i=1

(ei − e)2 =
n∑
i=1

e2i =
n∑
i=1

(Yi − Ŷi)2

Variation that is explained: Regression (or Model) Sum of Squares

SSR =
n∑
i=1

(Yi − Y )2 −
n∑
i=1

(Yi − Ŷi)2 =
n∑
i=1

(Ŷi − Y )2

Regression software (including SAS) displays the sums of squares above in an analysis
of variance summary table. “Analysis” means to “split up,” and that’s what we’re doing
here — splitting up the variation in response variable into explained and unexplained
parts.

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Prob>F

Model p− 1 SSR MSR = SSR/(p− 1) F = MSR
MSE

p-value
Error n− p SSE MSE = SSE/(n− p)
Total n− 1 SSTO

Variance estimates consist of sums of squares divided by degrees of freedom. “DF”
stands for Degrees of Freedom. Sums of squares and degrees of freedom each add up to



5.8. TESTING FOR STATISTICAL SIGNIFICANCE IN REGRESSION 123

Total. The F -test is for whether β1 = β2 = . . . = βp−1 = 0 – that is, for whether any of
the explanatory variables makes a difference.

The proportion of variation in the response variable that is explained by the explana-
tory variables (representing strength of relationship) is

R2 =
SSR

SSTO

The R2 from a simple regression is the same as the square of the correlation coefficient:
R2 = r2. For a general multiple regression, the square of the correlation between the Y
and Ŷ (predicted Y ) values is also equal to R2.

What is a good value of R2? Well, the weakest relationship I can visually perceive
in a scatterplot is around r = .3, so I am unimpressed by R2 values under 0.09. By this
criterion, most published results in the social sciences, and many published results in the
biological sciences are not strong enough to be scientifically interesting. But this is just
my opinion.

5.8 Testing for Statistical Significance in Regression

We are already assuming that there is a separate population defined by each combination
of values of the explanatory variables (the conditional distributions of Y given X), and
that the conditional population mean is a linear combination of the β values; the weights
of this linear combination are 1 for β0, and the x values for the other β values. The
classical assumptions are that in addition,

• Sample values of Y represent independent observations, conditionally upon the val-
ues of the explanatory variables.

• Each conditional distribution is normal.

• Each conditional distribution has the same population variance.

How important are the assumptions? Well, important for what? The main thing we
want to avoid is incorrect p-values, specifically ones that appear smaller than they are –
so that we conclude a relationship is present when really we should not. This ”Type I
error” is very undesirable, because it tends to load the scientific literature with random
garbage.

For large samples, the assumption of normality is not important provided no single
observation has too much influence. What is meant by a “large” sample? It depends on
how severe the violations are. What is “too much” influence? The influence of the most
influential observation must tend to zero as the sample size approaches infinity. You’re
welcome.

The assumption of equal variances can be safely violated provided that the numbers
of observations at each combination of explanatory variable values are large and close to
equal. This is most likely to be the case with designed experiments having categorical
explanatory variables.
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The assumption of independent observations is very important, almost always. Ex-
amples where this does not hold is if a student takes a test more than once, members of
the same family respond to the same questionnaire about eating habits, litter-mates are
used in a study of resistance to cancer in mice, and so on.

When you know in advance which observations form non-independent sets, one option
is to average them, and let n be the number of independent sets of observations. There
are also ways to incorporate non-independence into the statistical model. We will discuss
repeated measures designs, multivariate analysis and other examples later.

5.8.1 The standard F and t-tests

SAS proc reg (like other programs) usually starts with an overall F -test, which tests all
the explanatory variables in the equation simultaneously. If this test is significant, we can
conclude that one or more of the explanatory variables is related to the response variable.

Again like most programs that do multiple regression, SAS produces t-tests for the
individual regression coefficients. If one of these is significant, we can conclude that
controlling for all other explanatory variables in the model, the explanatory variable in
question is related to the response variable. That is, each variable is tested controlling
for all the others.

It is also possible to test subsets of explanatory variables, controlling for all the others.
For example, in an educational assessment where students use 4 different textbooks, the
variable ”textbook” would be represented by 3 dummy variables. These variables could
be tested simultaneously, controlling for several other variables such as parental education
and income, child’s past academic performance, experience of teacher, and so on.

In general, to test a subset A of explanatory variables while controlling for another
subset B, fit a model with both sets of variables, and simultaneously test the b coefficients
of the variables in subset A; there is an F test for this.

This is 100% equivalent to the following. Fit a model with just the variables in subset
B, and calculate R2. Then fit a second model with the A variables as well as the B
variables, and calculate R2 again. Test whether the increase in R2 is significant. It’s the
same F test.

Call the regression model with all the explanatory variables the Full Model, and
call the model with fewer explanatory variables (that is, the model without the variables
being tested) the Reduced Model. Let SSRF represent the explained sum of squares
from the full model, and SSRR represent the explained sum of squares from the reduced
model.

Sample Question 5.8.1 Why is SSRF ≥ SSRR?

Answer to Sample Question 5.8.1 In the full model, if the best-fitting hyperplane had
all the b coefficients corresponding to the extra variables equal to zero, it would fit exactly
as well as the hyperplane of the reduced model. It could not do any worse.

Since R2 = SSR
SSTO

, it is clear that SSRF ≥ SSRR implies that adding explanatory
variables to a regression model can only increase R2. When these additional explanatory
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variables are correlated with explanatory variables already in the model (as they usually
are in an observational study),

• Statistical significance can appear when it was not present originally, because the
additional variables reduce error variation, and make estimation and testing more
precise.

• Statistical significance that was originally present can disappear, because the new
variables explain some of the variation previously attributed to the variables that
were significant, so when one controls for the new variables, there is not enough
explained variation left to be significant. This is especially true of the t-tests, in
which each variable is being controlled for all the others.

• Even the signs of the bs can change, reversing the interpretation of how their vari-
ables are related to the response variable. This is why it’s very important not to
leave out important explanatory variables in an observational study.

The F -test for the full versus reduced model is based on the test statistic

F =
(SSRF − SSRR)/r

MSEF
, (5.4)

where r is the number of variables that are being simultaneously tested. That is, r is the
number of explanatory variables that are in the full model but not the reduced model.
MSEF is the mean square error for the full model: MSEF = SSEF

n−p . Equation 5.4 is a
very general formula. As we will see, all the standard tests in regression and the usual
(fixed effects) Analysis of Variance are special cases of this F -test.

Looking at the Formula for F

Formula 5.4 reveals some important properties of the F -test. Bear in mind that the
p-value is the area under the F -distribution curve above the value of the F statistic.
Therefore, anything that makes the F statistic bigger will make the p-value smaller, and
if it is small enough, the results will be significant. And significant results are what we
want, if in fact the full model is closer to the truth than the reduced model.

• Since there are r more variables in the full model than in the reduced model, the
numerator of (5.4) is the average improvement in explained sum of squares when
we compare the full model to the reduced model. Thus, some of the extra variables
might be useless for prediction, but the test could still be significant at least one of
them contributes a lot to the explained sum of squares, so that the average increase
is substantially more than one would expect by chance.

• On the other hand, useless extra explanatory variables can dilute the contribution
of extra explanatory variables with modest but real explanatory power.
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• The denominator is a variance estimate based on how spread out the residuals are.
The smaller this denominator is, the larger the F statistic is, and the more likely
it is to be significant. Therefore, for a more sensitive test, it’s desirable to control
extraneous sources of variation.

– If possible, always collect data on any potential explanatory variable that is
known to have a strong relationship to the response variable, and include it
in both the full model and the reduced model. This will make the analysis
more sensitive, because increasing the explained sum of squares will reduce the
unexplained sum of squares. You will be more likely to detect a real result
as significant, because it will be more likely to show up against the reduced
background noise.

– On the other hand, the denominator of formula (5.4) for F is MSEF = SSEF
n−p ,

where the number of explanatory variables is p−1. Adding useless explanatory
variables to the model will increase the explained sum of squares by at least
a little, but the denominator of MSEF will go down by one, making MSEF
bigger, and F smaller. The smaller the sample size n, the worse the effect of
useless explanatory variables. You have to be selective.

– The (internal) validity of most experimental research depends on experimental
designs and procedures that balance sources of extraneous variation evenly
across treatments. But even better are careful experimental procedures that
eliminate random noise altogether, or at least hold it to very low levels. Reduce
sources of random variation, and the residuals will be smaller. The MSEF will
be smaller, and F will be bigger if something is really going on.

– Most response variables are just indirect reflections of what the investigator
would really like to study, and in designing their studies, scientists routinely
make decisions that are tradeoffs between expense (or convenience) and data
quality. When response variables represent low-quality measurement, they
essentially contain random variation that cannot be explained. This variation
will show up in the denominator of (5.4), reducing the chance of detecting
real results against the background noise. An example of a response variable
that might have too much noise would be a questionnaire or subscale of a
questionnaire with just a few items.

The comments above sneaked in the topic of statistical power by discussing the
formula for the F -test. Statistical power is the probability of getting significant results
when something is really going on in the population. It should be clear that high power is
good. We have just seen that statistical power can be increased by including important
explanatory variables in the study, by carefully controlled experimental conditions, and
by quality measurement. Power can also be increased by increasing the sample size. All
this is true in general, and does not depend on the use of the traditional F test. Power
and sample size are discussed further in Chapter 8.
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5.8.2 Connections between Explained Variation and Significance
Testing

If you divide numerator and denominator of Equation (5.4) by SSTO, the numerator
becomes (R2

F − R2
R)/s, so we see that the F test is based on change in R2 when one

moves from the reduced model to the full model. But the F test for the extra variables
(controlling for the ones in the reduced model) is based not just on R2

F − R2
R, but on a

quantity that will be denoted by

a =
R2
F −R2

R

1−R2
R

. (5.5)

This expresses change in R2 as a proportion of the variation left unexplained by the
reduced model. That is, it’s the proportion of remaining variation that the additional
variables explain.

This is actually a more informative quantity than simple change in R2. For example,
suppose you’re controlling for a set of variables that explain 80% of the variation in the
response variable, and you test a variable that accounts for an additional 5%. You have
explained 25% of the remaining variation – much more impressive than 5%.

The a notation is non-standard. It’s sometimes called a squared multiple partial
correlation, but the usual notation for partial correlations is intricate and hard to look
at, so we’ll just use a.

You may recall that an F test has two degree of freedom values, a numerator degrees
of freedom and a denominator degrees of freedom. In the F test for a full versus reduced
model, the numerator degrees of freedom is s, the number of extra variables. The denom-
inator degrees of freedom is n− p. Recall that the sample size is n, and if the regression
model has an intercept, there are p − 1 explanatory variables. Applying a bit of high
school algebra to Equation (5.4), we see that the relationship between F and a is

F =

(
n− p
s

)(
a

1− a

)
. (5.6)

so that for any given sample size, the bigger a is, the bigger F becomes. Also, for a given
value of a 6= 0, F increases as a function of n. This means you can get a large F (and if
it’s large enough it will be significant) from strong results and a small sample, or from
weak results and a large sample. Again, examining the formula for the F statistic yields
a valuable insight.

Expression (5.6) for F can be turned around to express a in terms of F , as follows:

a =
sF

n− p+ sF
(5.7)

This is a useful formula, because scientific journals often report just F values, degrees
of freedom and p-values. It’s easy to tell whether the results are significant, but not
whether the results are strong in the sense of explained variation. But the equality (5.7)
above lets you recover information about strength of relationship from the F statistic and
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its degrees of freedom. For example, based on a three-way ANOVA where the response
variable is rot in potatoes, suppose the authors write “The interaction of bacteria by
temperature was just barely significant (F=3.26, df=2,36, p=0.05).” What we want to
know is, once one controls for other effects in the model, what proportion of the remaining
variation is explained by the temperature-by-bacteria interaction?

We have s=2, n − p = 36, and a = 2×3.26
36+(2×3.26) = 0.153. So this effect is explaining

a respectable 15% of the variation that remains after controlling for all the other main
effects and interactions in the model.

5.9 Interactions in Regression: It Depends

Rough draft begins on the next page.



Interactions as Products of Independent Variables

Categorical by Quantitative

An interaction between a quantitative variable and a categorical variable means that differences in E[Y] between

categories depend on the value of the quantitative variable, or (equivalently) that the slope of the lines relating x to

E[Y] are different, depending on category membership.  Such an interaction is represented by products of the

quantitative variable and the dummy variables for the categorical variable.  

For example, consider the metric cars data (mcars.dat).  It has length, weight, origin and fuel efficiency in

kilometers per litre, for a sample of cars.  The three origins are US, Japanese and Other. Presumably these refer to

the location of the head office, not to where the car was manufactured.  

Let's use indicator dummy variable coding for origin, with an intercept.  In an Analysis of Covariance

(ANCOVA), we'd test country of origin controlling, say, for weight.  Letting x represent weight and c1 and c2

the dummy variables for country of origin, the model would be

E[Y] = b0 + b1x + b2c1 + b3c2.

This model assumes no interaction between country and weight.  The following model includes product terms for

the interaction, and would allow you to test it.

E[Y] = β0 + β1x + β2c1 + β3c2 + β4c1x + β5c2x

Country c1 c2 Expected KPL (let x = weight)

U. S. 1 0 (β0 + β2) + (β1+β4)x

Japan 0 0  β0           +  β1        x

European 0 1 (β0 + β3) + (β1+β5)x

It's clear that the slopes are parallel if and only if β4=β5=0, and that in this case the relationship of fuel efficiency

to country would not depend on weight of the car.
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As the program below shows, interaction terms are created by literally multiplying independent variables, and

using products as additional independent variables in the regression equation.

/********************** mcars.sas **************************/
options linesize=79 pagesize=100 noovp formdlim='-';
title 'Metric Cars Data: Dummy Vars and Interactions';

proc format; /* Used to label values of the categorical variables */
     value carfmt    1 = 'US'
                     2 = 'Japanese'
                     3 = 'European' ;
data auto;
     infile 'mcars.dat';
     input id country kpl weight length;
/* Indicator dummy vars: Ref category is Japanese */
     if country = 1 then c1=1;  else c1=0;
     if country = 3 then c2=1;  else c2=0;
     /* Interaction Terms */
     cw1 = c1*weight; cw2 = c2*weight;
     label country = 'Country of Origin'
           kpl = 'Kilometers per Litre';
     format country carfmt.;

proc means;
     class country;
     var weight kpl;

proc glm;
     title 'One-way ANOVA';
     class country;
     model kpl = country;
     means country / tukey;

proc reg;
     title 'ANCOVA';
     model kpl = weight c1 c2;
     country: test c1 = c2 = 0;

proc reg;
     title 'Test parallel slopes (Interaction)';
     model kpl = weight c1 c2 cw1 cw2;
     interac: test cw1 = cw2 = 0;
     useuro:  test cw1=cw2;
     country: test c1 = c2 = 0;
     eqreg:   test c1=c2=cw1=cw2=0;

proc iml; /* Critical value for Scheffe tests */
     critval = finv(.95,4,94) ; print critval;
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/* Could do most of it with proc glm: ANCOVA, then test interaction */

proc glm;
     class country;
     model kpl = weight country;
     lsmeans country;

proc glm;
     class country;
     model kpl = weight country weight*country;

Let's take a look at the output.  First, proc means indicates that the US cars get lower gas mileage, and that weight

is a potential confounding variable.

       COUNTRY  N Obs  Variable  Label                   N          Mean
      ------------------------------------------------------------------
      US           73  WEIGHT                           73       1540.23
                       KPL       Kilometers per Litre   73     8.1583562

      Japanese     13  WEIGHT                           13       1060.27
                       KPL       Kilometers per Litre   13     9.8215385

      European     14  WEIGHT                           14       1080.32
                       KPL       Kilometers per Litre   14    11.1600000
      ------------------------------------------------------------------

   COUNTRY  N Obs  Variable  Label                      Std Dev       Minimum
  ---------------------------------------------------------------------------
  US           73  WEIGHT                           327.7785402   949.5000000
                   KPL       Kilometers per Litre     1.9760813     5.0400000

  Japanese     13  WEIGHT                           104.8370989   891.0000000
                   KPL       Kilometers per Litre     2.3976719     7.5600000

  European     14  WEIGHT                           240.9106607   823.5000000
                   KPL       Kilometers per Litre     4.2440764     5.8800000
  ---------------------------------------------------------------------------

          COUNTRY  N Obs  Variable  Label                      Maximum
         -------------------------------------------------------------
         US           73  WEIGHT                               2178.00
                          KPL       Kilometers per Litre    12.6000000

         Japanese     13  WEIGHT                               1237.50
                          KPL       Kilometers per Litre    14.7000000

         European     14  WEIGHT                               1539.00
                          KPL       Kilometers per Litre    17.2200000
         -------------------------------------------------------------
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The one-way ANOVA indicates that fuel efficiency is significantly related to country of origin; country explains

17% of the variation in fuel efficiency.

                        General Linear Models Procedure

Dependent Variable: KPL   Kilometers per Litre
                                     Sum of            Mean
Source                  DF          Squares          Square  F Value    Pr > F

Model                    2     121.59232403     60.79616201    10.09    0.0001
Error                   97     584.29697197      6.02368012
Corrected Total         99     705.88929600

                  R-Square             C.V.        Root MSE           KPL Mean
                  0.172254         27.90648       2.4543187          8.7948000

The Tukey follow-ups are not shown, but they indicate that only the US-European difference is significant.

Maybe the US cars are less efficient because they are big and heavy. So let's do the same test, controlling for

weight of car. Here's the SAS code.  Note this is a standard Analysis of Covariance, and we're assuming no

interaction.

proc reg;
     title 'ANCOVA';
     model kpl = weight c1 c2;
     country: test c1 = c2 = 0;

Dependent Variable: KPL        Kilometers per Litre

                             Analysis of Variance

                                Sum of         Mean
       Source          DF      Squares       Square      F Value       Prob>F

       Model            3    436.21151    145.40384       51.761       0.0001
       Error           96    269.67779      2.80914
       C Total         99    705.88930

           Root MSE       1.67605     R-square       0.6180
           Dep Mean       8.79480     Adj R-sq       0.6060
           C.V.          19.05728
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                              Parameter Estimates

                      Parameter      Standard    T for H0:
     Variable  DF      Estimate         Error   Parameter=0    Prob > |T|

     INTERCEP   1     16.226336    0.76312281        21.263        0.0001
     WEIGHT     1     -0.006041    0.00057080       -10.583        0.0001
     C1         1      1.236147    0.57412989         2.153        0.0338
     C2         1      1.459591    0.64565633         2.261        0.0260

-------------------------------------------------------------------------------

Dependent Variable: KPL
Test: COUNTRY  Numerator:      8.6168  DF:    2   F value:   3.0674
               Denominator:  2.809144  DF:   96   Prob>F:    0.0511

First notice that by including weight, we're now explaining 61% of the variation, while before we explained just

17%. Also, while the effect for country was comfortably significant before we controlled for weight, now it

narrowly fails to reach the traditional criterion (p = 0.0511). But to really appreciate these results, we need to

make a table.

Country c1 c2 E[Y] = β0 + β1x + β2c1 + β3c2

U. S. 1 0 (β0 + β2) + β1x

Japan 0 0  β0           + β1x

European 0 1 (β0 + β3) + β1x

                              Parameter Estimates

                      Parameter      Standard    T for H0:
     Variable  DF      Estimate         Error   Parameter=0    Prob > |T|

     INTERCEP   1     16.226336    0.76312281        21.263        0.0001
     WEIGHT     1     -0.006041    0.00057080       -10.583        0.0001
     C1         1      1.236147    0.57412989         2.153        0.0338
     C2         1      1.459591    0.64565633         2.261        0.0260

Observe that both b2 and b3 are positive -- and significant.  Before we controlled for weight, Japanese gas mileage

was a little better than US, though not significantly so.  Now, because b2 estimates β2, and β2 is the population
difference between U.S. and Japanese mileage (for any fixed weight), a positive value of b2 means that once you
control for weight, the U.S. cars are getting better gas mileage than the Japanese -- significantly better, too, if you
believe the t-test and not the F-test.  
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The direction of the results has changed because we controlled for weight.  This can happen. 

Also, may seem strange that the tests for β2 and β3 are each significant individually, but the simultaneous test for

both of them is not.  But this the simultaneous test implicitly includes a comparison between U.S. and European

cars, and they are very close, once you control for weight.

The best way to summarize these results would be to calculate Y-hat for each country of origin, with weight set

equal to its mean value in the sample. Instead of doing that, though, let's first test the interaction, which this

analysis is assuming to be absent. 

proc reg;
     title 'Test parallel slopes (Interaction)';
     model kpl = weight c1 c2 cw1 cw2;

     interac: test cw1 = cw2 = 0;
     useuro:  test cw1=cw2;
     country: test c1 = c2 = 0;
     eqreg:   test c1=c2=cw1=cw2=0;

Dependent Variable: KPL        Kilometers per Litre

                                Sum of         Mean
       Source          DF      Squares       Square      F Value       Prob>F

       Model            5    489.27223     97.85445       42.463       0.0001
       Error           94    216.61706      2.30444
       C Total         99    705.88930

           Root MSE       1.51804     R-square       0.6931
           Dep Mean       8.79480     Adj R-sq       0.6768
           C.V.          17.26062

                              Parameter Estimates

                      Parameter      Standard    T for H0:
     Variable  DF      Estimate         Error   Parameter=0    Prob > |T|

     INTERCEP   1     29.194817    4.45188417         6.558        0.0001
     WEIGHT     1     -0.018272    0.00418000        -4.371        0.0001
     C1         1    -12.973668    4.53404398        -2.861        0.0052
     C2         1     -4.891978    4.85268101        -1.008        0.3160
     CW1        1      0.013037    0.00421549         3.093        0.0026
     CW2        1      0.006106    0.00453064         1.348        0.1810
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-------------------------------------------------------------------------------

Dependent Variable: KPL
Test: INTERAC  Numerator:     26.5304  DF:    2   F value:  11.5127
               Denominator:  2.304437  DF:   94   Prob>F:    0.0001

Dependent Variable: KPL
Test: USEURO   Numerator:     33.0228  DF:    1   F value:  14.3301
               Denominator:  2.304437  DF:   94   Prob>F:    0.0003

Dependent Variable: KPL
Test: COUNTRY  Numerator:     24.4819  DF:    2   F value:  10.6238
               Denominator:  2.304437  DF:   94   Prob>F:    0.0001

Dependent Variable: KPL
Test: EQREG    Numerator:     17.5736  DF:    4   F value:   7.6260
               Denominator:  2.304437  DF:   94   Prob>F:    0.0001

Now the coefficients for the dummy variables are both negative, and the coefficients for the interaction terms are

positive. To see what's going on, we need a table and a picture -- of  Y .

 Y  = b0 + b1x + b2c1 + b3c2 + b4c1x + b5c2x

    = 29.194817 - 0.018272x - 12.973668c1 - 4.891978c2 + 0.013037c1x + 0.006106c2x

Country c1 c2 Predicted KPL (let x = weight)

U. S. 1 0 (b0 + b2) + (b1+b4)x      = 16.22 - 0.005235 x

Japan 0 0  b0           +  b1       x       = 29.19 - 0.018272 x

European 0 1 (b0 + b3) + (b1+b5)x       = 24.30 - 0.012166 x

From the proc means output, we find that the lightest car was 823.5kg, while the heaviest was 2178kg.  So we

will let the graph range from 820 to 2180.
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When there were no interaction terms, b2 and b3 represented a main effect for country.  What do they represent

now?

From the picture, it is clear that the most interesting thing is that the slope of the line relating weight to fuel

efficiency is least steep for the U.S.  Is it significant?  0.05/3 = 0.0167.
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Repeating earlier material, ...

                             Parameter Estimates

                      Parameter      Standard    T for H0:
     Variable  DF      Estimate         Error   Parameter=0    Prob > |T|

     INTERCEP   1     29.194817    4.45188417         6.558        0.0001
     WEIGHT     1     -0.018272    0.00418000        -4.371        0.0001
     C1         1    -12.973668    4.53404398        -2.861        0.0052
     C2         1     -4.891978    4.85268101        -1.008        0.3160
     CW1        1      0.013037    0.00421549         3.093        0.0026
     CW2        1      0.006106    0.00453064         1.348        0.1810

     useuro:  test cw1=cw2;

Dependent Variable: KPL
Test: USEURO   Numerator:     33.0228  DF:    1   F value:  14.3301
               Denominator:  2.304437  DF:   94   Prob>F:    0.0003

The conclusion is that with a Bonferroni correction, the slope is less (less steep) for US than for either Japanese or

European, but Japanese and European are not significantly different from each other.

Another interesting follow-up would be to use Scheffé tests to compare the heights of the regression lines at many

values of weight; infinitely many comparisons would be protected simultaneously.  This is not a proper follow-up

to the interaction. What is the initial test?
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Quantitative by Quantitative

An interaction of two quantitative variables is literally represented by their product.  For example, consider the

model

E[Y] = β
0
 + β

1
x

1
 + β

2
x

2
 + β

3
x

1
x

2

Hold x
2
 fixed at some particular value, and re-arrange the terms.  This yields

E[Y] =(β
0
 + β

2
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2
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1
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3
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 )x

1
.

so that there is a linear relationship between x
1
 and E[Y], with both the slope and the intercept depending on the

value of x
2
.  Similarly, for a fixed value of x

1
,

E[Y] =(β
0
 + β

1
x

1
) + (β

2
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3
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1
 )x

2
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and the (linear) relationship of x2 to E[Y] depends on the value of x1.  We always have this kind of symmetry.

Three-way interactions are represented by 3-way products, etc.  Its interpretation would be "the 2-way interaction

depends ..."

Product terms represent interactions ONLY when all the variables involved and all lower order interactions

involving those variables are also included in the model!

Chapter 7, Page 69



Categorical by Categorical

It is no surprise that interactions between categorical independent variables are represented by products.  If A and

B are categorical variables, IVs representing the A by B interaction are obtained by multiplying each dummy

variable for A by each dummy variable for B.  If there is a third IV cleverly named C and you want the 3-way

interaction, multiply each of the dummy variables for C by each of the products representing the A by B

interaction.  This rule extends to interactions of any order.  

Up till now, we have represented categorical independent variables with indicator dummy variables, coded 0 or 1.

If interactions between categorical IVs are to be represented, it is much better to use "effect coding," so that the

regression coefficients for the dummy variables correspond to main effects.  (In a 2-way design, products of

indicator dummy variables still correspond to interaction terms, but if an interaction is present, the interpretation of

the coefficients for the indicator dummy variables is not what you might guess.)

Effect coding.  There is an intercept.  As usual, a categorical independent variable with k categories is

represented by k-1 dummy variables.  The rule is

Dummy var 1:  First value of the IV gets a 1, last gets a minus 1, all others get zero.

Dummy var 2:  Second value of the IV gets a 1, last gets a minus 1, all others get zero.

. . .

Dummy var k-1:  k-1st value of the IV gets a 1, last gets a minus 1, all others get zero.

Here is a table showing effect coding for Plant from the Greenhouse data.

Country p1 p2 E[Y] = β0 + β1p1 + β2p2

GP159  1  0 µ1 = β0 + β1

Hanna  0  1 µ2 = β0 + β2

Westar -1 -1 µ3 = β0 − β1 − β2

It is clear that µ1 = µ2 = µ3 if and only if β1=β2=0, so it's a valid dummy variable coding scheme even though it

looks strange.
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Country p1 p2 E[Y] = β0 + β1p1 + β2p2

GP159  1  0 µ1 = β0 + β1

Hanna  0  1 µ2 = β0 + β2

Westar -1 -1 µ3 = β0 − β1 − β2

Effect coding has these properties, which extend to any number of categories.

° µ1 = µ2 = µ3 if and only if β1=β2=0.  

° The average population mean (grand mean) is (µ1+µ2+µ3)/3 = β0.

° β1, β2 and -(β1+β2) are deviations from the grand mean.

The real advantage of effect coding is that the dummy variables behave nicely when multiplied together, so that

main effects correspond to collections of dummy variables, and interactions correspond to their products -- in a

simple way. This is illustrated for Plant by MCG analysis, using the full greenhouse data set).

data nasty;

     set yucky;

     /* Two dummy variables for plant */

        if plant=. then p1=.;

        else if plant=1 then p1=1;

        else if plant=3 then p1=-1;

        else p1=0;

     if plant=. then p2=.;

        else if plant=2 then p2=1;

        else if plant=3 then p2=-1;

        else p2=0;
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/* Five dummy variables for mcg */

     if mcg=. then f1=.;

        else if mcg=1 then f1=1;

        else if mcg=9 then f1=-1;

        else f1=0;

     if mcg=. then f2=.;

        else if mcg=2 then f2=1;

        else if mcg=9 then f2=-1;

        else f2=0;

     if mcg=. then f3=.;

        else if mcg=3 then f3=1;

        else if mcg=9 then f3=-1;

        else f3=0;

     if mcg=. then f4=.;

        else if mcg=7 then f4=1;

        else if mcg=9 then f4=-1;

        else f4=0;

     if mcg=. then f5=.;

        else if mcg=8 then f5=1;

        else if mcg=9 then f5=-1;

        else f5=0;

     /* Product terms for the interaction */

        p1f1 = p1*f1; p1f2=p1*f2 ; p1f3=p1*f3 ; p1f4=p1*f4; p1f5=p1*f5;

        p2f1 = p2*f1; p2f2=p2*f2 ; p2f3=p2*f3 ; p2f4=p2*f4; p2f5=p2*f5;

proc reg;

     model meanlng = p1 -- p2f5;

     plant:  test p1=p2=0;

     mcg:    test f1=f2=f3=f4=f5=0;

     p_by_f: test p1f1=p1f2=p1f3=p1f4=p1f5=p2f1=p2f2=p2f3=p2f4=p2f5 = 0;     
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Here is the output from the test statement.  For comparison, it is followed by proc glm output from

model meanlng = plant|mcg.

Dependent Variable: MEANLNG 
Test: PLANT    Numerator: 110847.5637  DF:    2   F value: 113.9032
               Denominator:  973.1736  DF:   90   Prob>F:    0.0001

Dependent Variable: MEANLNG 
Test: MCG      Numerator:  11748.0529  DF:    5   F value:  12.0719
               Denominator:  973.1736  DF:   90   Prob>F:    0.0001

Dependent Variable: MEANLNG 
Test: P_BY_F   Numerator:   4758.1481  DF:   10   F value:   4.8893
               Denominator:  973.1736  DF:   90   Prob>F:    0.0001

-------------------------------------------------------------------------------

Source                  DF      Type III SS     Mean Square  F Value    Pr > F

PLANT                    2     221695.12747    110847.56373   113.90    0.0001
MCG                      5      58740.26456     11748.05291    12.07    0.0001
PLANT*MCG               10      47581.48147      4758.14815     4.89    0.0001

It worked.

Effect coding works as expected in conjunction with quantitative independent variables.  In particular, products of

quantitative and indicator variables still represent interactions.  In fact, the big advantage of effect coding is that

you can use it to test categorical independent variables, and interactions between categorical independent variables

-- in a bigger multiple regression context.
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The discussion of interactions involving two or more categorical explanatory variables
will be continued in Chapter 7. The details begin on page 179.

5.10 Scheffé Tests for Regression

This section provides a brief but very powerful extension of the Scheffé tests to multiple
regression. Suppose the initial hypothesis is that r regression coefficients all are equal
to zero. We will follow up the initial test by testing whether s linear combinations of
these regression coefficients are different from zero; s ≤ r. Notice that now we are testing
linear combinations, not just contrasts. If a set of coefficients are all zero, then any linear
combination (weighted sum) of the coefficients is also zero. Thus the null hypotheses of
the follow-up tests are implied by the null hypotheses of the initial test. As in the case of
Scheffé tests for contrasts in one-way ANOVA, using an adjusted critical value guarantees
simultaneous protection for all the follow-up tests at the same significance level as the
initial test. This means we have proper follow-ups (See Section 3.4.6).

The formula for the adjusted Scheffé critical value is

fSch =
r

s
fcrit, (5.8)

where again, the null hypothesis of the initial test is that r regression coefficients are all
zero, and the null hypothesis of the follow-up test is that r linear combinations of those
coefficients are equal to zero.

Actually, Formula 5.8 is even more general. It applies to testing arbitrary linear
combinations of regression coefficients. The initial test is a test of r linear constraints4 on
the regression coefficients, and the follow-up test is a test of s linear constraints, where
s < r, and the linear constraints of the initial test imply the linear constraints of the
follow-up test5. For an example and more discussion, see the application of Scheffé tests
to the Greenhouse data of Section 7.3.

For convenience, here is a sample of proc iml code to produce a table of adjusted
critical values. Note that numdf= r and dendf= n − p. The example can easily be
modified to fit other problems.

proc iml;

title2 ’Scheffe tests for Regression: Critical values’;

numdf = 3; /* Numerator degrees of freedom for initial test (d) */

dendf = 15; /* Denominator degrees of freedom for initial test (n-d-1) */

alpha = 0.05;

critval = finv(1-alpha,numdf,dendf);

zero = {0 0}; S_table = repeat(zero,numdf,1); /* Make empty matrix */

/* Label the columns */

4A linear constraint is just a statement that some linear combination equals a constant.
5Technically, the weights of the linear combination of regression coefficients in the follow-up test lie

in the linear subspace spanned by the weights of the initial test. These weights include any non-zero
constants. See Hochberg and Tamhane’s (1987) Multiple comparison procedures [13] for more details.
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namz = {"Number of linear combos in followup test"

" Scheffe Critical Value"};

mattrib S_table colname=namz;

do i = 1 to numdf;

s_table(|i,1|) = i;

s_table(|i,2|) = numdf/i * critval;

end;

reset noname; /* Makes output look nicer in this case */

print "Initial test has " numdf " and " dendf "degrees of freedom."

"Using significance level alpha = " alpha;

print s_table;

The Scheffé tests for contrasts in a one-way ANOVA are special cases of this, because
anything you can do with factorial analysis of variance, you can do with dummy variable
regression. It’s very convenient with test statements in proc reg.

Biblographic Citation If you are writing a scientific article and you want to report the
use of Scheffé tests for regression, or even Scheffé tests for more than one contrast in a one-
way design, it is helpful to cite a book or article that contains a fairly thorough explanation
of the theory. But if you look in published Statistics texts, you will have difficulty finding
the Scheffé tests as they are expressed here. Like Scheffé’s original 1953 article [21], most
published texts stick to simultaneous confidence intervals for single contrasts of treatment
means. The general case of multiple regression is covered in Hochberg and Tamhane’s
(1987) monograph Multiple comparison procedures [13]. It’s not very readable to non-
statisticians, and they express everything in terms of simultaneous confidence regions
rather than the equivalent tests. But you can just trust me and cite this classic anyway.

5.11 Measurement error

In a survey, suppose that a respondent’s annual income is “measured” by simply asking
how much he or she earned last year. Will this measurement be completely accurate?
Of course not. Some people will lie, some will forget and give a reasonable guess, and
still others will suffer from legitimate confusion about what constitutes income. Even
physical variables like height, weight and blood pressure are subject to some inexactness of
measurement, no matter how skilled the personnel doing the measuring. Many categorical
variables are subject to classification error ; a case is recorded as being in one category,
but the truth is that it’s in another. In fact, very few of the variables in the typical data
set are measured completely without error.

So, there are really two versions of most variables – the true version and the observed
version. Typically, the relationships we are interested in are relationships among the true
variables, while the statistical analysis is necessarily based upon what we can observe.

In general, when there is a relationship between two true variables, the relationship
also appears between the observed variables, but it is weaker. This means that things
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are not so bad when we are just testing for association between pairs of variables, and
not trying to control for anything. But when we test for a relationship controlling for
some set of variables, we are seeking it in the conditional distributions — that is, in the
joint distributions of the explanatory and response variables, conditional on the values of
the variables for which we are controlling. The unfortunate truth is this. If the control
variables are measured with error, the conditional relationship given the observed variables
need not be the same as the conditional relationship given the true variables.

It’s as if we are trying to hold the control variables steady, but we can’t tell exactly
where they are. So the holding constant does not quite work. This applies to the model-
based control of the classical regression models, and also to control by subdivision (if there
is classification error in the categorical control variables). It even applies to experimental
control, if it is not done very carefully.6

For example, suppose the subjects in a study are adults, and you are testing the
relationship of age to Body Mass Index (BMI)7, controlling for exercise and calorie intake.
The questionnaire measures of exercise and calorie intake are known to be inaccurate.
People exaggerate amount of exercise and under-report calories — and not by a constant
amount. You can’t see these control variables clearly to hold them constant. The result is
that even if age is unrelated to Body Mass Index for every combination of true exercise and
calorie intake, a relationship between age and BMI can exist conditionally upon observed
exercise and calorie intake.

The poison combination Here is the situation that causes multiple regression to fail.
You want to test B controlling for A.

1. A is related to the response variable

2. A and B are related to each other, and

3. A is measured with error.8

In this situation it is very tempting (and common practice) to just use the imperfect
version of A, and try controlling for it with ordinary least-squares regression. But if you
do this, all hell breaks loose. The regression coefficients b are biased estimators of the
true regression coefficients β. Furthermore, the Type I Error can be badly inflated. In
a 2009 paper, Brunner and Austin [3] point out that the problem biased estimation has

6Suppose a drug is being injected into a rat. The amount of drug injected may be exactly the same
for all the rats in a particular experimental condition, but because of microscopic variation in needle
placement and the rats’ circulatory systems, the amount of drug that actually gets into the blood (the
true dosage) may vary quite a bit. I am grateful to Prof. Alison Fleming for this remark.

7Weight in kilograms divided by the square of height in meters. Values above 25 are supposed to
indicate obesity.

8Measurement error in B, the variable of set of variables you are testing, does not matter much. In
fact, it makes the problems described here a little less severe. This is also true of measurement error
in the response variable. All this assumes that the errors of measurement are uncorrelated with each
other. Correlated measurement error, which often arises from sloppy research design, introduces a set of
problems that are usually fatal to correct inference.
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been known since the 1930s. They also show that even for small amounts of measurement
error and moderate sample sizes, the probability of falsely rejecting the null hypothesis
at the 0.05 level can be unacceptably large. As the sample size increases, the probability
of false significance approaches 1.00.

The problem of measurement error can be particularly acute in observational medical
research. There, a common goal is to assess potential risk factors, controlling for known
risk factors. The known risk factors (set A) do matter, and they are generally correlated
with the potential risk factors that are being investigated. Also, the known risk factors
are difficult to measure without error. In this situation, application of standard methods
will often lead to the conclusion that the potential risk factors (set B) are a problem even
when one controls for the known risk factors. Such conclusions are very suspect.

But all is not lost The problem really comes from trying to use regression as a causal
model for observational data. As long as you are interested in prediction rather than
interpretation, there is no problem. The test for whether age is a useful predictor of Body
Mass Index is still valid, even if its usefulness comes from its correlation with true (as
opposed to reported) exercise level. Viewed this way, the measurement error problem is
just another reason why most observational studies cannot provide good evidence that
the explanatory variable causes, or contributes to the response variable.

Also, of one or more categorical explanatory variables are experimentally manipulated,
analysis of covariance can help reduce MSE and makes the analysis more precise, even if
the covariates (control variables) are measured with error. There is no inflation of Type I
Error rate because random assignment breaks up any association between A and B.

Even for purely observational studies, there are statistical methods that incorporate
measurement error into the model, and are not subject to the bias and Type I error
rate problems described here. One example is the structural equation models [2, 14]
popular in the social and (to a lesser degree) in the biological sciences. There are also
more mainstream statistical methods [4, 10, 12] that overlap with structural equation
modeling and have many of the same objectives. But all of these techniques require
additional information (more variables, not just more cases) so that measurement error
can be assessed. For example, it is helpful to have two independent readings of each
explanatory variable. The main point is that it’s never just a question of running different
software. Studies need to be planned differently if measurement error is to be taken into
account.

Rules of discourse A later edition of this text will have a chapter on structural equa-
tion models. In the meantime, we will apply traditional methods with care, and we will be
careful how we talk about things. In any academic discipline, a great deal of the discus-
sion tends to be repetitive, with the participants going back and forth, making points and
counter-points that are well rehearsed, and very similar to what they have read or heard
somewhere. The details may be about the case at hand, but the overall pattern is very
predictable if you know the field. Think of these patterns of discussion as pathways, worn
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into the surface of scientific debate.9 One thing that happens in a university education is
that you are exposed to a fairly large collection of such scripts, and if you learn to apply
them flexibly, it may help you think your way through difficult problems. If not, at least
you sound educated.

Anyway, here are some ways to criticize an observational study based on measurement
error in the explanatory variables.

• Start with “How did you control for . . . ?” The answer will be some version of
subdivision or model-based control.

• Most of the time, it will be obvious that the control variables are measured with
error. If so, ask “How did you take measurement error into account?” You might
get a straight answer.

• If not, ask if they are aware of how ignoring measurement error in the explanatory
variables can result in biased estimation and inflated Type I error rate. Provide
references (given above).

• If they say “Oh, there was just a little measurement error,” observe that if the
sample is large enough, no amount of measurement error is safe. Brunner and
Austin (2009) give a proof.

• If they say “Well, its the best we could do,” you could ask whether its better to say
something incorrect, or to be silent.

In this course, we will carry out classical regression analysis on observational data only
when our primary purpose is prediction, and we will be very careful about the way we
describe the results. We will use regression methods extensively on experimental data.

5.12 Multiple Regression with SAS

It is often good to start with a textbook example, so that interested students can locate
a more technical discussion of what is going on. The following example is based on the
“Dwaine Studios” Example from Chapter 6 of [16]. The cases correspond to photographic
portrait studios in 21 towns. In addition to sales (the response variable), the data file
contains number of children 16 and younger in the community (in thousands of persons),
and per capita disposable income in thousands of dollars. Here is the SAS program.

/* appdwaine1.sas */

title ’Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al’;

title2 ’Just the defaults’;

data portrait;

infile ’/folders/myfolders/dwaine.data’;

9One could make a similar point about political discussion, or even conversations about hockey.
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input kids income sales;

proc reg;

model sales = kids income;

/* model Response variables(s) = Explanatory variable(s); */

Here is the output.
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_______________________________________________________________________________

Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al 1

Just the defaults

The REG Procedure

Model: MODEL1

Dependent Variable: sales

Number of Observations Read 21

Number of Observations Used 21

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 2 24015 12008 99.10 <.0001

Error 18 2180.92741 121.16263

Corrected Total 20 26196

Root MSE 11.00739 R-Square 0.9167

Dependent Mean 181.90476 Adj R-Sq 0.9075

Coeff Var 6.05118

Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 -68.85707 60.01695 -1.15 0.2663

kids 1 1.45456 0.21178 6.87 <.0001

income 1 9.36550 4.06396 2.30 0.0333

Here are some comments on the output file.

• First the ANOVA summary table for the overall F -test, testing all the explanatory
variables simultaneously. In C Total, C means corrected for the sample mean.

• Root MSE is the square root of Mean Square Error (MSE).

• Dep Mean is the mean of the response variable.

• C.V. is the coefficient of variation – the standard deviation divided by the mean.
Who cares?

• R-square is R2

• Adj R-sq: Since R2 never goes down when you add explanatory variables, models
with more variables always look as if they are doing better. Adjusted R2 is an
attempt to penalize the usual R2 for the number of explanatory variables in the
model. It can be useful if you are trying to compare the predictive usefulness of
models with different numbers of explanatory variables.
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• Parameter Estimates are the b values corresponding to the explanatory variables
listed. The one corresponding to Intercept is b0. Standard Error is the (esti-
mated) standard deviation of the sampling distribution of b. It’s the denominator
of the t test in the next column.

• The last column is a two-tailed p-value for the t-test, testing whether the regression
coefficient is zero.

Here are some sample questions based on the output file.

Sample Question 5.12.1 Suppose we wish to test simultaneously whether number of
kids 16 and under and average family income have any relationship to sales. Give the
value of the test statistic, and the associated p-value.

Answer to Sample Question 5.12.1 F = 99.103, p < 0.0001

Sample Question 5.12.2 What can you conclude from just this one test?

Answer to Sample Question 5.12.2 Sales is related to either number of kids 16 and
under, or average family income, or both. But you’d never do this. You have to look at
the rest of the printout to tell what’s happening.

Sample Question 5.12.3 What percent of the variation in sales is explained by number
of kids 16 and under and average family income?

Answer to Sample Question 5.12.3 91.67%

Sample Question 5.12.4 Controlling for average family income, is number of kids 16
and under related to sales?

1. What is the value of the test statistic?

2. What is the p-value?

3. Are the results significant? Answer Yes or No.

4. Is the relationship positive, or negative?

Answer to Sample Question 5.12.4

1. t = 6.868

2. p < 0.0001

3. Yes.

4. Positive.
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Sample Question 5.12.5 Controlling for number of kids 16 and under is average family
income related to sales?

1. What is the value of the test statistic?

2. What is the p-value?

3. Are the results significant? Answer Yes or No.

4. Is the relationship positive, or negative?

Answer to Sample Question 5.12.5

1. t = 2.305

2. p = 0.0333

3. Yes.

4. Positive.

Sample Question 5.12.6 What do you conclude from this entire analysis? Direct your
answer to a statistician or researcher.

Answer to Sample Question 5.12.6 Number of kids 16 and under and average family
income are both related to sales, even when each variable is controlled for the other.

Sample Question 5.12.7 What do you conclude from this entire analysis? Direct your
answer to a person without statistical training.

Answer to Sample Question 5.12.7 Even when you allow for the number of kids 16
and under in a town, the higher the average family income in the town, the higher the
average sales. When you allow for the average family income in a town, the higher the
number of children under 16, the higher the average sales.

Sample Question 5.12.8 A new studio is to be opened in a town with 65,400 children
16 and under, and an average household income of $17,600. What annual sales do you
predict?

Answer to Sample Question 5.12.8 Ŷ = b0+b1x1+b2x2 = -68.857073 + 1.454560*65.4
+ 9.365500*17.6 = 191.104, so predicted annual sales = $191,104.

Sample Question 5.12.9 For any fixed value of average income, what happens to pre-
dicted annual sales when the number of children under 16 increases by one thousand?

Answer to Sample Question 5.12.9 Predicted annual sales goes up by $1,454.

Sample Question 5.12.10 What do you conclude from the t-test for the intercept?
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Answer to Sample Question 5.12.10 Nothing. Who cares if annual sales equals zero
for towns with no children under 16 and an average household income of zero?

The final two questions ask for a proportion of remaining variation, the quantity we
are denoting by a. In the published literature, sometimes all you have are reports of
t-tests for regression coefficients.

Sample Question 5.12.11 Controlling for average household income, what proportion
of the remaining variation is explained by number of children under 16?

Answer to Sample Question 5.12.11 Using F = t2 and plugging into (5.7), we have
a = 1×6.8682

21−3+1×6.8682 = 0.691944, or around 70% of the remaining variation.

Sample Question 5.12.12 Controlling for number of children under 16, what propor-
tion of the remaining variation is explained by average household income?

Answer to Sample Question 5.12.12 a = 2.3052

18+2.3052
= 0.2278994, or about 23%.

These a values are large, but the sample size is small; after all, it’s a textbook example,
not real data. Now here is a program file that illustrates some options, and gives you a
hint of what a powerful tool SAS proc reg can be.
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/* appdwaine2.sas */

title ’Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al’;

title2 ’With bells and whistles’;

data portrait;

infile ’/folders/myfolders/dwaine.data’;

input kids income sales;

proc reg simple corr; /* "simple" prints simple descriptive statistics */

model sales = kids income / ss1; /* "ss1" prints Sequential SS */

output out=resdata predicted=presale residual=resale;

/* Creates new SAS data set with Y-hat and e as additional variables*/

/* Now all the default F-test, in order */

allivs: test kids = 0, income = 0;

inter: test intercept=0;

child: test kids=0;

money: test income=0;

proc iml; /* Income controlling for kids: Full vs reduced by "hand" */

fcrit = finv(.95,1,18); print fcrit;

/* Had to look at printout from an earlier run to get these numbers*/

f = 643.475809 / 121.16263; /* Using the first F formula */

pval = 1-probf(f,1,18);

tsq = 2.305**2; /* t-squared should equal F*/

a = 643.475809/(26196.20952 - 23372);

print f tsq pval;

print "Proportion of remaining variation is " a;

proc glm; /* Use proc glm to get a y-hat more easily */

model sales=kids income;

estimate ’Xh p249’ intercept 1 kids 65.4 income 17.6;

proc print; /* To see the new data set with residuals*/

proc univariate normal plot;

var resale;

proc plot;

plot resale * (kids income sales);

Here are some comments on appdwaine2.sas.

• simple corr You could get means and standard deviations from proc means and
correlations from proc corr, but this is convenient.

• ss1 These are Type I Sums of Squares, produced by default in proc glm. In proc

reg, you must request them with the ss1 option if you want to see them. The
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explanatory variables in the model statement are added to the model in order.
For each variable, the Type I SS is the increase in explained sum of squares that
comes from adding each variable to the model, in the order they appear in the
model statement. The t-tests correspond to proc glm’s Type III sums of squares;
everything is controlled for everything else.

• output creates a new sas data set called resdata. It has all the variables in the
data set portrait, and in addition it has Ŷ (named presale for predicted sales)
and e (named resale for residual of sales).

• Then we have some custom tests, all of them equivalent to what we would get by
testing a full versus reduced model. SAS takes the approach of testing whether s
linear combinations of β values equal s specified constants (usually zero). Again,
this is the same thing as testing a full versus a reduced model. The form of a custom
test in proc reg is

1. A name for the test, 8 characters or less, followed by a colon; this name will
be used to label the output.

2. the word test.

3. s linear combinations of explanatory variable names, each set equal to some
constant, separated by commas.

4. A semi-colon to end, as usual.

If you want to think of the significance test in terms of a collection of linear com-
binations that specify constraints on the β values (this is what a statistician would
appreciate), then we would say that the names of the explanatory variables (includ-
ing the weird variable “intercept”) are being used to refer to the corresponding βs.
But usually, you are testing a subset of explanatory variables controlling for some
other subset. In this case, include all the variables in the model statement, and
set the variables you are testing equal to zero in the test statement. Commas are
optional. As an example, for the test allivs (all explanatory variables) we could
have written allivs: test kids = income = 0;.

• Now suppose you wanted to use the Sequential Sums of Squares to test income con-
trolling for kids. You could use a calculator and a table of the F distribution from
a textbook, but for larger sample sizes the exact denominator degrees of freedom
you need are seldom in the table, and you have to interpolate in the table. With
proc iml (Interactive Matrix Language), which is actually a nice programming en-
vironment, you can use SAS as your calculator. Among other things, you can get
exact critical values and p-values quite easily. Statistical tables are obsolete.

In this example, we first get the critical value for F ; if the test statistic is bigger
than the critical value, the result is significant. Then we calculate F using formula
5.4, and obtain its p-value. This F should be equal to the square of the t statistic
from the printout, so we check. Then we use (5.7) to calculate a, and print the
results.
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• proc glm The glm procedure is very useful when you have categorical explanatory
variables, because it makes your dummy variables for you. But it also can do
multiple regression. This example calls attention to the estimate command, which
lets you calculate Ŷ values more easily and with less chance of error compared to a
calculator or proc iml.

• proc print prints all the data values, for all the variables. This is a small data
set, so it’s not producing a telephone book here. You can limit the variables and
the number of cases it prints; see the manual or Applied statistics and the SAS
programming language [5]. By default, all SAS procedures use the most recently
created SAS data set; this is resdata, which was created by proc reg – so the
predicted values and residuals will be printed by proc print.

• You didn’t notice, but proc glm also used resdata rather than portrait. But it
was okay, because resdata has all the variables in portrait, and also the predicted
Y and the residuals.

• proc univariate produces a lot of useful descriptive statistics, along with a fair
amount of junk. The normal option gives some tests for normality, and textttplot
generates some line-printer plots like boxplots and stem-and-leaf displays. These are
sometimes informative. It’s a good idea to run the residuals (from the full model)
through proc univariate if you’re starting to take an analysis seriously.

• proc plot This is how you would plot residuals against variables in the model. It
the data file had additional variables you were thinking of including in the analysis,
you could plot them against the residuals too, and look for a correlation. My
personal preference is to start plotting residuals fairly late in the exploratory game,
once I am starting to get attached to a regression model.

Here is the output.

Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al 1

With bells and whistles

The REG Procedure

Number of Observations Read 21

Number of Observations Used 21

Descriptive Statistics

Uncorrected Standard

Variable Sum Mean SS Variance Deviation

Intercept 21.00000 1.00000 21.00000 0 0

kids 1302.40000 62.01905 87708 346.71662 18.62033

income 360.00000 17.14286 6190.26000 0.94157 0.97035

sales 3820.00000 181.90476 721072 1309.81048 36.19130

Correlation
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Variable kids income sales

kids 1.0000 0.7813 0.9446

income 0.7813 1.0000 0.8358

sales 0.9446 0.8358 1.0000

Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al 2

With bells and whistles

The REG Procedure

Model: MODEL1

Dependent Variable: sales

Number of Observations Read 21

Number of Observations Used 21

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 2 24015 12008 99.10 <.0001

Error 18 2180.92741 121.16263

Corrected Total 20 26196

Root MSE 11.00739 R-Square 0.9167

Dependent Mean 181.90476 Adj R-Sq 0.9075

Coeff Var 6.05118

Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al 3

With bells and whistles

The REG Procedure

Model: MODEL1

Dependent Variable: sales

Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > |t| Type I SS

Intercept 1 -68.85707 60.01695 -1.15 0.2663 694876

kids 1 1.45456 0.21178 6.87 <.0001 23372

income 1 9.36550 4.06396 2.30 0.0333 643.47581

Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al 4

With bells and whistles

The REG Procedure
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Model: MODEL1

Test allivs Results for Dependent Variable sales

Mean

Source DF Square F Value Pr > F

Numerator 2 12008 99.10 <.0001

Denominator 18 121.16263

Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al 5

With bells and whistles

The REG Procedure

Model: MODEL1

Test inter Results for Dependent Variable sales

Mean

Source DF Square F Value Pr > F

Numerator 1 159.48430 1.32 0.2663

Denominator 18 121.16263

Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al 6

With bells and whistles

The REG Procedure

Model: MODEL1

Test child Results for Dependent Variable sales

Mean

Source DF Square F Value Pr > F

Numerator 1 5715.50583 47.17 <.0001

Denominator 18 121.16263

Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al 7

With bells and whistles

The REG Procedure

Model: MODEL1

Test money Results for Dependent Variable sales

Mean

Source DF Square F Value Pr > F

Numerator 1 643.47581 5.31 0.0333

Denominator 18 121.16263

Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al 8

With bells and whistles

fcrit
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4.4138734

f tsq pval

5.3108439 5.313025 0.0333214

a

Proportion of remaining variation is 0.2278428

Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al 9

With bells and whistles

The GLM Procedure

Number of Observations Read 21

Number of Observations Used 21

Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al 10

With bells and whistles

The GLM Procedure

Dependent Variable: sales

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 2 24015.28211 12007.64106 99.10 <.0001

Error 18 2180.92741 121.16263

Corrected Total 20 26196.20952

R-Square Coeff Var Root MSE sales Mean

0.916746 6.051183 11.00739 181.9048

Source DF Type I SS Mean Square F Value Pr > F

kids 1 23371.80630 23371.80630 192.90 <.0001

income 1 643.47581 643.47581 5.31 0.0333

Source DF Type III SS Mean Square F Value Pr > F

kids 1 5715.505835 5715.505835 47.17 <.0001

income 1 643.475809 643.475809 5.31 0.0333

Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al 11

With bells and whistles

The GLM Procedure
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Dependent Variable: sales

Standard

Parameter Estimate Error t Value Pr > |t|

Xh p249 191.103930 2.76679783 69.07 <.0001

Standard

Parameter Estimate Error t Value Pr > |t|

Intercept -68.85707315 60.01695322 -1.15 0.2663

kids 1.45455958 0.21178175 6.87 <.0001

income 9.36550038 4.06395814 2.30 0.0333

Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al 12

With bells and whistles

Obs kids income sales presale resale

1 68.5 16.7 174.4 187.184 -12.7841

2 45.2 16.8 164.4 154.229 10.1706

3 91.3 18.2 244.2 234.396 9.8037

4 47.8 16.3 154.6 153.329 1.2715

5 46.9 17.3 181.6 161.385 20.2151

6 66.1 18.2 207.5 197.741 9.7586

7 49.5 15.9 152.8 152.055 0.7449

8 52.0 17.2 163.2 167.867 -4.6666

9 48.9 16.6 145.4 157.738 -12.3382

10 38.4 16.0 137.2 136.846 0.3540

11 87.9 18.3 241.9 230.387 11.5126

12 72.8 17.1 191.1 197.185 -6.0849

13 88.4 17.4 232.0 222.686 9.3143

14 42.9 15.8 145.3 141.518 3.7816

15 52.5 17.8 161.1 174.213 -13.1132

16 85.7 18.4 209.7 228.124 -18.4239

17 41.3 16.5 146.4 145.747 0.6530

18 51.7 16.3 144.0 159.001 -15.0013

19 89.6 18.1 232.6 230.987 1.6130

20 82.7 19.1 224.1 230.316 -6.2161

21 52.3 16.0 166.5 157.064 9.4356

Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al 13

With bells and whistles

The UNIVARIATE Procedure

Variable: resale (Residual)

Moments

N 21 Sum Weights 21

Mean 0 Sum Observations 0

Std Deviation 10.442527 Variance 109.046371

Skewness -0.0970495 Kurtosis -0.7942686

Uncorrected SS 2180.92741 Corrected SS 2180.92741

Coeff Variation . Std Error Mean 2.27874622

Basic Statistical Measures

Location Variability
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Mean 0.000000 Std Deviation 10.44253

Median 0.744918 Variance 109.04637

Mode . Range 38.63896

Interquartile Range 15.65166

Tests for Location: Mu0=0

Test -Statistic- -----p Value------

Student’s t t 0 Pr > |t| 1.0000

Sign M 2.5 Pr >= |M| 0.3833

Signed Rank S 1.5 Pr >= |S| 0.9599

Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al 14

With bells and whistles

The UNIVARIATE Procedure

Variable: resale (Residual)

Tests for Normality

Test --Statistic--- -----p Value------

Shapiro-Wilk W 0.954073 Pr < W 0.4056

Kolmogorov-Smirnov D 0.147126 Pr > D >0.1500

Cramer-von Mises W-Sq 0.066901 Pr > W-Sq >0.2500

Anderson-Darling A-Sq 0.432299 Pr > A-Sq >0.2500

Quantiles (Definition 5)

Quantile Estimate

100% Max 20.215072

99% 20.215072

95% 11.512629

90% 10.170574

75% Q3 9.435601

50% Median 0.744918

25% Q1 -6.216062

10% -13.113212

5% -15.001313

1% -18.423890

0% Min -18.423890

Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al 15

With bells and whistles

The UNIVARIATE Procedure

Variable: resale (Residual)

Extreme Observations
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------Lowest----- ------Highest-----

Value Obs Value Obs

-18.4239 16 9.75858 6

-15.0013 18 9.80368 3

-13.1132 15 10.17057 2

-12.7841 1 11.51263 11

-12.3382 9 20.21507 5

Stem Leaf # Boxplot

2 0 1 |

1 |

1 0002 4 |

0 99 2 +-----+

0 011124 6 *--+--*

-0 | |

-0 665 3 +-----+

-1 332 3 |

-1 85 2 |

----+----+----+----+

Multiply Stem.Leaf by 10**+1

Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al 16

With bells and whistles

The UNIVARIATE Procedure

Variable: resale (Residual)

Normal Probability Plot

22.5+ *++++

| +++++

| ++*+*

| **+*+*

2.5+ *****+*

| *+++

| +++**

| ++*+* *

-17.5+ *++++*

+----+----+----+----+----+----+----+----+----+----+

-2 -1 0 +1 +2

Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al 17

With bells and whistles

Plot of resale*kids. Legend: A = 1 obs, B = 2 obs, etc.
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Dwaine Studios Example from Chapter 6 (Section 6.9) of Neter et al 19
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With bells and whistles

Plot of resale*sales. Legend: A = 1 obs, B = 2 obs, etc.
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Here are some comments.

• proc reg

– In the descriptive statistics produced by the simple option, one of the “vari-
ables” is INTERCEP; it’s our friend X0 = 1. The SAS programmers (or the
statisticians directing them) are really thinking of this as an explanatory vari-
able.

– The Type I (sequential) sum of squares starts with INTERCEP, and a really big
number for the explained sum of squares. Well, think of a reduced model that
does not even have an intercept — that is, one in which there are not only no
explanatory variables, but the population mean is zero. Then add an intercept,
so the full model is E[Y ] = β0. The least squares estimate of β0 is Y , so the
improvement in explained sum of squares is

∑n
i=1(Yi − Y )2 = SSTO. That’s

the first line. It makes sense, in a twisted way.

– Then we have the custom tests, which reproduce the default tests, in order.
See how useful the names of the custom tests can be?

• proc iml: Everything works as advertised. F = t2 except for rounding error, and
a is exactly what we got as the answer to Sample Question 5.12.12.

• proc glm
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– After an overall test, we get tests labelled Type I SS and Type III SS. As
mentioned earlier, Type One sums of squares are sequential. Each variable is
added in turn to the model, in the order specified by the model statement.
Each one is tested controlling for the ones that precede it — except that the
denominator of the F ratio is MSE from the model including all the explanatory
variables.

– When explanatory variables are correlated with each other and with the re-
sponse variable, some of the variation in the response variable is being explained
by the variation shared by the correlated explanatory variables. Which one
should get credit? If you use sequential sums of squares, the variable named
first by you gets all the credit. And your conclusions can change radically as
a result of the order in which you name the explanatory variables. This may
be okay, if you have strong reasons for testing A controlling for B and not the
other way around.

In Type Three sums of squares, each variable is controlled for all the others.
This way, nobody gets credit for the overlap. It’s conservative, and valuable.
Naturally, the last lines of Type I and Type III summary tables are identical,
because in both cases, the last variable named is being controlled for all the
others.

– I can never remember what Type II and Type IV sums of squares are.

– The estimate statement yielded an Estimate, that is, a Ŷ value, of 191.103930,
which is what we got with a calculator as the answer to Sample Question 5.12.8.
We also get a t-test for whether this particular linear combination differs sig-
nificantly from zero — insane in this particular case, but useful at other times.
The standard error would be very useful if we were constructing confidence
intervals or prediction intervals around the estimate, but we are not.

– Then we get a display of the b values and associated t-tests, as in proc reg.
proc glm produces these by default only when none of the explanatory vari-
ables is declared categorical with the class statement. If you have categorical
explanatory variables, you can request parameter estimates with the parms

option.

• proc print output is self-explanatory. If you are using proc print to print a large
number of cases, consider specifying a large page size in the options statement.
Then, the logical page length will be very long, as if you were printing on a long roll
of paper, and SAS will not print a new page header with the date and title and so
on every 24 line or 35 lines or whatever.

• proc univariate: There is so much output to explain, I almost can’t stand it. I’ll
just hit a few high points here.

– T:Mean=0 A t-test for whether the mean is zero. If the variable consisted of
difference scores, this would be a matched t-test. Here, because the mean of
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residuals from a multiple regression is always zero as a by-product of least-
squares, t is exactly zero and the p-value is exactly one.

– M(Sign) Sign test, a non-parametric equivalent to the matched t.

– Sgn Rank Wilcoxon’s signed rank test, another non-parametric equivalent to
the matched t.

– W:Normal A test for normality. As you might infer from Pr<W, the associated
p-value is the lower tail area of some distribution. If p < 0.05, conclude that
the data are not normally distributed.

The assumptions of the hypothesis tests for multiple regression imply that the
residuals are normally distributed, though not quite independent. The lack of
independence makes the W test a bit too likely to indicate lack of normality. If
the test is non-significant, can one conclude that the data are normal? This is
an example of a more general question: When can one conclude that the null
hypothesis is true? This question was discussed a bit in Chapter 1. Here are
two additional comments about the tests for normality:

∗ Like most tests, the W test for normality is much more sensitive when
the sample size is large. So failure to observe a significant departure from
normality does not imply that the data really are normal, for a small
sample like this one (n=21).

∗ In an observational study, residuals can appear non-normal because im-
portant explanatory variables have been omitted from the full model.

– Extremes are the 5 highest and 5 lowest scores. Very useful for locating outliers.
The largest residual in this data set is 20.21507; it’s observation 5.

– Normal Probability Plot is supposed to be straight-line if the data are nor-
mal. Even though I requested pagesize=35, this plot is pretty squashed. Basi-
cally it’s useless.

• proc plot Does not show much of anything in this case. This is basically good
news, though again the data are artificial. The default plotting symbol is A; if two
points get too close together, they are plotted as B, and so on.

Here are a few sample questions.

Sample Question 5.12.13 What is the mean of the average household incomes of the
21 towns?

Answer to Sample Question 5.12.13 $17,143

Sample Question 5.12.14 Is this the same as the average income of all the households
in the 21 towns?

Answer to Sample Question 5.12.14 No way.
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Sample Question 5.12.15 The custom test labelled MONEY is identical to what default
test?

Answer to Sample Question 5.12.15 The t-test for INCOME. F = t2, and the p-value
is the same.

Sample Question 5.12.16 In the proc iml output, what can you learn from comparing
F to FCRIT?

Answer to Sample Question 5.12.16 p < 0.05

Sample Question 5.12.17 For a town with 68,500 children 16 and under, and an aver-
age household income of $16,700, does the full model over-predict or under-predict sales?
By how much?

Answer to Sample Question 5.12.17 Under-predict by $12,784. This is the first resid-
ual produced by proc print.



Chapter 6

Logistic Regression

In logistic regression, there is a categorical response variables, often coded 1=Yes and
0=No. Many important phenomena fit this framework. The patient survives the opera-
tion, or does not. The accused is convicted, or is not. The customer makes a purchase,
or does not. The marriage lasts at least five years, or does not. The student graduates,
or does not.

As usual, we assume that there is a huge population, with a sizable sub-population at
each x value or configuration of x values. And as in ordinary regression, we want a re-
gression surface that consists of the estimated sub-population mean (conditional expected
value) at each x value or configuration of x values. It turns out that for any response
variable coded zero or one, this conditional mean is exactly the conditional probability
that Y = 1 given that set of x values. Again, for binary data, the population mean is just
the probability of getting a one. And since it’s a probability, it must lie between zero and
one inclusive.

Consider the scatterplot of a single quantitative explanatory variable and a response
variable Y equal to zero or one. The left panel of Figure 6.1 shows what happens when
we fit a least squares line to such data. It may be reasonable in some sense, but because
it is sometimes less than zero and sometimes greater than one, it can’t be a probability
and it’s not yielding a sensible estimate of the conditional population mean. However,
the logistic regression curve in the right panel stays nicely between zero and one. And
like the least-squares line, it indicates a positive relationship for this particular data set.

6.1 A linear model for the log odds

The logistic regression curve arises from an indirect representation of the probability of
Y = 1 for a given set of x values. Representing the probability of an event by π (it’s a
probability, not 3.14159. . .), we define the odds of the event as

Odds =
π

1− π
.

Implicitly, we are saying the odds are π
1−π “to one.” That is, if the probability of the event

is π = 2/3, then the odds are 2/3
1/3

= 2, or two to one. Instead of saying the odds are 5 to

167
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Figure 6.1: Scatterplots with a binary response variable
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2, we’d say 2.5 to one. Instead of saying 1 to four, we’d say 0.25 to one.
The higher the probability, the greater the odds. And as the probability of an event

approaches one, the denominator of the odds approaches zero. This means the odds can
be anything from zero to an arbitrarily large positive number. Logistic regression adopts
a regression-like linear model not for the probability of the event Y = 1 nor for the odds,
but for the log odds. By log we mean the natural or Napierian log, designated by ln on
scientific calculators – not the common log base 10. Here are a few necessary facts about
the natural log function.

• Figure 6.2 shows that the natural log increases from minus infinity when the odds
are zero, to zero when the odds equal one (fifty-fifty), and then it keeps on increasing
as the odds rise, but more and more slowly.

• The fact that the log function is increasing means that if P (A) > P (B), then
Odds(A) > Odds(B), and therefore ln(Odds(A)) > ln(Odds(B)). That is, the
bigger the probability, the bigger the log odds.

• Notice that the natural log is only defined for positive numbers. This is usually fine,
because odds are always positive or zero. But if the odds are zero, then the natural
log is either minus infinity or undefined – so the methods we are developing here
will not work for events of probability exactly zero or exactly one. What’s wrong
with a probability of one? You’d be dividing by zero when you calculated the odds.

• The natural log is the inverse of exponentiation, meaning that ln(ex) = eln(x) = x,
where e is the magic non-repeating decimal number 2.71828. . . . The number e really
is magical, appearing in such seemingly diverse places as the mathematical theory
of epidemics, the theory of compound interest, and the normal distribution.

• The log of a product is the sum of logs: ln(ab) = ln(a) + ln(b), and ln(a
b
) = ln(a)−

ln(b). This means the log of an odds ratio is the difference between the two log odds
quantities.
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Figure 6.2: Graph of the natural log function
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To get back to the main point, we adopt a linear regression model for the log odds
of the event Y = 1. As in normal regression, there is a conditional distribution of the
response variable Y for every configuration of explanatory variable values. Keeping the
notation consistent with ordinary regression, we have p−1 explanatory variables, and the
conditional distribution of the binary response variable Y is completely specified by the
log odds

ln

(
P (Y = 1|X = x)

P (Y = 0|X = x)

)
= β0 + β1x1 + . . .+ βp−1xp−1. (6.1)

This is equivalent to a multiplicative model for the odds

P (Y = 1|X = x)

P (Y = 0|X = x)
= eβ0+β1x1+...+βp−1xp−1 (6.2)

= eβ0eβ1x1 · · · eβp−1xp−1 ,

and to a distinctly non-linear model for the conditional probability of Y = 1 given X =
(x1, . . . , xp−1):

P (Y = 1|x1, . . . , xp−1) =
eβ0+β1x1+...+βp−1xp−1

1 + eβ0+β1x1+...+βp−1xp−1
. (6.3)

6.2 The meaning of the regression coefficients

In the log odds world, the interpretation of regression coefficients is similar to what we
have seen in ordinary regression. β0 is the intercept. It’s the log odds of Y = 1 when all
explanatory variables equal zero. And βk is the increase in log odds of Y = 1 when xk is
increased by one unit, and all other explanatory variables are held constant.

This is on the scale of log odds. But frequently, people choose to think in terms of plain
old odds rather than log odds. The rest of this section is an explanation of the following
statement: When xk is increased by one unit, and all other explanatory variables are held
constant, the odds of Y = 1 are multiplied by eβk . That is, eβk is an odds ratio — the
ratio of the odds of Y = 1 when xk is increased by one unit, to the odds of Y = 1 when xk
is left alone. As in ordinary regression, this idea of holding all the other variables constant
is what we mean when we speak of “controlling” for them.

Odds ratio with a single dummy variable Here is statement that makes sense and
seems like it should be approximately true: “Among 50 year old men, the odds of being
dead before age 60 are three times as great for smokers.” We are talking about an odds
ratio.

Odds of death given smoker

Odds of death given nonsmoker
= 3

The point is not that the true odds ratio is exactly 3. The point is that this is a reasonable
way to express how the chances of being alive might depend on whether you smoke
cigarettes.
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Now represent smoking status by an indicator dummy variable, with X = 1 meaning
Smoker, and X = 0 meaning nonsmoker; let Y = 1 mean death within 10 years and Y = 0
mean life. The logistic regression model (6.1) for the log odds of death given x are

Log odds = β0 + β1x,

and from (6.2), the odds of death given x are

Odds = eβ0eβ1x.

The table below shows the odds of death for smokers and non-smokers.

Group x Odds of Death
Smokers 1 eβ0eβ1

Non-smokers 0 eβ0

Now it’s easy to see that the odds ratio is

Odds of death given smoker

Odds of death given nonsmoker
=
eβ0eβ1

eβ0
= eβ1 .

Our understanding of the regression coefficient β1 follows from several properties of the
function f(t) = et.

• et is always positive. This is good because odds are non-negative, but the fact that
et is never zero reminds us that the logistic regression model cannot accommodate
events of probability zero or one.

• e0 = 1. So when β1 = 0, the odds ratio is one. That is, the odds of Y = 1 (and
hence the probability that Y = 1) are the same when X = 0 and X = 1. That is,
the conditional distribution of Y is identical for both values of X, meaning that X
and Y are unrelated.

• f(t) = et is an increasing function. So, when β1 is negative, eβ1 < 1. Therefore,
the probability of Y = 1 would be less when X = 1. But if β1 is positive, then the
odds ratio is greater than one, and the probability of Y = 1 would be greater when
X = 1, as in our example. In this sense, the sign of β1 tells us the direction of the
relationship between X and Y — just as in ordinary regression.
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It should be clear that all this discussion applies when any single explanatory variable is
increased by one unit; the increase does not have to be from zero to one. Now suppose
that there are several explanatory variables. We hold all variables constant except xk, and
form an odds ratio. In the numerator is the odds of Y = 1 when xk is increased by one
unit, and in the denominator is the odds of Y = 1 when xk is left alone. Both numerator
and denominator are products (see Equation 6.2) and there is a lot of cancellation in
numerator and denominator. We are left with eβk . These calculations are a lot like
the ones shown in (5.3) for regular regression; they will not be repeated here. But the
conclusion is this. When xk is increased by one unit, and all other explanatory variables
are held constant, the odds of Y = 1 are multiplied by eβk .

“Analysis of covariance” with a binary outcome Here is one more example. Sup-
pose the cases are patients with cancer, and we are comparing three treatments – radiation,
chemotherapy and both. There is a single quantitative variable X, representing severity
of the disease (a clinical judgement by the physician). The response variable is Y = 1 if
the patient is alive 12 months later, zero otherwise. The question is which treatment is
most effective, controlling for severity of disease.

Treatment will be represented by two indicator dummy variables: d1 = 1 if the patient
receives chemotherapy only, and d2 = 1 if the patient receives radiation only. Odds of
survival are shown in the table below.
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Treatment d1 d2 Odds of Survival = eβ0eβ1d1eβ2d2eβ3x

Chemotherapy 1 0 eβ0eβ1eβ3x

Radiation 0 1 eβ0eβ2eβ3x

Both 0 0 eβ0eβ3x

For any given disease severity x,

Survival odds with Chemo

Survival odds with Both
=
eβ0eβ1eβ3x

eβ0eβ3x
= eβ1

and
Survival odds with Radiation

Survival odds with Both
=
eβ0eβ2eβ3x

eβ0eβ3x
= eβ2 .

If β1 = β2 = 0, then for any given level of disease severity, the odds of survival are
the same in all three experimental conditions. So the test of H0 : β1 = β2 = 0 would
tell us whether, controlling for severity of disease, the three treatments differ in their
effectiveness.

Sample Question 6.2.1 What would β1 > 0 mean?

Answer to Sample Question 6.2.1 Allowing for severity of disease, chemotherapy alone
yields a higher one-year survival rate than the combination treatment. This could easily
happen. Chemotherapy drugs and radiation are both dangerous poisons.

This example shows that as in ordinary regression, categorical explanatory variables
may be represented by collections of dummy variables. But parallel slopes on the log odds
scale translates to proportional odds – like the odds of Y = 1 for Group 1 are always 1.3
times the odds of Y = 1 for Group 2, regardless of the value of x. How realistic this is
will depend upon the particular application.

6.3 Parameter Estimation by Maximum likelihood

Using formula 6.3 for the probability of Y = 1 given the explanatory variable values, it is
possible to calculate the probability of observing the data we did observe, for any set of β
values. One of R. A. Fisher’s many good suggestions was to take as our estimates of β0,
β1 and so forth, those values that make the probability of getting the data we actually did
observe as large as possible. Viewed as a function of the parameter values, the probability
that we will get the data we actually did get is called the likelihood. The parameter values
that make this thing as big as possible are called maximum likelihood estimates.

Figure 6.3 is a picture of this for one explanatory variable. The β0, β1 values located
right under the peak is our set of maximum likelihood estimates. Of course it’s hard to
visualize in higher dimension, but the idea is the same.

In regular regression, maximum likelihood estimates are identical to least squares esti-
mates, but not here (though they may be close for large samples). Also, the β̂ quantities
can be calculated by an explicit formula for regular regression, while for logistic regression
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Figure 6.3: Graph of the Likelihood Function for Simple Logistic Regression
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they need to be found numerically. That is, a program like SAS must calculate the likeli-
hood function for a bunch of sets of β values, and somehow find the top of the mountain.
Numerical routines for maximum likelihood estimation essentially march uphill until they
find a place where it is downhill in every direction. Then they stop.

For some statistical methods, the place you find this way could be a so-called “local
maximum,” something like the top of a foothill. You don’t know you’re not at the top
of the highest peak, because you’re searching blindfolded, just walking uphill and hoping
for the best. Fortunately, this cannot happen with logistic regression. There is only one
peak, and no valleys. Start anywhere, walk uphill, and when it levels off you’re at the
top. This is true regardless of the particular data values and the number of explanatory
variables.

6.4 Chi-square tests

As in regular regression, you can test hypotheses by comparing a full, or unrestricted
model to a reduced, or restricted model. Typically the reduced model is the same as
the full, except that’s it’s missing one or more explanatory variables. But the reduced
model may be restricted in other ways, for example by setting a collection of regression
coefficients equal to one another, but not necessarily equal to zero.

There are many ways to test hypotheses in logistic regression; most are large-sample
chi-square tests. Two popular ones are likelihood ratio tests and Wald tests.

6.4.1 Likelihood ratio tests

Likelihood ratio tests are based on a direct comparison of the likelihood of the observed
data assuming the full model to the likelihood of the data assuming the reduced model.
Let LF stand for the maximum probability (likelihood) of the observed data under the
full model, and LR stand for the maximum probability of the observed data under the
reduced model. Dividing the latter quantity by the former yields a likelihood ratio: LRLF . It
is the maximum probability of obtaining the sample data under the reduced model (null
hypothesis), relative to the maximum probability of obtaining the sample data under the
null hypothesis under the full, or unrestricted model.

As with regular regression, the model cannot fit the data better when it is more
restricted, so the likelihood of the reduced model is always less than the likelihood of the
full model. If it’s a lot less – that is, if the observed data are a lot less likely assuming
the reduced model than assuming the full model – then this is evidence against the null
hypothesis, and perhaps the null hypothesis should be rejected.

Well, if the likelihood ratio is small, then the natural log of the likelihood ratio is a
big negative number, and minus the natural log of the likelihood ratio is a big positive
number. So is twice minus the natural log of the likelihood ratio. It turns out that if the
null hypothesis is true and the sample size is large, then the quantity

G = −2 ln

(
LR
LF

)
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has an approximate chi-square distribution, with degrees of freedom equal to the number
of non-redundant restrictions that the null hypothesis places on the set of β parameters.
For example, if three regression coefficients are set to zero under the null hypotheses, the
degrees of freedom equal three.

6.4.2 Wald tests

You may recall that the Central Limit Theorem says that even when data come from a
non-normal distribution, the sampling distribution of the sample mean is approximately
normal for large samples. The Wald tests are based on a kind of Central Limit Theorem
for maximum likelihood estimates. Under very general conditions that include logistic
regression, a collection of maximum likelihood estimates has an approximate multivariate
normal distribution, with means approximately equal to the parameters, and variance
covariance matrix that has a complicated form, but can be calculated (or approximated
as a by-product of the most common types of numerical maximum likelihood).

This was discovered and proved by Abraham Wald, and is the basis of the Wald
tests. It is pretty remarkable that he was able to prove this even for maximum likelihood
estimates with no explicit formula. Wald was quite a guy. Anyway, if the null hypothesis is
true, then a certain sum of squares of the maximum likelihood estimates has a large sample
chi-square distribution. The degrees of freedom are the same as for the likelihood ratio
tests, and for large enough sample sizes, the numerical values of the two tests statistics
get closer and closer.

SAS makes it convenient to do Wald tests and inconvenient to do most likelihood ratio
tests, so we’ll stick to the Wald tests in this course.

6.5 Logistic Regression with SAS

6.6 Outcomes with more than two categories

6.7 Scheffé-like Tests for Logistic Regression

For logistic regression, there are Scheffé-like follow-up tests called union-intersection tests.
The primary source for union-intersection multiple comparisons is Gabriel’s (1969) arti-
cle [11]. Hochberg and Tamhane’s (1987) monograph Multiple comparison procedures [13]
present Gabriel’s discovery in an appendix. The true Scheffé tests are a special kind of
union-intersection method that applies to the (multivariate) normal linear model. Scheffé
tests have one property that is not true of union-intersection follow-ups in general: the
guaranteed existence of a significant one-degree-of-freedom test. This is tied to geometric
properties of the multivariate normal distribution.

Just as in normal regression, suppose the initial null hypothesis is that r coefficients
in the logistic regression model are all equal to zero. We will follow up by testing whether
s linear combinations of these regression coefficients are different from zero; s ≤ r. The
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critical value for the follow-up tests is exactly that of the initial test: a chi-
square with r degrees of freedom. This principle applies to both likelihood ratio and
Wald tests. In fact, it is true of likelihood ratio and Wald tests in general, not just for
logistic regression. Theoretically, the family of union-intersection follow-ups is embedded
in the initial test, and it does not inflate the Type I error rate at all to take a look.



Chapter 7

Factorial Analysis of Variance

7.1 Concepts

A factor is just another name for a categorical explanatory variable. The term is usu-
ally used in experimental studies with more than one categorical explanatory variable,
where cases (subjects, patients, experimental units) are randomly assigned to treatment
conditions that represent combinations of the explanatory variable values. For example,
consider an agricultural study in which the cases are plots of land (small fields), the re-
sponse variable is crop yield in kilograms, and the explanatory variables are fertilizer type
(three values) and type of irrigation (Sprinkler versus Drip). Table 7.1 shows the six
treatment combinations, one for each cell of the table.

Table 7.1 is an example of a complete factorial design, in which data are collected for
all combinations of the explanatory variable values. In an incomplete, or frational factorial
design, certain treatment combinations are deliberately omitted, leading to n = 0 in one
or more cells. When done in an organized way1, this practice can save quite a bit of
money — say, in a crash test study where the cases are automobiles. In this course, we
shall mostly confine our attention to complete factorial designs.

Naturally, a factorial study can have more than two factors. The only limitations are
imposed by time and budget. And there is more than one vocabulary floating around2.

1If it is safe to assume that certain contrasts of the treatment means equal zero, it is often possible to
estimate and test other contrasts of interest even with zero observations in some cells. The feisibility of
substituting assumptions for missing data is an illustration of Data Analysis Hint 4 on page 109.

2This is typical. There are different dialects of Statistics, corresponding roughly to groups of users
from different disciples. These groups tend not to talk with one another, and often each one has its own

Table 7.1: A Two-Factor Design

Fertilizer 1 Fertilizer 2 Fertilizer 3
Sprinker Irrigation
Drip Irrigation

178
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A three-factor design can also be described as a three-way design; there is one “way” for
each dimension of the table of treatment means.

When Sir Ronald Fisher (in whose honour the F -test is named) dreamed up factorial
designs, he pointed out that they enable the scientist to investigate the effects of several
explanatory variables at much less expense than if a separate experiment had to be con-
ducted to test each one. In addition, they allow one to ask systematically whether the
effect of one explanatory variable depends on the value of another explanatory variable.
If the effect of one explanatory variable depends on another, we will say there is an in-
teraction between those variables. This kind of “it depends” conclusion is a lot easier to
see when both factors are systematically varied in the same study. Otherwise, one might
easily think that the results two studies carried out under somewhat different conditions
were inconsistent with one another. We talk about an A “by” B or A × B interaction.
Again, an interaction means “it depends.”

A common beginner’s mistake is to confuse the idea of an interaction between variables
with the idea of a relationship between variables. They are different. Consider a version
of Table 7.1 in which the cases are farms and the study is purely observational. A
relationship between Irrigation Type and Fertilizer Type would mean that farms using
different types of fertilizer tend to use different irrigation systems; in other words, the
percentage of farms using Drip irrigation would not be the same for Fertilizer Types 1, 2
and 3. This is something that you might assess with a chi-square test of independence.
But an interaction between Irrigation Type and Fertilizer Type would mean that the
effect of Irrigation Type on average crop yield depends on the kind of fertilizer used. As
we will see, this is equivalent to saying that certain contrasts of the treatment means are
not all equal to zero.

7.1.1 Main Effects and Interactions as Contrasts

Testing for main effects by testing contrasts Table 7.2 is an expanded version of
Table 7.1. In addition to population crop yield for each treatment combination (denoted
by µ1 through µ6), it shows marginal means – quantities like µ1+µ4

2
, which are obtained

by averaging over rows or columns. If there are differences among marginal means for a
categorical explanatory variable in a two-way (or higher) layout like this, we say there is a
main effect for that variable. Tests for main effects are of great interest; they can indicate
whether, averaging over the values of the other categorical explanatory variables in the
design, whether the explanatory variable in question is related to the response variable.
Note that averaging over the values of other explanatory variables is not the same thing
as controlling for them, but it can still be very informative.

Notice how any difference between marginal means corresponds to a contrast of the
treatment means. It helps to string out all the combinations of factor levels into one long
categorical explanatory variable. Let’s call this a combination variable. For the crop yield
example of Tables 7.1 and 7.2, the combination variable has six values, corresponding to

tame experts. So the language they use, since it develops in near isolation, tends to diverge in minor
ways.
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Table 7.2: A Two-Factor Design with Population Means

Fertilizer
Irrigation 1 2 3

Sprinker µ1 µ2 µ3
µ1+µ2+µ3

3

Drip µ4 µ5 µ6
µ4+µ5+µ6

3
µ1+µ4

2
µ2+µ5

2
µ3+µ6

2

the six treatment means µ1 through µ6 in the table. Suppose we wanted to test whether,
averaging across fertilizer types, the two irrigation methods result in different average crop
yield. This is another way of saying we want to test for difference between two different
marginal means.

Sample Question 7.1.1

For the crop yield study of Table 7.2, suppose we wanted to know whether, averaging
across different fertilizers, method of irrigation is related to average crop yield.

1. Give the null hypothesis in symbols.

2. Make a table showing the weights of the contrast or contrasts of treatment means
you would test to answer the question. There should be one row for each contrast.
The null hypothesis will be that all the contrasts equal zero.

Answer to Sample Question 7.1.1

1. µ1+µ2+µ3
3

= µ4+µ5+µ6
3

2.
a1 a2 a3 a4 a5 a6

1 1 1 -1 -1 -1

Sample Question 7.1.2

Suppose we wanted to test for the main effect(s) of Irrigation Type.

1. Give the null hypothesis in symbols.

2. Make a table showing the weights of the contrast or contrasts of treatment means
you would test to answer the question. There should be one row for each contrast.
The null hypothesis will be that all the contrasts equal zero.

Answer to Sample Question 7.1.2

This is the same as Sample Question 7.1.1, and has the same answer.
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Sample Question 7.1.3

Suppose we wanted to know whether, averaging across different methods of irrigation,
type of fertilizer is related to average crop yield.

1. Give the null hypothesis in symbols.

2. Make a table showing the weights of the contrast or contrasts of treatment means
you would test to answer the question. There should be one row for each contrast.
The null hypothesis will be that all the contrasts equal zero.

Answer to Sample Question 7.1.3

1. µ1+µ4
2

= µ2+µ5
2

= µ3+µ6
2

2.

a1 a2 a3 a4 a5 a6

1 -1 0 1 -1 0
0 1 -1 0 1 -1

In the answers to Sample Questions 7.1.1 and 7.1.3, notice that we are testing differ-
ences between marginal means, and the number of contrasts is equal to the number of
equals signs in the null hypothesis.

Testing for interactions by testing contrasts Now we will see that tests for inter-
actions — that is, tests for whether the effect of a factor depends on the level of another
factor — can also be expressed as tests of contrasts. For the crop yield example, consider
this question: Does the effect of Irrigation Type depend on the type of fertilizer used?
For Fertilizer Type 1, the effect of Irrigation Type is represented by µ1−µ4. For Fertilizer
Type 2, it is represented by µ2 − µ5, and for Fertilizer Type 2, the effect of Irrigation
Type is µ3 − µ6. Thus the null hypothesis of no interaction may be written

H0 : µ1 − µ4 = µ2 − µ5 = µ3 − µ6. (7.1)

Because it contains two equals signs, the null hypothesis (7.1) is equivalent to saying
that two contrasts of the treatment means are equal to zero. Here are the weights of the
contrasts, in tabular form.

a1 a2 a3 a4 a5 a6

1 -1 0 -1 1 0
0 1 -1 0 -1 1

One way of saying that there is an interaction between Irrigation Method and Fertilizer
Type is to say that the effect of Irrigation Method depends on Fertilizer Type, and now
it is clear how to set up the null hypothesis. But what if the interaction were expressed
in the opposite way, by saying that the effect of Fertilizer Type depends on Irrigation
Method? It turns out these two ways of expressing the concept are 100% equivalent.
They imply exactly the same null hypothesis, and the significance tests will be identical.
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Figure 7.1: Main Effects But No Interaction
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7.1.2 Graphing Interactions

Figure 7.1 shows a hypothetical pattern of population treatment means. There are main
effects for both factors, but no interaction.

For each irrigation method, the effect of fertilizer type corresponds to a profile – a
curve showing the pattern of means for the various fertilizer types. If the profiles are
parallel, then the effects of fertilizer type are the same within each irrigation method. In
Figure 7.1, the profiles are parallel, meaning there is no interaction. Of course Fertilizer
Type is a nominal scale variable; it consists of unordered categories. Still, even though
there is nothing in between Fertilizer Types 1 and 2 or between 2 and 3, it helps visually
to connect the dots.

There are two natural ways to express the parallel profiles in Figure 7.1. One way is
to say that the distance between the curves is the same at every point along the Fertilizer
Type axis. This directly gives the null hypothesis in Expression (7.1). The other way
for the profiles to be parallel is for the line segments connecting the means for Fertilizer
Types 1 and 2 to have the same slope, and for the line segments connecting the means
for Fertilizer Types 2 and 3 to have the same slope. That is,

H0 : µ2 − µ1 = µ5 − µ4 and µ3 − µ2 = µ6 − µ5. (7.2)

The first statement in Expression (7.2) may easily be re-arranged to yield µ2−µ5 = µ1−µ4,
while the second statement may be re-arranged to yield µ3 − µ6 = µ2 − µ5. Thus, the
null hypotheses in Expressions (7.1) and (7.2) are algebraically equivalent. They are just
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different ways of writing the same null hypothesis, and it doesn’t matter which one you
use. Fortunately, this is a very general phenomenon.

7.1.3 Higher order designs (More than two factors)

The extension to more than two factors is straightforward. Suppose that for each com-
bination of Irrigation Method and Fertilizer Type, a collection of plots was randomly
assigned to several different types of pesticide (weed killer). Then we would have three
factors: Irrigation Method, Fertilizer Type and Pesticide Type.

• For each explanatory variable, averaging over the other two variables would give
marginal means – the basis for estimating and testing for main effects. That is,
there are three (sets of) main effects: one for Irrigation method, one for Fertilizer
type, and one for Pesticide type.

• Averaging over each of the explanatory variables in turn, we would have a two-way
marginal table of means for the other two variables, and the pattern of means in that
table could show a two-way interaction. That is, there are three 2-facto interactions:
Irrigation by Fertilizer, Irrigation by Pesticidde, and Fertilizer by Pesticide.

The full three-dimensional table of means would provide a basis for looking at a three-
way, or three-factor interaction. The interpretation of a three-way interaction is that
the nature of the two-way interaction depends on the value of the third variable. This
principle extends to any number of factors, so we would interpret a six-way interaction to
mean that the nature of the 5-way interaction depends on the value of the sixth variable.
How would you graph a three-factor interaction? For each value of the third factor, make
a separate two-factor plot like Figure 7.1.

Fortunately, the order in which one considers the variables does not matter. For
example, we can say that the A by B interaction depends on the value of C, or that the
A by C interaction depends on B, or that the B by C interaction depends on the value
of A. The translations of these statements into algebra are all equivalent to one another,
and lead to exactly the same test statistics and p-values for any set of data, always.

Here are the three ways of describing the three-factor interaction for the Crop Yeld
example.

• The nature of the Irrigation method by Fertilizer type interaction depends on the
type of Pesticide.

• The nature of the Irrigation method by Pesticide type interaction depends on the
type of Fertilizer.

• The nature of the Pesticide type by Fertilizer interaction depends on the Irrigation
method.

Again, these statements are all equivalent. Use the one that is easiest to think about and
talk about. This principle extends to any number of factors.
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As you might imagine, things get increasingly complicated as the number of factors
becomes large. For a four-factor design, there are

• Four (sets of) main effects

• Six two-factor interactions

• Four three-factor interactions

• One four-factor interaction; the nature of the three-factor interaction depends on
the value of the 4th factor . . .

• There is an F -test for each one

Also, interpreting higher-way interactions – that is, figuring out what they mean – be-
comes more and more difficult for experiments with large numbers of factors. Once I knew
a Psychology graduate student who obtained a significant 5-way interaction when she an-
alyzed the data for her Ph.D. thesis. Nobody could understand it, so she disappeared for
a week. When she came back, she said “I’ve got it!” But nobody could understand her
explanation.

For reasons like this, sometimes the higher-order interactions are deliberately omitted
from the full model in big experimental designs; they are never tested. Is this reasonable?
Most of my answers are just elaborate ways to say I don’t know.

Regardless of how many factors we have, or how many levels there are in each factor,
one can always form a combination variable – that is, a single categorical explanatory
variable whose values represent all the combinations of explanatory variable values in the
factorial design. Then, tests for main effects and interactions appear as test for collections
of contrasts on the combination variable. This is helpful, for at least three reasons.

1. Thinking of an interaction as a collection of contrasts can really help you understand
what it means. And especially for big designs, you need all the help you can get.

2. Once you have seen the tests for main effects and interactions as collections of
contrasts, it is straightforward to compose a test for any collection of effects (or
components of an effect) that is of interest.

3. Seeing main effects and interactions in terms of contrasts makes it easy to see how
they can be modified to become Bonferroni or Scheffé follow-ups to an initial signif-
icant one-way ANOVA on the combination variable — if you choose to follow this
conservative data analytic strategy.

7.1.4 Effect coding

While it is helpful to think of main effects and interactions in terms of contrasts, the
details become unpleasant for designs with more than two factors. The combination
variables become long, and thinking of interactions as collections of differences between
differences of differences can give you a headache. An alternative is to use a regression
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Table 7.3: Expected values in terms of regression coefficients with effect coding: Crop
yield study

Fertilizer Water f1 f2 w f1w f2w E[Y |X]

1 Sprinkler 1 0 1 1 0 β0 + β1 + β3 + β4
1 Drip 1 0 -1 -1 0 β0 + β1 − β3 − β4
2 Sprinkler 0 1 1 0 1 β0 + β2 + β3 + β5
2 Drip 0 1 -1 0 -1 β0 + β2 − β3 − β5
3 Sprinkler -1 -1 1 -1 -1 β0 − β1 − β2 + β3 − β4 − β5
3 Drip -1 -1 -1 1 1 β0 − β1 − β2 − β3 + β4 + β5

model with dummy variable coding. For almost any regression model with interactions
between categorical explanatory variabls, the easiest dummy variable coding scheme is
effect coding.

Recall from Section 5.6.3 (see page 120) that effect coding is just like indicator dummy
variable coding with an intercept, except that the last category gets a minus one instead
of a zero. For a single categorical explanatory variable (factor), the regression coefficients
are deviations of the treatment means from the grand mean, or mean of treatment means.
Thus, the regression coefficients are exactly the effects as described in standard textbooks
on the analysis of variance.

For the two-factor Crop Yield study of Table 7.1 on page 178, here is how the ef-
fect coding dummy variables would be defined for Fertiziler type and Irrigation method
(Water).

Fertilizer f1 f2

1 1 0
2 0 1
3 -1 -1

Water w

Sprinkler 1
Drip -1

As in the quantitative by quantitative case (page ??) than the quantitative by cate-
gorical case (page ??) the interaction effects are the regression coefficients corresponding
to products of explanatory variables. For a two-factor design, the products come from
multiplying each dummy variable for one factor by each dummy variable for the other
factor. You never multiply dummy variables for the same factor with each other. Here is
the regression equation for conditional expected crop yield.

E[Y |X] = β0 + β1f1 + β2f2 + β3w + β4f1w + β5f2w

The last two explanatory variables are quite literally the products of the dummy variables
for Fertilizer type and Irrigation method.

To understand what we have, let’s make a table showing the conditional expected
value of the depedent varable for each treatment combination. That’s correct but not
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Table 7.4: Cell and marginal means in terms of regression coefficients with effect coding

Irrigation
Fert Sprinkler Drip

1 µ1 = β0 + β1 + β3 + β4 µ4 = β0 + β1 − β3 − β4 µ1+µ4
2

= β0 + β1
2 µ2 = β0 + β2 + β3 + β5 µ5 = β0 + β2 − β3 − β5 µ2+µ5

2
= β0 + β2

3 µ3 = β0 − β1 − β2 + β3 − β4 − β5 µ6 = β0 − β1 − β2 − β3 + β4 + β5
µ3+µ6

2
= β0 − β1 − β2

µ1+µ2+µ3
3

= β0 + β3
µ4+µ4+µ6

3
= β0 − β3 1

6

∑6
j=1 µj = β0

very informative, yet. In Table 7.4, the means are arranged in a row by column form like
Table 7.2, except that rows and columns are transposed because it fits better on the page
that way.

Immediately, it is clear what β0, β1, β2 and β3 mean.

• The intercept β0 is the grand mean — the mean of (population) treatment means.
It is also the mean of the marginal means, averaging over either rows or columns.

• β1 is the difference between the marginal mean for Fertilizer Type 1 and the grand
mean.

• β2 is the difference between the marginal mean for Fertilizer Type 2 and the grand
mean.

• So β1 and β2 are main effects for Fertilizer Type3. The marginal means for fertilizer
Type are equal if and only if β1 = β2 = 0.

• β3 is the difference between the marginal mean for Irrigation by Sprinkler and the
grand mean. And, β3 = 0 if an only if the two marginal means for Irrigation method
are equal.

Furthermore, the two remaining regression coefficients — the ones corresponding to the
product terms — are interaction effects. On page 181, the interaction between Irrigation
method and Fertilizer type was expressed by saying that the effect of Irrigation method
depended on Fertilizer type. The null hypothesis was that the effect of Irrigation method
was identical for the three Fertilizer types. In other words, we had (Equation 7.1)

H0 : µ1 − µ4 = µ2 − µ5 = µ3 − µ6.

Using Table 7.4 and substituting for the µs in terms of βs, a little algebra shows that this
null hypothesis is equivalent to

β4 = β5 = −β4 − β5.
3Technically, there is a third main effect for Fertilizer Type: β1 − β2. Any factor with k levels has k

main effects that add up to zero.
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This, in turn, is equivalent to saying that β4 = β5 = 0. So to test for an interaction, we
just test whether the regression coefficients for the product terms equal zero.

General Rules Everything in this example generalizes nicely to an arbitrary number
of factors.

• The regression model has an intercept.

• Define effect coding dummy variables for each factor. If the factor has k levels, there
will be k−1 dummy variables. Each dummy variable has a one for one of the factor
levels, minus one for the last level, and zero for the rest.

• Form new explanatory variables that are products of the dummy variables. For
any pair of factors A and B, multiply each dummy variable for A by each dummy
variable for B.

• If there are more than two factors, form all three-way products, 4-way products,
and so on.

• It’s not hard to get all the products for a multifactor design without missing any.
After you have calculated all the products for factors A and B, take the dummy
variables for factor C and

– Multiply each dummy variable for C by each dummy variable for A. These
products correspond to the A× C interaction.

– Multiply each dummy variable for C by each dummy variable for B. These
products correspond to the B × C interaction.

– Multiply each dummy variable for C by each A × B product. These three-
variable products correspond to the A×B × C interaction.

• It is straightforward to extend the process, multiplying each dummy variable for a
fourth factor D by the dummy variables and products in the A × B × C set. And
so on there.

• To test main effects (differences between marginal means) for a factor, the null
hypothesis is that the regression coefficients for that factor’s dummy variables are
all equal to zero.

• For any two-factor interaction, test the regression coefficients corresponding to the
two-way products. For three-factor interactions, test the three-way products, and
so on.

• Quantitative covariates may be included in the model, with or without interactions
between covariates, or between covariates and factors. They work as expected.
Multi-factor analysis of covariance is just a big multiple regression model.
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7.2 Two-factor ANOVA with SAS: The Potato Data

This was covered in class.

7.3 Another example: The Greenhouse Study

This is an extension of the tubes example (see page 72) of Section 3.3. The seeds of the
canola plant yield a high-quality cooking oil. Canola is one of Canada’s biggest cash crops.
But each year, millions of dollars are lost because of a fungus that kills canola plants.
Or is it just one fungus? All this stuff looks the same. It’s a nasty black rot that grows
fastest under moist, warm conditions. It looks quite a bit like the fungus that grows in
between shower tiles.

A team of botanists recognized that although the fungus may look the same, there are
actually several different kinds that are genetically distinct. There are also quite a few
strains of canola plant, so the questions arose

• Are some strains of fungus more aggressive than others? That is, do they grow
faster and overwhelm the plant’s defenses faster?

• Are some strains of canola plant more vulnerable to infection than others?

• Are some strains of fungus more dangerous to certain strains of plant and less
dangerous to others?

These questions can be answered directly by looking at main effects and the inter-
action, so a factorial experiment was designed in which canola plants of three different
varieties were randomly selected to be infected with one of six genetically different types
of fungus. The way they did it was to scrape a little patch at the base of the plant, and
wrap the wound with a moist band-aid that had some fungus on it. Then the plant was
placed in a very moist dark environment for three days. After three days the bandage was
removed and the plant was put in a commercial greenhouse. On each of 14 consecutive
days, various measurements were made on the plant. Here, we will be concerned with
lesion length, the length of the fungus patch on the plant, measured in millimeters.

The response variable will be mean lesion length; the mean is over the 14 daily lesion
length measurements for each plant. The explanatory variables are Cultivar (type of
canola plant) and MCG (type of fungus). Type of plant is called cultivar because the
fungus grows (is ”cultivated”) on the plant. MCG stands for “Mycelial Compatibility
Group.” This strange name comes from the way that the botanists decided whether two
types of fungus were genetically distinct. The would grow two samples on the same
dish in a nutrient solution, and if the two fungus patches stayed separate, they were
genetically different. If they grew together into a single patch of fungus (that is, they
were compatible), then they were genetically identical. Apparently, this phenomenon is
well established.

Here is the SAS program green1.sas. As usual, the entire program is listed first.
Then pieces of the program are repeated, together with pieces of output and discussion.
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/* green1.sas */

%include ’/folders/myfolders/ghread.sas’;

options pagesize=100;

proc freq;

tables plant*mcg /norow nocol nopercent;

proc glm;

class plant mcg;

model meanlng = plant|mcg;

means plant|mcg;

proc tabulate;

class mcg plant;

var meanlng ;

table (mcg all),(plant all) * (mean*meanlng);

/* Replicate tests for main effects and interactions, using contrasts on a

combination variable. This is the hard way to do it, but if you can do

this, you understand interactions and you can test any collection of

contrasts. The definition of the variable combo could have been in

ghread.sas */

data slime;

set mould; /* mould was created by ghread91.sas */

if plant=1 and mcg=1 then combo = 1;

else if plant=1 and mcg=2 then combo = 2;

else if plant=1 and mcg=3 then combo = 3;

else if plant=1 and mcg=7 then combo = 4;

else if plant=1 and mcg=8 then combo = 5;

else if plant=1 and mcg=9 then combo = 6;

else if plant=2 and mcg=1 then combo = 7;

else if plant=2 and mcg=2 then combo = 8;

else if plant=2 and mcg=3 then combo = 9;

else if plant=2 and mcg=7 then combo = 10;

else if plant=2 and mcg=8 then combo = 11;

else if plant=2 and mcg=9 then combo = 12;

else if plant=3 and mcg=1 then combo = 13;

else if plant=3 and mcg=2 then combo = 14;

else if plant=3 and mcg=3 then combo = 15;

else if plant=3 and mcg=7 then combo = 16;

else if plant=3 and mcg=8 then combo = 17;

else if plant=3 and mcg=9 then combo = 18;

label combo = ’Plant-MCG Combo’;

/* Getting main effects and the interaction with CONTRAST statements */

proc glm;
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class combo;

model meanlng = combo;

contrast ’Plant Main Effect’

combo 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0,

combo 0 0 0 0 0 0 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1;

contrast ’MCG Main Effect’

combo 1 -1 0 0 0 0 1 -1 0 0 0 0 1 -1 0 0 0 0,

combo 0 1 -1 0 0 0 0 1 -1 0 0 0 0 1 -1 0 0 0,

combo 0 0 1 -1 0 0 0 0 1 -1 0 0 0 0 1 -1 0 0,

combo 0 0 0 1 -1 0 0 0 0 1 -1 0 0 0 0 1 -1 0,

combo 0 0 0 0 1 -1 0 0 0 0 1 -1 0 0 0 0 1 -1;

contrast ’Plant by MCG Interaction’

combo -1 1 0 0 0 0 1 -1 0 0 0 0 0 0 0 0 0 0,

combo 0 0 0 0 0 0 -1 1 0 0 0 0 1 -1 0 0 0 0,

combo 0 -1 1 0 0 0 0 1 -1 0 0 0 0 0 0 0 0 0,

combo 0 0 0 0 0 0 0 -1 1 0 0 0 0 1 -1 0 0 0,

combo 0 0 -1 1 0 0 0 0 1 -1 0 0 0 0 0 0 0 0,

combo 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 1 -1 0 0,

combo 0 0 0 -1 1 0 0 0 0 1 -1 0 0 0 0 0 0 0,

combo 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 1 -1 0,

combo 0 0 0 0 -1 1 0 0 0 0 1 -1 0 0 0 0 0 0,

combo 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 1 -1;

/* proc reg’s test statement may be easier, but first we need to

make 16 dummy variables for cell means coding. This will illustrate

arrays and loops, too */

data yucky;

set slime;

array mu{18} mu1-mu18;

do i=1 to 18;

if combo=. then mu{i}=.;

else if combo=i then mu{i}=1;

else mu{i}=0;

end;

proc reg;

model meanlng = mu1-mu18 / noint;

alleq: test mu1=mu2=mu3=mu4=mu5=mu6=mu7=mu8=mu9=mu10=mu11=mu12

= mu13=mu14=mu15=mu16=mu17=mu18;

plant: test mu1+mu2+mu3+mu4+mu5+mu6 = mu7+mu8+mu9+mu10+mu11+mu12,

mu7+mu8+mu9+mu10+mu11+mu12 = mu13+mu14+mu15+mu16+mu17+mu18;
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fungus: test mu1+mu7+mu13 = mu2+mu8+mu14 = mu3+mu9+mu15

= mu4+mu10+mu16 = mu5+mu11+mu17 = mu6+mu12+mu18;

p_by_f: test mu2-mu1=mu8-mu7=mu14-mu13,

mu3-mu2=mu9-mu8=mu15-mu14,

mu4-mu3=mu10-mu9=mu16-mu15,

mu5-mu4=mu11-mu10=mu17-mu16,

mu6-mu5=mu12-mu11=mu18-mu17;

/* Now illustrate effect coding, with the interaction represented by a

collection of product terms. */

data nasty;

set yucky;

/* Two dummy variables for plant */

if plant=. then p1=.;

else if plant=1 then p1=1;

else if plant=3 then p1=-1;

else p1=0;

if plant=. then p2=.;

else if plant=2 then p2=1;

else if plant=3 then p2=-1;

else p2=0;

/* Five dummy variables for mcg */

if mcg=. then f1=.;

else if mcg=1 then f1=1;

else if mcg=9 then f1=-1;

else f1=0;

if mcg=. then f2=.;

else if mcg=2 then f2=1;

else if mcg=9 then f2=-1;

else f2=0;

if mcg=. then f3=.;

else if mcg=3 then f3=1;

else if mcg=9 then f3=-1;

else f3=0;

if mcg=. then f4=.;

else if mcg=7 then f4=1;

else if mcg=9 then f4=-1;

else f4=0;

if mcg=. then f5=.;

else if mcg=8 then f5=1;

else if mcg=9 then f5=-1;

else f5=0;
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/* Product terms for interactions */

p1f1 = p1*f1; p1f2=p1*f2 ; p1f3=p1*f3 ; p1f4=p1*f4; p1f5=p1*f5;

p2f1 = p2*f1; p2f2=p2*f2 ; p2f3=p2*f3 ; p2f4=p2*f4; p2f5=p2*f5;

proc reg;

model meanlng = p1 -- p2f5;

plant: test p1=p2=0;

mcg: test f1=f2=f3=f4=f5=0;

p_by_f: test p1f1=p1f2=p1f3=p1f4=p1f5=p2f1=p2f2=p2f3=p2f4=p2f5 = 0;

The SAS program starts with a %include statement that reads ghread.sas. The file
ghread.sas consists of a single big data step. We’ll skip it, because all we really need are
the two explanatory variables plant and mcg, and the response variable meanlng.

Just to see what we’ve got, we do a proc freq to show the sample sizes.

proc freq;

tables plant*mcg /norow nocol nopercent;

and we get

TABLE OF PLANT BY MCG

PLANT(Type of Plant) MCG(Mycelial Compatibility Group)

Frequency| 1| 2| 3| 7| 8| 9| Total

---------+--------+--------+--------+--------+--------+--------+

GP159 | 6 | 6 | 6 | 6 | 6 | 6 | 36

---------+--------+--------+--------+--------+--------+--------+

HANNA | 6 | 6 | 6 | 6 | 6 | 6 | 36

---------+--------+--------+--------+--------+--------+--------+

WESTAR | 6 | 6 | 6 | 6 | 6 | 6 | 36

---------+--------+--------+--------+--------+--------+--------+

Total 18 18 18 18 18 18 108

So it’s a nice 3 by 6 factorial design, with 6 plants in each treatment combination. The
proc glm for analyzing this is straightforward. Again, we get all main effects and inter-
actions for the factor names separated by vertical bars.

proc glm;

class plant mcg;

model meanlng = plant|mcg;

means plant|mcg;

And the output is
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General Linear Models Procedure

Class Level Information

Class Levels Values

PLANT 3 GP159 HANNA WESTAR

MCG 6 1 2 3 7 8 9

Number of observations in data set = 108

-------------------------------------------------------------------------------

1991 Greenhouse Study 3

General Linear Models Procedure

Dependent Variable: MEANLNG Average Lesion length

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 17 328016.87350 19295.11021 19.83 0.0001

Error 90 87585.62589 973.17362

Corrected Total 107 415602.49939

R-Square C.V. Root MSE MEANLNG Mean

0.789256 48.31044 31.195731 64.573479

Source DF Type I SS Mean Square F Value Pr > F

PLANT 2 221695.12747 110847.56373 113.90 0.0001

MCG 5 58740.26456 11748.05291 12.07 0.0001

PLANT*MCG 10 47581.48147 4758.14815 4.89 0.0001

Source DF Type III SS Mean Square F Value Pr > F

PLANT 2 221695.12747 110847.56373 113.90 0.0001

MCG 5 58740.26456 11748.05291 12.07 0.0001

PLANT*MCG 10 47581.48147 4758.14815 4.89 0.0001
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Notice that the Type I and Type III tests are the same. This always happens when the
sample sizes are equal. Now we take a look at marginal means and cell (treatment) means.
This is the output of the means statement of proc glm.

1991 Greenhouse Study 4

General Linear Models Procedure

Level of -----------MEANLNG-----------

PLANT N Mean SD

GP159 36 14.055159 12.1640757

HANNA 36 55.700198 30.0137912

WESTAR 36 123.965079 67.0180440

Level of -----------MEANLNG-----------

MCG N Mean SD

1 18 41.4500000 33.6183462

2 18 92.1333333 78.3509451

3 18 87.5857143 61.7086751

7 18 81.7603175 82.6711755

8 18 50.8579365 39.3417859

9 18 33.6535714 39.1480830

Level of Level of -----------MEANLNG-----------

PLANT MCG N Mean SD

GP159 1 6 12.863095 12.8830306

GP159 2 6 21.623810 17.3001296

GP159 3 6 14.460714 7.2165396

GP159 7 6 17.686905 16.4258441

GP159 8 6 8.911905 7.3162618

GP159 9 6 8.784524 6.5970501

HANNA 1 6 45.578571 26.1430472

HANNA 2 6 67.296429 30.2424997

HANNA 3 6 94.192857 20.2877876

HANNA 7 6 53.621429 24.8563497

HANNA 8 6 47.838095 12.6419109

HANNA 9 6 25.673810 17.1723150

WESTAR 1 6 65.908333 35.6968616

WESTAR 2 6 187.479762 45.1992178



7.3. ANOTHER EXAMPLE: THE GREENHOUSE STUDY 195

WESTAR 3 6 154.103571 26.5469183

WESTAR 7 6 173.972619 79.1793105

WESTAR 8 6 95.823810 22.3712022

WESTAR 9 6 66.502381 52.5253101

The marginal are fairly easy to look at, and we definitely can construct a plot from the
18 cell means (or copy them into a nicer-looking table. But the following proc tabulate

does the grunt work. In general, it’s usually preferable to get the computer to do clerical
tasks for you, especially if it’s something you might want to do more than once.

proc tabulate;

class mcg plant;

var meanlng ;

table (mcg all),(plant all) * (mean*meanlng);

The syntax of proc tabulate is fairly elaborate, but at times it’s worth the effort. Any
reader who has seen the type of stub-and-banner tables favoured by professional market
researchers will be impressed to hear that proc tabulate can come close to that. I figured
out how to make the table below by looking in the manual. I then promptly forgot the
overall principles, because it’s not a tool I use a lot – and the syntax is rather arcane.
However, this example is easy to follow if you want to produce good-looking two-way
tables of means. Here’s the output.

-----------------------------------------------------------------------

| | Type of Plant | |

| |--------------------------------------| |

| | GP159 | HANNA | WESTAR | ALL |

| |------------+------------+------------+------------|

| | MEAN | MEAN | MEAN | MEAN |

| |------------+------------+------------+------------|

| | Average | Average | Average | Average |

| | Lesion | Lesion | Lesion | Lesion |

| | length | length | length | length |

|-----------------+------------+------------+------------+------------|

|Mycelial | | | | |

|Compatibility | | | | |

|Group | | | | |

|-----------------| | | | |

|1 | 12.86| 45.58| 65.91| 41.45|

|-----------------+------------+------------+------------+------------|

|2 | 21.62| 67.30| 187.48| 92.13|

|-----------------+------------+------------+------------+------------|
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Table 7.5: Cell Means for the Greenhouse Study

MCG (Type of Fungus)

Cultivar (Type of Plant) 1 2 3 7 8 9
GP159 µ1 µ2 µ3 µ4 µ5 µ6

Hanna µ7 µ8 µ9 µ10 µ11 µ12

Westar µ13 µ14 µ15 µ16 µ17 µ18

|3 | 14.46| 94.19| 154.10| 87.59|

|-----------------+------------+------------+------------+------------|

|7 | 17.69| 53.62| 173.97| 81.76|

|-----------------+------------+------------+------------+------------|

|8 | 8.91| 47.84| 95.82| 50.86|

|-----------------+------------+------------+------------+------------|

|9 | 8.78| 25.67| 66.50| 33.65|

|-----------------+------------+------------+------------+------------|

|ALL | 14.06| 55.70| 123.97| 64.57|

-----------------------------------------------------------------------

The proc tabulate output makes it easy to graph the means. But before we do so, let’s
look at the main effects and interactions as collections of contrasts. This will actually
make it easier to figure out what the results mean, once we see what they are.

We have a three by six factorial design that looks like this. Population means are shown
in the cells. The single-subscript notation encourages us to think of the combination of
MCG and cultivar as a single categorical explanatory variable with 18 categories.

Next is the part of the SAS program that creates the combination variable. Notice
that it involves a data step that comes after the proc glm. This usually doesn’t happen.
I did it by creating a new data set called slime that starts by being identical to mould,
which was created in the file ghread.sas. The set command is used to read in the
data set mould, and then we start from there. This is done just for teaching purposes.
Ordinarily, I would not create multiple data sets that are mostly copies of each other. I’d
put the whole thing in one data step. Here’s the code. Because all 18 possibilities are
mentioned explicitly, anything else (like a missing value) is automatically missing.

data slime;

set mould; /* mould was created by ghread91.sas */

if plant=1 and mcg=1 then combo = 1;

else if plant=1 and mcg=2 then combo = 2;

else if plant=1 and mcg=3 then combo = 3;

else if plant=1 and mcg=7 then combo = 4;

else if plant=1 and mcg=8 then combo = 5;
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Table 7.6: Weights of the linear combinations for testing a main effect of cultivar

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18
1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1

else if plant=1 and mcg=9 then combo = 6;

else if plant=2 and mcg=1 then combo = 7;

else if plant=2 and mcg=2 then combo = 8;

else if plant=2 and mcg=3 then combo = 9;

else if plant=2 and mcg=7 then combo = 10;

else if plant=2 and mcg=8 then combo = 11;

else if plant=2 and mcg=9 then combo = 12;

else if plant=3 and mcg=1 then combo = 13;

else if plant=3 and mcg=2 then combo = 14;

else if plant=3 and mcg=3 then combo = 15;

else if plant=3 and mcg=7 then combo = 16;

else if plant=3 and mcg=8 then combo = 17;

else if plant=3 and mcg=9 then combo = 18;

label combo = ’Plant-MCG Combo’;

From Table 7.5on page 196, iIt is clear that the absence of a main effect for Cultivar is
the same as.

µ1 +µ2 +µ3 +µ4 +µ5 +µ6 = µ7 +µ8 +µ9 +µ10 +µ11 +µ12 = µ13 +µ14 +µ15 +µ16. (7.3)

There are two equalities here, and they are saying that two contrasts of the eighteen cell
means are equal to zero. To see why this is true, recall that a contrast of the 18 treatment
means is a linear combination of the form

L = a1µ1 + a1µ2 + . . .+ a18µ18,

where the a weights add up to zero. The table below gives the weights of the contrasts
defining the test for the main effect of plant, one set of weights in each row. The first row
corresponds to the first equals sign in Equation 7.3. It says that

µ1 + µ2 + µ3 + µ4 + µ5 + µ6 − (µ7 + µ8 + µ9 + µ10 + µ11 + µ12) = 0.

The second row corresponds to the first equals sign in Equation 7.3. It says that

µ7 + µ8 + µ9 + µ10 + µ11 + µ12 − (µ13 + µ14 + µ15 +mu16) = 0.

Table 7.6 is the basis of the first contrast statement in proc glm. Notice how the
contrasts are separated by commas. Also notice that the variable on which we’re doing
contrasts (combo) has to be repeated for each contrast.
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Table 7.7: Weights of the linear combinations for testing a main effect of MCG (Fungus
type)

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18
1 -1 0 0 0 0 1 -1 0 0 0 0 1 -1 0 0 0 0
0 1 -1 0 0 0 0 1 -1 0 0 0 0 1 -1 0 0 0
0 0 1 -1 0 0 0 0 1 -1 0 0 0 0 1 -1 0 0
0 0 0 1 -1 0 0 0 0 1 -1 0 0 0 0 1 -1 0
0 0 0 0 1 -1 0 0 0 0 1 -1 0 0 0 0 1 -1

/* Getting main effects and the interaction with CONTRAST statements */

proc glm;

class combo;

model meanlng = combo;

contrast ’Plant Main Effect’

combo 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0,

combo 0 0 0 0 0 0 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1;

If there is no main effect for MCG, we are saying

µ1+µ7+µ13 = µ2+µ8+µ14 = µ3+µ9+µ15 = µ4+µ10+µ16 = µ5+µ11+µ17 = µ6+µ12+µ18.

There are 5 contrasts here, one for each equals sign; there is always an equals sign for
each contrast. Table 7.7 shows the weights of the contrasts.

And here is the corresponding test statement in proc glm.

contrast ’MCG Main Effect’

combo 1 -1 0 0 0 0 1 -1 0 0 0 0 1 -1 0 0 0 0,

combo 0 1 -1 0 0 0 0 1 -1 0 0 0 0 1 -1 0 0 0,

combo 0 0 1 -1 0 0 0 0 1 -1 0 0 0 0 1 -1 0 0,

combo 0 0 0 1 -1 0 0 0 0 1 -1 0 0 0 0 1 -1 0,

combo 0 0 0 0 1 -1 0 0 0 0 1 -1 0 0 0 0 1 -1;

To compose the Plant by MCG interaction, consider the hypothetical graph in Figure 7.2.
You can think of the “effect” of MCG as a profile, representing a pattern of differences
among means. If the three profiles are the same shape for each type of plant – that is, if
they are parallel, the effect of MCG does not depend on the type of plant, and there is
no interaction.

For the profiles to be parallel, each set of corresponding line segments must be parallel.
To start with the three line segments on the left, the rise represented by µ2 − µ1 must
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Figure 7.2: No Interaction

Chapter 7, Page 47 
 
 
 

 
 

For the profiles to be parallel, each set of corresponding line segments must be parallel.  To start with the three 

line segments on the left, the rise represented by µ2−µ1 must equal the rise µ8−µ7, and µ8−µ7 must equal µ14−µ13. 

This is two contrasts that equal zero: 

 

µ2 − µ1 – µ8 + µ7 = 0 and µ8−µ7 –µ14+µ13 = 0. 

 

There are two contrasts for each of the four remaining sets of three line segments, for a total of ten contrasts. 

They appear directly in the contrast statement of proc glm.  Notice how each row adds to zero; these 

are contrasts, not just linear combinations. 

 

   contrast 'Plant by MCG Interaction' 

         combo -1  1  0  0  0  0   1 -1  0  0  0  0   0  0  0  0  0  0, 

         combo  0  0  0  0  0  0  -1  1  0  0  0  0   1 -1  0  0  0  0, 

         combo  0 -1  1  0  0  0   0  1 -1  0  0  0   0  0  0  0  0  0, 

         combo  0  0  0  0  0  0   0 -1  1  0  0  0   0  1 -1  0  0  0, 

         combo  0  0 -1  1  0  0   0  0  1 -1  0  0   0  0  0  0  0  0, 

         combo  0  0  0  0  0  0   0  0 -1  1  0  0   0  0  1 -1  0  0, 

         combo  0  0  0 -1  1  0   0  0  0  1 -1  0   0  0  0  0  0  0, 

equal the rise µ8−µ7, and µ8−µ7 must equal µ14−µ13. This is two contrasts that equal
zero under the null hypothesis

µ2 − µ1 − µ8 + µ7 = 0 and µ8 − µ7 − µ14 + µ13 = 0

There are two contrasts for each of the four remaining sets of three line segments, for
a total of ten contrasts. They appear directly in the contrast statement of proc glm.
Notice how each row adds to zero; these are contrasts, not just linear combinations.

contrast ’Plant by MCG Interaction’

combo -1 1 0 0 0 0 1 -1 0 0 0 0 0 0 0 0 0 0,

combo 0 0 0 0 0 0 -1 1 0 0 0 0 1 -1 0 0 0 0,

combo 0 -1 1 0 0 0 0 1 -1 0 0 0 0 0 0 0 0 0,

combo 0 0 0 0 0 0 0 -1 1 0 0 0 0 1 -1 0 0 0,

combo 0 0 -1 1 0 0 0 0 1 -1 0 0 0 0 0 0 0 0,

combo 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 1 -1 0 0,

combo 0 0 0 -1 1 0 0 0 0 1 -1 0 0 0 0 0 0 0,

combo 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 1 -1 0,

combo 0 0 0 0 -1 1 0 0 0 0 1 -1 0 0 0 0 0 0,

combo 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 1 -1;

Now we can compare the tests we get from these contrast statements with what we got
from a two-way ANOVA. For easy reference, here is part of the two-way output.
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Source DF Type III SS Mean Square F Value Pr > F

PLANT 2 221695.12747 110847.56373 113.90 0.0001

MCG 5 58740.26456 11748.05291 12.07 0.0001

PLANT*MCG 10 47581.48147 4758.14815 4.89 0.0001

And here is the output from the contrast statements.

Contrast DF Contrast SS Mean Square F Value Pr > F

Plant Main Effect 2 221695.12747 110847.56373 113.90 0.0001

MCG Main Effect 5 58740.26456 11748.05291 12.07 0.0001

Plant by MCG Interac 10 47581.48147 4758.14815 4.89 0.0001

So it worked. Here are some comments.

• Of course this is not the way you’d want to test for main effects and interactions.
On the contrary, it makes you appreciate all the work that glm does for you when
you say model meanlng = plant|mcg;

• These contrasts are supposed to be an aid to understanding — understanding what
main effects and interactions really are, and understanding how you can test nearly
any hypothesis you can think of in a multi-factor design. Almost without excep-
tion, what you want to do is test whether some collection of contrasts are equal to
zero. Now you can do it, whether the collection you’re interested in happens to be
standard, or not.

• On the other hand, this was brutal. The size of the design made specifying those
contrasts an unpleasant experience. There is an easier way.

Cell means coding Because the test statement of proc reg has a more flexible syntax
than the contrast statement of proc glm, it’s a lot easier if you use cell means dummy
variable coding, fit a model with no intercept in proc reg, and use test statements. In
the following example, the indicator dummy variables are named µ1 to µ18. This choice
makes it possible to directly transcribe statements about the population cell means into
test statements4. I highly recommend it. Of course if you really hate Greek letters, you
could always name them m1 to m18 or something.

4Here’s why it works. In test statements, proc reg uses the name of the explanatory variable to stand
for the regression coefficient for that explanatory variable. And with cell means coding, the regression
coefficients (β values) are identical to the cell means (µ values). So if the name of each cell means coding
indicator is the same as the µ for that cell in the first place, you can just directly state the null hypothesis
in the test statement.
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First, we need to define 18 dummy variables. In general, it’s a bit more tedious to
define dummy variables than to make a combination variable. Here, I use the combination
variable combo (which has already been created) to make the task a bit easier – and also
to illustrate the use of arrays and loops in the data step. The data set yucky below is the
same as slime, except that it also has the eighteen indicators for the 18 combinations of
plant and mcg. It’s pretty self-explanatory, except that the name of the array does not
need to be the same as the names of the variables. All you need is a valid SAS name for
the array, and a list of variables. There can be more than one array statement, so you
can have more than one array.

/* proc reg’s test statement may be easier, but first we need to

make 16 dummy variables for cell means coding. This will illustrate

arrays and loops, too */

data yucky;

set slime;

array mu{18} mu1-mu18;

do i=1 to 18;

if combo=. then mu{i}=.;

else if combo=i then mu{i}=1;

else mu{i}=0;

end;

proc reg;

model meanlng = mu1-mu18 / noint;

alleq: test mu1=mu2=mu3=mu4=mu5=mu6=mu7=mu8=mu9=mu10=mu11=mu12

= mu13=mu14=mu15=mu16=mu17=mu18;

plant: test mu1+mu2+mu3+mu4+mu5+mu6 = mu7+mu8+mu9+mu10+mu11+mu12,

mu7+mu8+mu9+mu10+mu11+mu12 = mu13+mu14+mu15+mu16+mu17+mu18;

fungus: test mu1+mu7+mu13 = mu2+mu8+mu14 = mu3+mu9+mu15

= mu4+mu10+mu16 = mu5+mu11+mu17 = mu6+mu12+mu18;

p_by_f: test mu2-mu1=mu8-mu7=mu14-mu13,

mu3-mu2=mu9-mu8=mu15-mu14,

mu4-mu3=mu10-mu9=mu16-mu15,

mu5-mu4=mu11-mu10=mu17-mu16,

mu6-mu5=mu12-mu11=mu18-mu17;

Looking again at the table of means (Table 7.5 on page 196), it’s easy to see how natural
the syntax is. And again, the tests are correct. First, repeat the output from the contrast
statements of proc glm (which matched the proc glm two-way ANOVA output).
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Figure 7.3: Plant by MCG: Mean Lesion Length

Chapter 7, Page 52 
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Contrast DF Contrast SS Mean Square F Value Pr > F

Plant Main Effect 2 221695.12747 110847.56373 113.90 0.0001

MCG Main Effect 5 58740.26456 11748.05291 12.07 0.0001

Plant by MCG Interac 10 47581.48147 4758.14815 4.89 0.0001

Then, compare output from the test statements of proc reg.

Dependent Variable: MEANLNG

Test: ALLEQ Numerator: 19295.1102 DF: 17 F value: 19.8270

Denominator: 973.1736 DF: 90 Prob>F: 0.0001

Dependent Variable: MEANLNG

Test: PLANT Numerator: 110847.5637 DF: 2 F value: 113.9032

Denominator: 973.1736 DF: 90 Prob>F: 0.0001

Dependent Variable: MEANLNG

Test: FUNGUS Numerator: 11748.0529 DF: 5 F value: 12.0719

Denominator: 973.1736 DF: 90 Prob>F: 0.0001

Dependent Variable: MEANLNG

Test: P_BY_F Numerator: 4758.1481 DF: 10 F value: 4.8893

Denominator: 973.1736 DF: 90 Prob>F: 0.0001

Okay, now we know how to do anything. Finally, it is time to graph the interaction, and
find out what these results mean!
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First, we see a sizable and clear main effect for Plant. In fact, going back to the
analysis of variance summary tables and dividing the Sum of Squares explained by Plant
by the Total Sum of Squares, we observe that Plant explains around 53 percent of the
variation in mean lesion length. That’s huge. We will definitely want to look at pairwise
comparisons of marginal means, too; we’ll get back to this later.

Looking at the pattern of means, it’s clear that while the main effect of fungus type is
statistically significant, this is not something that should be interpreted, because which
one is best (worst) depends on the type of plant. That is, we need to look at the interac-
tion.

Before proceeding I should mention that many text advise us to never interpret main
effects if the interaction is statistically significant. I disagree, and Figure 7.3 is a good
example of why. It is clear that while the magnitudes of the differences depend on type
of fungus, the lesion lengths are generally largest on Westar and smallest on GP159. So
averaging over fungus types is a reasonable thing to do.

This does not mean the interaction should be ignored; the three profiles really look
different. In particular, GP159 not only has a smaller average lesion length, but it seems
to exhibit less responsiveness to different strains of fungus. A test for the equality of µ1

through µ6 would be valuable. Pairwise comparisons of the 6 means for Hanna and the 6
means for Westar look promising, too.

A Brief Consideration of Multiple Comparisons The mention of pairwise compar-
isons brings up the issue of formal multiple comparison follow-up tests for this problem.
The way people often do follow-up tests for factorial designs is to make a combination
variable and then do all pairwise comparisons. It seems like they do this because they
think it’s the only thing the software will let them do. Certainly it’s better than nothing.
Here are some comments:

• With SAS, pairwise comparisons of cell means are not the only thing you can do.
Proc glm will do all pairwise comparisons of marginal means quite easily. This
means it’s easy to follow up a significant and meaningful main effect.

• For the present problem, there are 120 possible pairwise comparisons of the 16 cell
means. If we do all these as one-at-a-time tests, the chances of false significance are
certainly mounting. There is a strong case here for protectng the tests at a single
joint significance level.

• Since the sample sizes are equal, Tukey tests are most powerful for all pairwise
comparisons. But it’s not so simple. Pairwise comparisons within plants (for exam-
ple, comparing the 6 means for Westar) are interesting, and pairwise comparisons
within fungus types (for example, comparison of Hanna, Westar and GP159 for
fungus Type 1) are interesting, but the remaining 57 pairwise comparisons are a lot
less so.

• Also, pairwise comparisons of cell means are not all we want to do. We’ve already
mentioned the need for pairwise comparisons of the marginal means for plants, and
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we’ll soon see that other, less standard comparisons are of interest.

Everything we need to do will involve testing collections of contrasts. The approach we’ll
take is to do everything as a one-at-a-time custom test initially, and then figure out how
we should correct for the fact that we’ve done a lot of tests.

It’s good to be guided by the data. Here we go. The analyses will be done in the
SAS program green2.sas. As usual, the entire program is given first. But you should be
aware that the program was written one piece at a time and executed many times, with
later analyses being suggested by the earlier ones.

The program starts by reading in the file ghbread.sas, which is just ghread.sas

with the additional variables defined (especially combo and mu1 through mu18) that were
defined in green1.sas.

/* green2.sas: */

%include ’/folders/myfolders/ghbread.sas’;

options pagesize=100;

proc glm;

title ’Repeating initial Plant by MCG ANOVA, full design’;

class plant mcg;

model meanlng = plant|mcg;

means plant|mcg;

/* A. Pairwise comparisons of marginal means for plant, full design

B. Test all GP159 means equal, full design

C. Test profiles for Hanna & Westar parallel, full design */

proc reg;

model meanlng = mu1-mu18 / noint;

A_GvsH: test mu1+mu2+mu3+mu4+mu5+mu6 = mu7+mu8+mu9+mu10+mu11+mu12;

A_GvsW: test mu1+mu2+mu3+mu4+mu5+mu6 = mu13+mu14+mu15+mu16+mu17+mu18;

A_HvsW: test mu7+mu8+mu9+mu10+mu11+mu12 = mu13+mu14+mu15+mu16+mu17+mu18;

B_G159eq: test mu1=mu2=mu3=mu4=mu5=mu6;

C_HWpar: test mu8-mu7=mu14-mu13, mu9-mu8=mu15-mu14,

mu10-mu9=mu16-mu15, mu11-mu10=mu17-mu16,

mu12-mu11=mu18-mu17;

/* D. Oneway on mcg, GP158 subset */

data just159; /* This data set will have just GP159 */

set mould;

if plant=1;
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proc glm data=just159;

title ’D. Oneway on mcg, GP158 subset’;

class mcg;

model meanlng = mcg;

/* E. Plant by MCG, Hanna-Westar subset */

data hanstar; /* This data set will have just Hanna and Westar */

set mould;

if plant ne 1;

proc glm data=hanstar;

title ’E. Plant by MCG, Hanna-Westar subset’;

class plant mcg;

model meanlng = plant|mcg;

/* F. Plant by MCG followup, Hanna-Westar subset

Interaction: Follow with all pairwise differences of

Westar minus Hanna differences

G. Differences within Hanna?

H. Differences within Westar? */

proc reg;

model meanlng = mu7-mu18 / noint;

F_inter: test mu13-mu7=mu14-mu8=mu15-mu9

= mu16-mu10=mu17-mu11=mu18-mu12;

F_1vs2: test mu13-mu7=mu14-mu8;

F_1vs3: test mu13-mu7=mu15-mu9;

F_1vs7: test mu13-mu7=mu16-mu10;

F_1vs8: test mu13-mu7=mu17-mu11;

F_1vs9: test mu13-mu7=mu18-mu12;

F_2vs3: test mu14-mu8=mu15-mu9;

F_2vs7: test mu14-mu8=mu16-mu10;

F_2vs8: test mu14-mu8=mu17-mu11;

F_2vs9: test mu14-mu8=mu18-mu12;

F_3vs7: test mu15-mu9=mu16-mu10;

F_3vs8: test mu15-mu9=mu17-mu11;

F_3vs9: test mu15-mu9=mu18-mu12;

F_7vs8: test mu16-mu10=mu17-mu11;

F_7vs9: test mu16-mu10=mu18-mu12;

F_8vs9: test mu17-mu11=mu18-mu12;

G_Hanaeq: test mu7=mu8=mu9=mu10=mu11=mu12;

H_Westeq: test mu13=mu14=mu15=mu16=mu17=mu18;
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proc glm data=hanstar;

class combo;

model meanlng = combo;

lsmeans combo / pdiff adjust=scheffe;

proc iml;

title ’Table of Scheffe critical values for COLLECTIONS of contrasts’;

title2 ’Start with interaction’;

numdf = 5; /* Numerator degrees of freedom for initial test */

dendf = 60; /* Denominator degrees of freedom for initial test */

alpha = 0.05;

critval = finv(1-alpha,numdf,dendf);

zero = {0 0}; S_table = repeat(zero,numdf,1); /* Make empty matrix */

/* Label the columns */

namz = {"Number of Contrasts in followup test"

" Scheffe Critical Value"};

mattrib S_table colname=namz;

do i = 1 to numdf;

s_table(|i,1|) = i;

s_table(|i,2|) = numdf/i * critval;

end;

reset noname; /* Makes output look nicer in this case */

print "Initial test has" numdf " and " dendf "degrees of freedom."

"Using significance level alpha = " alpha;

print s_table;

proc iml;

title ’Table of Scheffe critical values for COLLECTIONS of contrasts’;

title2 ’Start with all means equal’;

numdf = 11; /* Numerator degrees of freedom for initial test */

dendf = 60; /* Denominator degrees of freedom for initial test */

alpha = 0.05;

critval = finv(1-alpha,numdf,dendf);

zero = {0 0}; S_table = repeat(zero,numdf,1); /* Make empty matrix */

/* Label the columns */

namz = {"Number of Contrasts in followup test"

" Scheffe Critical Value"};

mattrib S_table colname=namz;

do i = 1 to numdf;

s_table(|i,1|) = i;

s_table(|i,2|) = numdf/i * critval;

end;

reset noname; /* Makes output look nicer in this case */

print "Initial test has" numdf " and " dendf "degrees of freedom."
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"Using significance level alpha = " alpha;

print s_table;

proc reg data=hanstar;

title ’One more try at following up the interaction’;

model meanlng = mu7-mu18 / noint;

onemore: test mu8-mu7 = mu14-mu13;

After reading and defining the data with a %include statement, the program repeats the
initial three by six ANOVA from green1.sas. This is just for completeness. Then the
SAS program performs tasks labelled A through H.

Task A proc reg is used to fit a cell means model, and then test for all three pair-
wise differences among Plant means. They are all significantly different from each other,
confirming what appears visually in the interaction plot.

proc reg;

model meanlng = mu1-mu18 / noint;

A_GvsH: test mu1+mu2+mu3+mu4+mu5+mu6 = mu7+mu8+mu9+mu10+mu11+mu12;

A_GvsW: test mu1+mu2+mu3+mu4+mu5+mu6 = mu13+mu14+mu15+mu16+mu17+mu18;

A_HvsW: test mu7+mu8+mu9+mu10+mu11+mu12 = mu13+mu14+mu15+mu16+mu17+mu18;

-------------------------------------------------------------------------------

Dependent Variable: MEANLNG

Test: A_GVSH Numerator: 31217.5679 DF: 1 F value: 32.0781

Denominator: 973.1736 DF: 90 Prob>F: 0.0001

Dependent Variable: MEANLNG

Test: A_GVSW Numerator: 217443.4318 DF: 1 F value: 223.4374

Denominator: 973.1736 DF: 90 Prob>F: 0.0001

Dependent Variable: MEANLNG

Test: A_HVSW Numerator: 83881.6915 DF: 1 F value: 86.1940

Denominator: 973.1736 DF: 90 Prob>F: 0.0001

As mentioned earlier, GP159 not only has a smaller average lesion length, but it seems
to exhibit less variation in its vulnerability to different strains of fungus. Part of the
significant interaction must come from this, and part from differences in the profiles of
Hanna and Westar. Two questions arise:

1. Are µ1 through µ6 (the means for GP159) actually different from each other?
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2. Are the profiles for Hanna and Westar different?

There are two natural ways to address these questions. The naive way is to subset the
data — that is, do a one-way ANOVA to compare the 6 means for GP159, and a two-way
(2 by 6) on the Hanna-Westar subset. In the latter analysis, the interaction of Plant by
MCG would indicate whether the two profiles were different.

A more sophisticated approach is not to subset the data, but to recognize that both
questions can be answered by testing collections of contrasts of the entire set of 18 means;
it’s easy to do with the test statement of proc reg.

The advantage of the sophisticated approach is this. Remember that the model spec-
ifies a conditional normal distribution of the response variable for each combination of
explanatory variable values (in this case there are 18 combinations of explanatory variable
values), and that each conditional distribution has the same variance. The test for, say,
the equality of µ1 through µ6 would use only Y 1 through Y 6 (that is, just GP159 data) to
estimate the 5 contrasts involved, but it would use all the data to estimate the common
error variance. From both a commonsense viewpoint and the deepest possible theoreti-
cal viewpoint, it’s better not to throw information away. This is why the sophisticated
approach should be better.

However, this argument is convincing only if it’s really true that the response variable
has the same variance for every combination of explanatory variable values. Repeating
some output from the means command of the very first proc glm,

Level of Level of -----------MEANLNG-----------

PLANT MCG N Mean SD

GP159 1 6 12.863095 12.8830306

GP159 2 6 21.623810 17.3001296

GP159 3 6 14.460714 7.2165396

GP159 7 6 17.686905 16.4258441

GP159 8 6 8.911905 7.3162618

GP159 9 6 8.784524 6.5970501

HANNA 1 6 45.578571 26.1430472

HANNA 2 6 67.296429 30.2424997

HANNA 3 6 94.192857 20.2877876

HANNA 7 6 53.621429 24.8563497

HANNA 8 6 47.838095 12.6419109

HANNA 9 6 25.673810 17.1723150

WESTAR 1 6 65.908333 35.6968616

WESTAR 2 6 187.479762 45.1992178

WESTAR 3 6 154.103571 26.5469183

WESTAR 7 6 173.972619 79.1793105

WESTAR 8 6 95.823810 22.3712022

WESTAR 9 6 66.502381 52.5253101
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We see that the sample standard deviations for GP159 look quite a bit smaller on average.
Without bothering to do a formal test, we have some reason to doubt the equal variances
assumption. It’s easy to see why GP159 would have less plant-to-plant variation in lesion
length. It’s so resistant to the fungus that there’s just not that much fungal growth,
period. So there’s less opportunity for variation.

Note that the equal variances assumption is essentially just a mathematical conve-
nience. Here, it’s clearly unrealistic. But what’s the consequence of violating it? It’s
well known that the equal variance assumption can be safely violated if the cell sample
sizes are equal and large. Well, here they’re equal, but n = 6 is not large. So this is not
reassuring.

It’s not easy to say in general how the tests will be affected when the equal variance
assumption is violated, but for the two particular cases we’re interested in here (are the
GP159 means equal and are the Hanna and Westar profiles parallel), we can figure it out.
Formula 5.4 for the F -test (see page 125) says

F =
(SSRF − SSRR)/r

MSEF
.

The denominator (Mean Squared Error from the full model) is the estimated population
error variance. That’s the variance that’s supposed to be the same for each conditional
distribution. Since

MSE =

∑n
i−1(Yi − Ŷi)2

n− p

and the predicted value Ŷi is always the cell mean, we can draw the following conclusions.
Assume that the true variance is smaller for GP159.

1. When we test for equality of the GP159 means, using the Hanna-Westar data to
help compute MSE will make the denominator of F bigger than it should be. So F
will be smaller, and the test is too conservative. That is, it is less likely to detect
differences that are really present.

2. When we test whether the Hanna and Westar profiles are parallel, use of the GP159
data to help compute MSE will make the denominator of F smaller than it should
be – so F will be bigger, and the test will not be conservative enough. That is, the
chance of significance if the effect is absent will be greater than 0.05. And a Type
I error rate above 0.05 is always to be avaoided if possible.

This makes me inclined to favour the ”naive” subsetting approach. Because the GP159
means look so equal, and I want them to be equal, I’d like to give the test for difference
among them the best possible chance. And because it looks like the profiles for Hanna and
Westar are not parallel (and I want them to be non-parallel, because it’s more interesting
if the effect of Fungus type depends on type of Plant), I want a more conservative test.

Another argument in favour of subsetting is based on botany rather than statistics.
Hanna and Westar are commercial canola crop varieties, but while GP159 is definitely in
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the canola family, it is more like a hardy weed than a food plant. It’s just a different kind
of entity, and so analyzing its data separately makes a lot of sense.

You may wonder, if it’s so different, why was it included in the design in the first
place? Well, taxonomically it’s quite similar to Hanna and Westar; really no one knew
it would be such a vigorous monster in terms of resisting fungus. That’s why people do
research – to find out things they didn’t already know.

Anyway, we’ll do the analysis both ways – both the seemingly naive way which is
probably better once you think about it, and the sophisticated way that uses the complete
set of data for all analyses.

Tasks B and C These represent the “sophisticated” approach that does not subset the
data.

B: Test all GP159 means equal, full design

C: Test profiles for Hanna and Westar parallel, full design

proc reg;

model meanlng = mu1-mu18 / noint;

A_GvsH: test mu1+mu2+mu3+mu4+mu5+mu6 = mu7+mu8+mu9+mu10+mu11+mu12;

A_GvsW: test mu1+mu2+mu3+mu4+mu5+mu6 = mu13+mu14+mu15+mu16+mu17+mu18;

A_HvsW: test mu7+mu8+mu9+mu10+mu11+mu12 = mu13+mu14+mu15+mu16+mu17+mu18;

B_G159eq: test mu1=mu2=mu3=mu4=mu5=mu6;

C_HWpar: test mu8-mu7=mu14-mu13, mu9-mu8=mu15-mu14,

mu10-mu9=mu16-mu15, mu11-mu10=mu17-mu16,

mu12-mu11=mu18-mu17;

-------------------------------------------------------------------------------

Dependent Variable: MEANLNG

Test: B_G159EQ Numerator: 151.5506 DF: 5 F value: 0.1557

Denominator: 973.1736 DF: 90 Prob>F: 0.9778

Dependent Variable: MEANLNG

Test: C_HWPAR Numerator: 5364.0437 DF: 5 F value: 5.5119

Denominator: 973.1736 DF: 90 Prob>F: 0.0002

This confirms the visual impression of no differences among means for GP159, and non-
parallel profiles for Hanna and Westar.

Task D Now compare the subsetting approach. We will carry out a oneway ANOVA
on MCG, using just the GP159 subset. Notice the creation of SAS data sets with subsets
of the data.
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data just159; /* This data set will have just GP159 */

set mould;

if plant=1;

proc glm data=just159;

title ’D. Oneway on mcg, GP158 subset’;

class mcg;

model meanlng = mcg;

-------------------------------------------------------------------------------

D. Oneway on mcg, GP158 subset 2

General Linear Models Procedure

Dependent Variable: MEANLNG Average Lesion length

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 5 757.75319161 151.55063832 1.03 0.4189

Error 30 4421.01258503 147.36708617

Corrected Total 35 5178.76577664

R-Square C.V. Root MSE MEANLNG Mean

0.146319 86.37031 12.139485 14.055159

Source DF Type I SS Mean Square F Value Pr > F

MCG 5 757.75319161 151.55063832 1.03 0.4189

Source DF Type III SS Mean Square F Value Pr > F

MCG 5 757.75319161 151.55063832 1.03 0.4189

This analysis is consistent with what we got without subsetting the data. That is, it does
not provide evidence that the means for GP159 are different. But when we didn’t subset
the data, we had p = 0.9778. This happened exactly because including Hanna and Westar
data made MSE larger, F smaller, and hence p bigger.

Task E Now we will do a Plant by MCG analysis, using just the Hanna-Westar subset
of the data.

data hanstar; /* This data set will have just Hanna and Westar */
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set mould;

if plant ne 1;

proc glm data=hanstar;

title ’E. Plant by MCG, Hanna-Westar subset’;

class plant mcg;

model meanlng = plant|mcg;

-------------------------------------------------------------------------------

E. Plant by MCG, Hanna-Westar subset 3

General Linear Models Procedure

Class Level Information

Class Levels Values

PLANT 2 HANNA WESTAR

MCG 6 1 2 3 7 8 9

Number of observations in data set = 72

-------------------------------------------------------------------------------

E. Plant by MCG, Hanna-Westar subset 4

General Linear Models Procedure

Dependent Variable: MEANLNG Average Lesion length

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 11 189445.68433 17222.33494 12.43 0.0001

Error 60 83164.61331 1386.07689

Corrected Total 71 272610.29764

R-Square C.V. Root MSE MEANLNG Mean

0.694932 41.44379 37.230054 89.832639
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Source DF Type I SS Mean Square F Value Pr > F

PLANT 1 83881.691486 83881.691486 60.52 0.0001

MCG 5 78743.774570 15748.754914 11.36 0.0001

PLANT*MCG 5 26820.218272 5364.043654 3.87 0.0042

Source DF Type III SS Mean Square F Value Pr > F

PLANT 1 83881.691486 83881.691486 60.52 0.0001

MCG 5 78743.774570 15748.754914 11.36 0.0001

PLANT*MCG 5 26820.218272 5364.043654 3.87 0.0042

The significant interaction indicates that the profiles for Hanna and Westar are non-
parallel, confirming the visual impression we got from the interaction plot. But the
p-value is larger this time. When all the data were used to calculate the error term, we
had p = 0.0002; but now it rises to p = 0.0042. This is definitely due to the low variation
in GP159. Further analyses will be limited to the Hanna-Westar subset.

Now think of the interaction in a different way. Overall, Hanna is more vulnerable
than Westar, but the interaction says that the degree of that greater vulnerability depends
on the type of fungus. For each of the 6 types of fungus, there is a difference between
Hanna and Westar. Let’s look at parirwise differences of these differences. We might be
able to say, then, something like this: “The difference in vulnerability between Hanna
and Westar is greater for Fungus Type 2 than Fungus Type 1.”

Task F: Plant by MCG followup, Hanna-Westar subset. First, verify that the inter-
action can be expressed as a collection of differences betweeen differences. Of course it
can.

proc reg;

model meanlng = mu7-mu18 / noint;

F_inter: test mu13-mu7=mu14-mu8=mu15-mu9

= mu16-mu10=mu17-mu11=mu18-mu12;

F_1vs2: test mu13-mu7=mu14-mu8;

F_1vs3: test mu13-mu7=mu15-mu9;

F_1vs7: test mu13-mu7=mu16-mu10;

F_1vs8: test mu13-mu7=mu17-mu11;

F_1vs9: test mu13-mu7=mu18-mu12;

F_2vs3: test mu14-mu8=mu15-mu9;

F_2vs7: test mu14-mu8=mu16-mu10;

F_2vs8: test mu14-mu8=mu17-mu11;

F_2vs9: test mu14-mu8=mu18-mu12;

F_3vs7: test mu15-mu9=mu16-mu10;

F_3vs8: test mu15-mu9=mu17-mu11;
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F_3vs9: test mu15-mu9=mu18-mu12;

F_7vs8: test mu16-mu10=mu17-mu11;

F_7vs9: test mu16-mu10=mu18-mu12;

F_8vs9: test mu17-mu11=mu18-mu12;

-------------------------------------------------------------------------------

Dependent Variable: MEANLNG

Test: F_INTER Numerator: 5364.0437 DF: 5 F value: 3.8699

Denominator: 1386.077 DF: 60 Prob>F: 0.0042

Dependent Variable: MEANLNG

Test: F_1VS2 Numerator: 14956.1036 DF: 1 F value: 10.7902

Denominator: 1386.077 DF: 60 Prob>F: 0.0017

Dependent Variable: MEANLNG

Test: F_1VS3 Numerator: 2349.9777 DF: 1 F value: 1.6954

Denominator: 1386.077 DF: 60 Prob>F: 0.1979

Dependent Variable: MEANLNG

Test: F_1VS7 Numerator: 15006.4293 DF: 1 F value: 10.8265

Denominator: 1386.077 DF: 60 Prob>F: 0.0017

Dependent Variable: MEANLNG

Test: F_1VS8 Numerator: 1147.2776 DF: 1 F value: 0.8277

Denominator: 1386.077 DF: 60 Prob>F: 0.3666

Dependent Variable: MEANLNG

Test: F_1VS9 Numerator: 630.3018 DF: 1 F value: 0.4547

Denominator: 1386.077 DF: 60 Prob>F: 0.5027

Dependent Variable: MEANLNG

Test: F_2VS3 Numerator: 5449.1829 DF: 1 F value: 3.9314

Denominator: 1386.077 DF: 60 Prob>F: 0.0520

Dependent Variable: MEANLNG

Test: F_2VS7 Numerator: 0.0423 DF: 1 F value: 0.0000

Denominator: 1386.077 DF: 60 Prob>F: 0.9956

Dependent Variable: MEANLNG

Test: F_2VS8 Numerator: 7818.7443 DF: 1 F value: 5.6409

Denominator: 1386.077 DF: 60 Prob>F: 0.0208

Dependent Variable: MEANLNG
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Test: F_2VS9 Numerator: 9445.7674 DF: 1 F value: 6.8147

Denominator: 1386.077 DF: 60 Prob>F: 0.0114

Dependent Variable: MEANLNG

Test: F_3VS7 Numerator: 5479.5767 DF: 1 F value: 3.9533

Denominator: 1386.077 DF: 60 Prob>F: 0.0513

Dependent Variable: MEANLNG

Test: F_3VS8 Numerator: 213.3084 DF: 1 F value: 0.1539

Denominator: 1386.077 DF: 60 Prob>F: 0.6962

Dependent Variable: MEANLNG

Test: F_3VS9 Numerator: 546.1923 DF: 1 F value: 0.3941

Denominator: 1386.077 DF: 60 Prob>F: 0.5326

Dependent Variable: MEANLNG

Test: F_7VS8 Numerator: 7855.1432 DF: 1 F value: 5.6672

Denominator: 1386.077 DF: 60 Prob>F: 0.0205

Dependent Variable: MEANLNG

Test: F_7VS9 Numerator: 9485.7704 DF: 1 F value: 6.8436

Denominator: 1386.077 DF: 60 Prob>F: 0.0112

Dependent Variable: MEANLNG

Test: F_8VS9 Numerator: 76.8370 DF: 1 F value: 0.0554

Denominator: 1386.077 DF: 60 Prob>F: 0.8147

Tasks G and H Finally we test separately for MCG differences within Hanna and
within Westar.

G_Hanaeq: test mu7=mu8=mu9=mu10=mu11=mu12;

H_Westeq: test mu13=mu14=mu15=mu16=mu17=mu18;

-------------------------------------------------------------------------------

E. Plant by MCG, Hanna-Westar subset 31

The REG Procedure

Test G_Hanaeq Results for Dependent Variable meanlng

Mean

Source DF Square F Value Pr > F
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Numerator 5 3223.58717 2.33 0.0536

Denominator 60 1386.07689

-------------------------------------------------------------------------------

Test H_Westeq Results for Dependent Variable meanlng

Mean

Source DF Square F Value Pr > F

Numerator 5 17889 12.91 <.0001

Denominator 60 1386.07689

There is evidence of differences in mean lesion length within Westar, but not Hanna. It
makes sense to follow up with pairwise comparisons of the MCG means for just Westar,
but first let’s review what we’ve done so far, limiting the discussion to just the Hanna-
Westar subset of the data. We’ve tested

• Overall difference among the 12 means

• Main effect for PLANT

• Main effect for MCG

• PLANT*MCG interaction

• 15 pairwise comparisons of the Hanna-Westar difference, following up the interaction

• One comparison of the 6 means for Hanna

• One comparison of the 6 means for Westar

That’s 21 tests in all, and we really should do at least 15 more, testing for pairwise
differences among the Westar means. Somehow, we should make this into a set of proper
post-hoc tests, and correct for the fact that we’ve done a lot of them. But how? Tukey
tests are only good for pairwise comparisons, and a Bonferroni correction is very ill-
advised, since these tests were not all planned before seeing the data. This pretty much
leaves us with Scheffé or nothing.

Scheffé Tests Because some of the tests we’ve done are for more than one contrast at a
time, the discussion of Scheffé tests for collections of contrasts in Section 3.4.5 (page 89)
is relevant. But Section 3.4.5 is focused on the case where we are following up a significant
difference among all the treatment means. Here, the initial test may or may not be a
test for equality of all the means. We might start somewhere else, like with a test for an
interaction or main effect. It’s a special case of Scheffé tests for regression (Section 5.10,
page 143).
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Assume a multifactor design. Create a combination explanatory variable whose values
are all combinations of factor levels. All the tests we do will be tests for collections
consisting of one or more contrasts of the cell means. Start with a statistically significant
initial test, an F -test for r contrasts. A Scheffé follow-up test will be a test for s contrasts,
not necessarily a subset of the contrasts of the initial test. The follow-up test must obey
these rules:

• s < r

• If all r contrasts of the initial test are zero in the population, then all s contrasts of
the follow-up test must be zero in the population. In other words, the null hypothesis
of the follow-up test must be implied by the null hypothesis of the initial test. (The
follow-up tests are proper follow-ups; see Section 3.4.6, page 91).

Next, compute the ordinary one-at-a-time F statistic for the follow-up test (it will have
s and n − p degrees of freedom). Then, use the Scheffé critical value of Equation 5.8 on
page 143, which is repeated here for convenience:

fSch =
r

s
fcrit,

where fcrit is the usual critical value for the initial test. Then, considered as a Scheffé
follow-up, the test is significant at the joint 0.05 level if the computed value of F for the
collection of contrasts is greater than fSch.

Actually, the formula given above is more general. It applies to testing linear combina-
tions of regression coefficients in a multiple regression setting (see Section 5.10, page 143).
The initial test is a test of r linear constraints on the regression coefficients, and the follow-
up test is a test of s linear constraints, where s < r and the linear constraints of the initial
test imply the linear constraints of the follow-up test. This is very nice because it allows,
for example, Scheffé follow-ups to a significant analysis of covariance.

Before applying Scheffé adjustments to the tests we have done on the greenhouse data,
a few comments are in order.

• The term “linear constraints” may sound imposing, but a linear constraint is just
a statement that some linear combination equals a constant. Almost always, the
constant is zero. So for example, saying that a contrast of cell means is equal to zero
is the same as specifying a linear constraint on the betas of a multiple regression
model (for example, with cell means coding).

• If you’re testing 6 explanatory variables controlling for some other set of explanatory
variables, the null hypothesis says that 6 regression coefficients are equal to zero.
That’s six linear constraints on the regression coefficients.

• In the initial one-way ANOVA setting (Section 3.4.3, page 84) where we were testing
single contrasts of p cell means, the Scheffé adjusted criticl value was defined by
fSch = (p − 1)fcrit. This was a special case of fSch = r

s
fcrit. The initial test for

equality of p means involved p− 1 contrasts, so r = p− 1. The followup tests were
all for single contrasts, so s = 1.
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• As in the case of testing single contrasts in a one-way design, it is impossible for a
followup to be significant if the initial test is not. And if the initial test is significant,
there is always something to find in the family of Scheffé follow-ups.

• Suppose we have a follow-up test for s linear constraints, and it’s not significant.
Then every Scheffé follow-up test whose null hypothesis is implied by those con-
straints will also be non-significant. To use the metaphor of data fishing, once
you’ve looked for fish in a particular region of the lake and determined that there’s
nothing there, further detailed exploration in that region is a waste of time.

The formula fSch = r
s
fcrit is very simple to apply. There are only two potential

complications, and they are related to one another.

• First, you have to know what significance test you are following up. For example,
if your initial test is the test for equality of all cell means, then the test for a given
main effect could be carried out as a Scheffé follow-up, and a pairwise comparison of
marginal means would be another follow-up to the same initial test. Or, you could
start with the test for the main effect. Then, the pairwise comparison of marginal
means would be a follow-up to the one-at-a-time test for the main effect. You could
do it either way, and the conclusions might differ. Where you start is a matter of
data-analytic philosophy. But starting with the standard tests for main effects and
interactions is more traditional.

• The second potential complication is that you really have to be sure that the null
hypothesis of the initial test implies the null hypothesis of the follow-up test. In
terms of proc reg syntax, it means that the test statement of the initial test
implies the test statements of all the follow-up tests. Sometimes this is easy to
check, and sometimes it is tricky. To a large extent, how easy it is to check depends
on what the initial test is.

– If the initial test is a test for all cell means being equal (a one-way ANOVA
on the combination variable), then it’s easy, because if all the cell means are
equal, then any possible contrast of the cell means equals zero. The proof is
one line of High School algebra.

– Similarly, suppose we are using a regression model with an intercept, and the
initial test is for all the regression coefficients except β0 simultaneously. This
means that the null hypothesis of the initial test is H0 : β1 = . . . = βp−1 = 0,
and therefore any linear combination of those quantities is zero. This means
that you can test any subset of explanatory variables controlling for all the
others as a proper Scheffé follow-up to the first test SAS prints.

– If you’re following up tests for main effects, then the standard test for any
contrast of marginal means is a proper follow-up to the test for the main effect.

Beyond these principles, the logical connection between initial and follow-up tests really
needs to be checked on a case-by-case basis. Often, the initial test can be expressed
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more than one way in the test statement of proc reg, and one of those statements will
make things clear enough so you don’t need to do any algebra. This is what I did with
the significant Plant by Fungus interaction for the Hanna-Westar subset. When the
interaction was written as

F_inter: test mu13-mu7=mu14-mu8=mu15-mu9

= mu16-mu10=mu17-mu11=mu18-mu12;

it was clear that all the pairwise comparisons of Westar-Hanna differences were implied.

F_1vs2: test mu13-mu7=mu14-mu8;

F_1vs3: test mu13-mu7=mu15-mu9;

F_1vs7: test mu13-mu7=mu16-mu10;

F_1vs8: test mu13-mu7=mu17-mu11;

F_1vs9: test mu13-mu7=mu18-mu12;

F_2vs3: test mu14-mu8=mu15-mu9;

F_2vs7: test mu14-mu8=mu16-mu10;

F_2vs8: test mu14-mu8=mu17-mu11;

F_2vs9: test mu14-mu8=mu18-mu12;

F_3vs7: test mu15-mu9=mu16-mu10;

F_3vs8: test mu15-mu9=mu17-mu11;

F_3vs9: test mu15-mu9=mu18-mu12;

F_7vs8: test mu16-mu10=mu17-mu11;

F_7vs9: test mu16-mu10=mu18-mu12;

F_8vs9: test mu17-mu11=mu18-mu12;

Sometimes it is easy to get this wrong. Just note that SAS will do all pairwise comparisons
of marginal means (in the means statement of proc glm) as Scheffé follow-ups, but don’t
trust it unless the sample sizes are equal. Do it yourself. This warning applies up to SAS
version 6.10. Is it a real error, or was it done deliberately to minimize calls to technical
support? It’s impossible to tell.

Now let’s proceed, limiting the analysis to the Hanna-Westar subset. Just for fun,
we’ll start in two places. Our initial test will be either the test for equality of all 12
cell means, or the test for the Plant by Fungus interaction. Thus, we need two tables of
critical values.

proc iml;

title ’Table of Scheffe critical values for COLLECTIONS of contrasts’;

title2 ’Start with all means equal’;

numdf = 11; /* Numerator degrees of freedom for initial test */

dendf = 60; /* Denominator degrees of freedom for initial test */

alpha = 0.05;

critval = finv(1-alpha,numdf,dendf);

zero = {0 0}; S_table = repeat(zero,numdf,1); /* Make empty matrix */

/* Label the columns */
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namz = {"Number of Contrasts in followup test"

" Scheffe Critical Value"};

mattrib S_table colname=namz;

do i = 1 to numdf;

s_table(|i,1|) = i;

s_table(|i,2|) = numdf/i * critval;

end;

reset noname; /* Makes output look nicer in this case */

print "Initial test has" numdf " and " dendf "degrees of freedom."

"Using significance level alpha = " alpha;

print s_table;

-------------------------------------------------------------------------------

Table of Scheffe critical values for COLLECTIONS of contrasts 37

Start with all means equal

Initial test has 11 and 60 degrees of freedom.

Using significance level alpha = 0.05

Number of Contrasts in followup test Scheffe Critical Value

1 21.474331

2 10.737166

3 7.1581104

4 5.3685828

5 4.2948663

6 3.5790552

7 3.0677616

8 2.6842914

9 2.3860368

10 2.1474331

11 1.9522119

Let’s start by treating the tests for main effects and the interaction as follow-ups to
the significant ANOVA on the combination variable (F = 12.43; df = 11, 71; p < .0001).
The table below collects numbers displayed earlier.

The interesting Plant by MCG interaction is no longer significant as a Scheffe test.
This means that all the pairwise comparisons among Westar-Hanna differences will also be
non-significant, as Scheffé follow-ups to the oneway ANOVA on the combination variable.
There are no fish in that part of the lake. Just to check, the biggest Westar-Hanna
difference was 120.35 for MCG 7, and the smallest was 20.33 for MCG 1. Comparing
these two differences yielded a one-at-a-time F of 10.83. But s = 1 here, and the first
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Table 7.8: Scheffé follow-ups to the test for differences among 12 means (Just Hanna and
Westar)

Effect s F Scheffé Critical Value Significant?
Plant 1 60.52 21.47 Yes
MCG 5 11.36 4.29 Yes
Plant × MCG 5 3.87 4.29 No
All Hanna Equal? 5 2.33 4.29 No
All Westar Equal? 5 12.91 4.29 Yes

row of Table 7.8 has the Scheffé critical value of fSch = 21.47, which may also be found
in the proc iml output further above. So F = 10.83 falls short of the value required for
significance, and as expected, none of the proper Scheffé follow-ups to a non-significant
Scheffé follow-up are significant.

The last row of Table 7.8 shows that the MCG differences for just Westar are significant
as a Scheffé follow-up, and so pairwise comparisons of the Westar means are of interest.
The easiest way to do this is with Scheffé tests on pairwise differences using proc glm.

proc glm data=hanstar;

class combo;

model meanlng = combo;

lsmeans combo / pdiff adjust=scheffe;

-------------------------------------------------------------------------------

Adjustment for Multiple Comparisons: Scheffe

meanlng LSMEAN

combo LSMEAN Number

7 45.578571 1

8 67.296429 2

9 94.192857 3

10 53.621429 4

11 47.838095 5

12 25.673810 6

13 65.908333 7

14 187.479762 8

15 154.103571 9

16 173.972619 10

17 95.823810 11

18 66.502381 12
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Least Squares Means for effect combo

Pr > |t| for H0: LSMean(i)=LSMean(j)

Dependent Variable: meanlng

i/j 1 2 3 4 5 6

1 0.9999 0.9175 1.0000 1.0000 1.0000

2 0.9999 0.9994 1.0000 1.0000 0.9726

3 0.9175 0.9994 0.9775 0.9401 0.5241

4 1.0000 1.0000 0.9775 1.0000 0.9991

5 1.0000 1.0000 0.9401 1.0000 0.9999

6 1.0000 0.9726 0.5241 0.9991 0.9999

7 1.0000 1.0000 0.9990 1.0000 1.0000 0.9789

8 0.0002 0.0047 0.0923 0.0008 0.0003 <.0001

9 0.0191 0.1620 0.7277 0.0457 0.0246 0.0016

10 0.0016 0.0235 0.2742 0.0046 0.0022 <.0001

11 0.8979 0.9989 1.0000 0.9696 0.9243 0.4845

12 0.9999 1.0000 0.9992 1.0000 1.0000 0.9764

Least Squares Means for effect combo

Pr > |t| for H0: LSMean(i)=LSMean(j)

Dependent Variable: meanlng

i/j 7 8 9 10 11 12

1 1.0000 0.0002 0.0191 0.0016 0.8979 0.9999

2 1.0000 0.0047 0.1620 0.0235 0.9989 1.0000

3 0.9990 0.0923 0.7277 0.2742 1.0000 0.9992

4 1.0000 0.0008 0.0457 0.0046 0.9696 1.0000

5 1.0000 0.0003 0.0246 0.0022 0.9243 1.0000

6 0.9789 <.0001 0.0016 <.0001 0.4845 0.9764

7 0.0039 0.1445 0.0201 0.9983 1.0000

8 0.0039 0.9955 1.0000 0.1071 0.0042

9 0.1445 0.9955 1.0000 0.7623 0.1518

10 0.0201 1.0000 1.0000 0.3058 0.0215

11 0.9983 0.1071 0.7623 0.3058 0.9986

12 1.0000 0.0042 0.1518 0.0215 0.9986

It’s actually just the last 6 means that we want to compare. Editing the output above by
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hand and re-labelling the means with the MCG codes (1,2,3,7,8,9), we have

Least Squares Means for effect combo

Pr > |t| for H0: LSMean(i)=LSMean(j)

Dependent Variable: meanlng

i/j 1 2 3 7 8 9

1 0.0039 0.1445 0.0201 0.9983 1.0000

2 0.0039 0.9955 1.0000 0.1071 0.0042

3 0.1445 0.9955 1.0000 0.7623 0.1518

7 0.0201 1.0000 1.0000 0.3058 0.0215

8 0.9983 0.1071 0.7623 0.3058 0.9986

9 1.0000 0.0042 0.1518 0.0215 0.9986

In the following display (also edited by hand, but similar to what SAS produces with
means combo / scheffe;) means with the same letter are not significantly different by
a Scheffé test.

meanlng

MCG LSMEAN

1 65.908333 A

9 66.502381 A

8 95.823810 A B

3 154.103571 A B

7 173.972619 B

2 187.479762 B

On Westar, fungus types 2 and 7 grow faster than types 1 and 9; types 8 and 3 occupy a
middle ground, and their growth rates are not significantly different from either extreme
group.

Comparing marginal MCG Means I still need to do this. Put it in green2.sas.

Starting with the Interaction Logically, a test for interaction can be a follow-up test,
but almost no one ever does this in practice. It’s much more traditional to start with
a one-at-a-time test for interaction and then, if you’re very sophisticated, do multiple
comparison follow-ups to that initial test. Now we’ll do this with Scheffé follow-ups In
the present case r = 5, and the critical values are obtaind from proc iml as before:
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proc iml;

title ’Table of Scheffe critical values for COLLECTIONS of contrasts’;

title2 ’Start with interaction’;

numdf = 5; /* Numerator degrees of freedom for initial test */

dendf = 60; /* Denominator degrees of freedom for initial test */

alpha = 0.05;

critval = finv(1-alpha,numdf,dendf);

zero = {0 0}; S_table = repeat(zero,numdf,1); /* Make empty matrix */

/* Label the columns */

namz = {"Number of Contrasts in followup test"

" Scheffe Critical Value"};

mattrib S_table colname=namz;

do i = 1 to numdf;

s_table(|i,1|) = i;

s_table(|i,2|) = numdf/i * critval;

end;

reset noname; /* Makes output look nicer in this case */

print "Initial test has" numdf " and " dendf "degrees of freedom."

"Using significance level alpha = " alpha;

print s_table;

-------------------------------------------------------------------------------

Table of Scheffe critical values for COLLECTIONS of contrasts 36

Start with interaction

Initial test has 5 and 60 degrees of freedom.

Using significance level alpha = 0.05

Number of Contrasts in followup test Scheffe Critical Value

1 11.841351

2 5.9206756

3 3.9471171

4 2.9603378

5 2.3682702

So the Scheffé critcal value for any single contrast is fSch = 11.84, and none none of
the pairwise comparisons of Westar-Hanna differences reaches statistical significance as a
Scheffé follow-up – even though they look very promising. As a mathematical certainty,
there is a single-contrast Scheffé follow-up to the interaction that is significant, but it’s
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not one of these. Let’s give it one more try. Look again at Figure 7.3 from page 202.
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               Denominator:  973.1736  DF:   90   Prob>F:    0.0001 

 

 

Dependent Variable: MEANLNG  

Test: FUNGUS   Numerator:  11748.0529  DF:    5   F value:  12.0719 

               Denominator:  973.1736  DF:   90   Prob>F:    0.0001 

 

 

Dependent Variable: MEANLNG  

Test: P_BY_F   Numerator:   4758.1481  DF:   10   F value:   4.8893 

               Denominator:  973.1736  DF:   90   Prob>F:    0.0001 

 

 

 

 

Okay, now we know how to do anything.  Finally, it is time to graph the interaction, and find out what these 

results mean! 

 

 

200

100

0

Type of Fungus
1 2 3 7 8 9

Mean Lesion Length

GP159

Hanna

Westar

 

The profile for Westar goes up sharply between MCG 1 and 2, while it goes up less steeply
for Hanna. This is the biggest absolute difference in line segment slopes.

proc reg data=hanstar;

title ’One more try at following up the interaction’;

model meanlng = mu7-mu18 / noint;

onemore: test mu8-mu7 = mu14-mu13;

-------------------------------------------------------------------------------

One more try at following up the interaction 39

The REG Procedure

Model: MODEL1

Test onemore Results for Dependent Variable meanlng

Mean

Source DF Square F Value Pr > F

Numerator 1 14956 10.79 0.0017

Denominator 60 1386.07689

The F statistic does not reach the Scheffé critical value of 11.84, so this promising com-
ponent of the interaction is also non-significant. Again, while we know that there is a
contrast of the cell means that is significantly different from zero as a Scheffé follow-up,
that does not mean it is easy to find.
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7.4 Nested and random effects

Rough draft begins on the following page. Of course it’s not really Chapter 4.



Chapter Four: Nested and Random Effects Models

Nested Designs

Suppose a chain of commercial business colleges is teaching a software certification course.  After 6 weeks of

instruction, students take a certification exam and receive a score ranging from zero to 100.  The owners of the

business school chain want to see whether performance is related to which school students attend, or which

instructor they have -- or both. They compare two schools; one of the schools has three instructors teaching the

course, and the other school has 4 instructors teaching the course.  A teacher only works in one school.

There are two independent variables, school and teacher.  But it's not a factorial design, because ``Teacher 1"

does not mean the same thing in School 1 and School 2; it's a different person.  This is called a nested design.

By the way, it's also unbalanced, because there are different numbers of teachers withing each school.  We say

that teacher is nested within school.  The diagram below shows what is going on, and give a clue about how to

conduct the analysis.

School One School Two

Teacher 1 Teacher 2 Teacher 3 Teacher 1 Teacher 2 Teacher 3 Teacher 4

μ1 μ2 μ3 μ4 μ5 μ6 μ7

To compare schools, we want to test  1
3 (μ1+μ2+μ3) =  1

4 (μ4+μ5+μ6+μ7).  

To compare instructors within schools, we want to test μ1=μ2=μ3 and μ4=μ5=μ6=μ7 simultaneously. 
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The first test involves one contrast of μ1 through μ7; the second test involves five contrasts. There really is

nothing to it. 

You can specify the contrasts yourself, or you can take advantage of proc glm's syntax for nested models.

proc glm;
     class school teacher;
     model score = school teacher(school);

The notation teacher(school) should be read ``teacher within school."

° It's easy to extend this to more than one level of nesting.  You could have climate zones, 

lakes within climate zones, fishing boats within lakes, ...

° There is no problem with combining nested and factorial structures.  You just have to keep 

track of what's nested within what.  Factors that are not nested are sometimes called 

``crossed."  

Random Effect Models  The preceding discussion (and indeed, the entire course to this point) has been limited

to ``fixed effects" models.  In a random effects model, the values of the categorical independent variables

represent a random sample from some population of values.  For example, suppose the business school had 200

branches, and just selected 2 of them at random for the investigation.  Also, maybe each school has a lot of

teachers, and we randomly sampled teachers within schools.  Then, teachers within schools would be a random

effects factor too.

It's quite possible to have random effect factors and fixed effect factors in the same design; such designs are called

``mixed."  SAS proc mixed is built around this, but it does a lot of other things too.

Nested models are often viewed as random effects models, but there is no necessary connection between the two

concepts.  It depends on how the study was conducted.  Were the two schools randomly selected from some

population of schools, or did someone just pick those two (maybe because there are just two schools)? 
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Random effects, like fixed effects, can either be nested or not; it depends on the logic of the design.  An

interesting case of nested and purely random effects is provided by sub-sampling.  For example, we take a

random sample of towns, from each town we select a random sample of households, and from each household we

select a random sample of individuals to test, or measure, or question.

In such cases the population variance of the DV can truly be partitioned into pieces -- the variance due to towns,

the variance due to households within towns, and the variance due to individuals within households.  These

components of variance can be estimated, and they are, by a program called proc nested, a specialized tool for just

exactly this design.  All effects are random, and each is nested within the preceding one.

Another example:  Suppose we are studying waste water treatment, specifically the porosity of "flocks," nasty

little pieces of something floating in the tanks.  We randomly select a sample of flocks, and then cut each one up

into very thin slices.  We then randomly select a sample of slices (called "sections") from each flock, look at it

under a microscope, and assign a number representing how porous it is (how much empty space there is in a

designated region of the section).  The independent variables are flock and section.  The research question is

whether section is explaining a significant amount of the variance in porosity -- because if not, we can use just one

section per flock, and save considerable time & expense.

The SAS syntax for this would be

proc sort; by flock section; /* Data must be sorted */

proc nested;

     class flock section;

     var por;

The F tests on the output are easy to locate.  The last column of output ("Percent of total") is estimated percent of

total variance due to the effect.  It's fairly close to R2, but not the same.  To include a covariate (say "window"),

just use var window por; instead of var por;.  You'll get an analysis of por with window as the covariate

(which is what you want) and an analysis of window with por as the covariate (which you should ignore).

Of course lots of the time, nothing is randomly selected -- but people use random effects models anyway.  Why

pretend?  Well, sometimes they are thinking that in a better world, lakes would have been randomly selected.  Or

sometimes, the scientists are thinking that they really would like to generalize to the entire population of lakes, and
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therefore should use statistical tools that support such generalization -- even if there was no random sampling.

(By the way, no statistical method can compensate for a biased sample.) Or sometimes it's just a tradition in

certain sub-areas of research, and everybody expects to see random effects models.  

In the traditional analysis of models with random or mixed effects and a normal assumption, F-tests are often

possible, but they don't always use Mean Squared Error in the denominator of the F statistic.  Often, it's the Mean

Square for some interaction term or other.  The choice of what error term to use is relatively mechanical for

balanced models with equal sample sizes (and SAS will do it for you), but even then, sometimes (especially when

it's a mixed model) a valid F-test for an effect of interest just doesn't exist.  

The following shows how one can obtain classical F tests for random effects and mixed models using proc glm.

Some things to bear in mind are:

°  The interaction of any random factor with another factor (whether fixed or  random) is random.

But you have to tell proc glm this explicitly.

°  You have to tell proc glm that you want significance tests, using  / test.

°  Regardless of what you specify in the random statement, the output from proc glm starts with

tests that assume all effects are fixed.  If you believe that one or more effects are random, then these tests are

meaningless, and should be ignored.  

°  The tests for random and mixed effects are preceded by expected mean squares, in a notation one

can get used to.  This part of the output can be a blessing, especially in courses that go into nitty-gritty detail about

the classical tests.  We will ignore it.

Here is the program mixed3.sas, which has no content but shows the syntax.
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/*************  mixed3.sas *********************
Three levels of factor A, four levels of B
      Pretend both fixed
      Pretend both random
      Pretend A fixed, B random
***************************************************/

options linesize=79 noovp formdlim=' ';

data mixedup;
     infile 'ch19pr14.data';
     input Y A garbage B;

/* By default, both are considered fixed */
proc glm; 
     title 'Both effects Fixed';
     class A B ;
     model y = a | b; 

/* Now both random */
proc glm;
     title 'Both effects random';
     class A B ;
     model y = a | b; 
     random a b a*b / test; /* Have to specify interaction random too! */

/* Now A fixed, B random */
proc glm;
     title 'A fixed, B random';
     class A B ;
     model y = a | b;
     random b a*b / test;

/* Now B fixed, A random */
proc glm;
     title 'B fixed, A random';
     class A B ;
     model y = a | b;
     random a a*b / test;

Here is the output in mixed.lst:
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                              Both effects Fixed                              1

                               The GLM Procedure

                           Class Level Information
 
                       Class         Levels    Values

                       A                  3    1 2 3   

                       B                  4    1 2 3 4 

                    Number of Observations Read          36
                    Number of Observations Used          36
 
                                                                               
 
                              Both effects Fixed                              2

                               The GLM Procedure
 
Dependent Variable: Y   

                                      Sum of
Source                     DF        Squares    Mean Square   F Value   Pr > F

Model                      11    220.2833333     20.0257576      3.11   0.0097

Error                      24    154.4466667      6.4352778                   

Corrected Total            35    374.7300000                                  

              R-Square     Coeff Var      Root MSE        Y Mean

              0.587845      35.31487      2.536785      7.183333

Source                     DF      Type I SS    Mean Square   F Value   Pr > F

A                           2    220.0200000    110.0100000     17.09   <.0001
B                           3      0.0722222      0.0240741      0.00   0.9997
A*B                         6      0.1911111      0.0318519      0.00   1.0000

Source                     DF    Type III SS    Mean Square   F Value   Pr > F

A                           2    220.0200000    110.0100000     17.09   <.0001
B                           3      0.0722222      0.0240741      0.00   0.9997
A*B                         6      0.1911111      0.0318519      0.00   1.0000
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                              Both effects random                             3

                               The GLM Procedure

                           Class Level Information
 
                       Class         Levels    Values

                       A                  3    1 2 3   

                       B                  4    1 2 3 4 

                    Number of Observations Read          36
                    Number of Observations Used          36
 
 
                              Both effects random                             4

                               The GLM Procedure
 
Dependent Variable: Y   

                                      Sum of
Source                     DF        Squares    Mean Square   F Value   Pr > F

Model                      11    220.2833333     20.0257576      3.11   0.0097

Error                      24    154.4466667      6.4352778                   

Corrected Total            35    374.7300000                                  

              R-Square     Coeff Var      Root MSE        Y Mean

              0.587845      35.31487      2.536785      7.183333

Source                     DF      Type I SS    Mean Square   F Value   Pr > F

A                           2    220.0200000    110.0100000     17.09   <.0001
B                           3      0.0722222      0.0240741      0.00   0.9997
A*B                         6      0.1911111      0.0318519      0.00   1.0000

Source                     DF    Type III SS    Mean Square   F Value   Pr > F

A                           2    220.0200000    110.0100000     17.09   <.0001
B                           3      0.0722222      0.0240741      0.00   0.9997
A*B                         6      0.1911111      0.0318519      0.00   1.0000
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                              Both effects random                             5

                               The GLM Procedure

  Source                  Type III Expected Mean Square

  A                       Var(Error) + 3 Var(A*B) + 12 Var(A)               

  B                       Var(Error) + 3 Var(A*B) + 9 Var(B)                

  A*B                     Var(Error) + 3 Var(A*B)                           
 
                                                                               
 
                              Both effects random                             6

                               The GLM Procedure
           Tests of Hypotheses for Random Model Analysis of Variance
 
Dependent Variable: Y   

Source                     DF    Type III SS    Mean Square   F Value   Pr > F

A                           2     220.020000     110.010000   3453.80   <.0001
B                           3       0.072222       0.024074      0.76   0.5582

Error: MS(A*B)              6       0.191111       0.031852                   

Source                     DF    Type III SS    Mean Square   F Value   Pr > F

A*B                         6       0.191111       0.031852      0.00   1.0000

Error: MS(Error)           24     154.446667       6.435278                   
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                               A fixed, B random                              7

                               The GLM Procedure

                           Class Level Information
 
                       Class         Levels    Values

                       A                  3    1 2 3   

                       B                  4    1 2 3 4 

                    Number of Observations Read          36
                    Number of Observations Used          36
 
                                                                               
 
                               A fixed, B random                              8

                               The GLM Procedure
 
Dependent Variable: Y   

                                      Sum of
Source                     DF        Squares    Mean Square   F Value   Pr > F

Model                      11    220.2833333     20.0257576      3.11   0.0097

Error                      24    154.4466667      6.4352778                   

Corrected Total            35    374.7300000                                  

              R-Square     Coeff Var      Root MSE        Y Mean

              0.587845      35.31487      2.536785      7.183333

Source                     DF      Type I SS    Mean Square   F Value   Pr > F

A                           2    220.0200000    110.0100000     17.09   <.0001
B                           3      0.0722222      0.0240741      0.00   0.9997
A*B                         6      0.1911111      0.0318519      0.00   1.0000

Source                     DF    Type III SS    Mean Square   F Value   Pr > F

A                           2    220.0200000    110.0100000     17.09   <.0001
B                           3      0.0722222      0.0240741      0.00   0.9997
A*B                         6      0.1911111      0.0318519      0.00   1.0000
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                               A fixed, B random                              9

                               The GLM Procedure

  Source                  Type III Expected Mean Square

  A                       Var(Error) + 3 Var(A*B) + Q(A)                    

  B                       Var(Error) + 3 Var(A*B) + 9 Var(B)                

  A*B                     Var(Error) + 3 Var(A*B)                           
 
                                                                               
 
                               A fixed, B random                             10

                               The GLM Procedure
           Tests of Hypotheses for Mixed Model Analysis of Variance
 
Dependent Variable: Y   

Source                     DF    Type III SS    Mean Square   F Value   Pr > F

A                           2     220.020000     110.010000   3453.80   <.0001
B                           3       0.072222       0.024074      0.76   0.5582

Error: MS(A*B)              6       0.191111       0.031852                   

Source                     DF    Type III SS    Mean Square   F Value   Pr > F

A*B                         6       0.191111       0.031852      0.00   1.0000

Error: MS(Error)           24     154.446667       6.435278                   
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                               B fixed, A random                             11

                               The GLM Procedure

                           Class Level Information
 
                       Class         Levels    Values

                       A                  3    1 2 3   

                       B                  4    1 2 3 4 

                    Number of Observations Read          36
                    Number of Observations Used          36
 
                                                                               
 
                               B fixed, A random                             12

                               The GLM Procedure
 
Dependent Variable: Y   

                                      Sum of
Source                     DF        Squares    Mean Square   F Value   Pr > F

Model                      11    220.2833333     20.0257576      3.11   0.0097

Error                      24    154.4466667      6.4352778                   

Corrected Total            35    374.7300000                                  

              R-Square     Coeff Var      Root MSE        Y Mean

              0.587845      35.31487      2.536785      7.183333

Source                     DF      Type I SS    Mean Square   F Value   Pr > F

A                           2    220.0200000    110.0100000     17.09   <.0001
B                           3      0.0722222      0.0240741      0.00   0.9997
A*B                         6      0.1911111      0.0318519      0.00   1.0000

Source                     DF    Type III SS    Mean Square   F Value   Pr > F

A                           2    220.0200000    110.0100000     17.09   <.0001
B                           3      0.0722222      0.0240741      0.00   0.9997
A*B                         6      0.1911111      0.0318519      0.00   1.0000
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                               B fixed, A random                             13

                               The GLM Procedure

  Source                  Type III Expected Mean Square

  A                       Var(Error) + 3 Var(A*B) + 12 Var(A)               

  B                       Var(Error) + 3 Var(A*B) + Q(B)                    

  A*B                     Var(Error) + 3 Var(A*B)                           
 
                                                                               
 
                               B fixed, A random                             14

                               The GLM Procedure
           Tests of Hypotheses for Mixed Model Analysis of Variance
 
Dependent Variable: Y   

Source                     DF    Type III SS    Mean Square   F Value   Pr > F

A                           2     220.020000     110.010000   3453.80   <.0001
B                           3       0.072222       0.024074      0.76   0.5582

Error: MS(A*B)              6       0.191111       0.031852                   

Source                     DF    Type III SS    Mean Square   F Value   Pr > F

A*B                         6       0.191111       0.031852      0.00   1.0000

Error: MS(Error)           24     154.446667       6.435278    

When the design is unbalanced or has unequal sample sizes, the classical approach based on expected mean

squares fails, and a valid F-test rarely exists.  It's a real pain.  Sometimes, you can find an error term that

produces a valid F-test assuming that some interaction (or maybe more than one interaction) is absent.  Usually,

you can't test for that interaction either.  But people do it anyway and hope for the best.

SAS proc mixed goes a long way toward solving these problems.  It's a great piece of software, based on

recent, state-of the-art research as well as more venerable stuff.  Examples will be given in lecture.
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Chapter 8

Selecting a Sample Size: Power and
Other Methods

Rough draft begins on the following page. Of course it’s not really Chapter 7.
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Choosing Sample Size

The purpose of this section is to describe three related methods for choosing sample size before data are

collected -- the classical power method, the sample variation method and the population variation method.

The classical power method applies to almost any statistical test.  After presenting general principles, the

discussion zooms in on the important special case of factorial analysis of variance with no covariates.

The sample variation method and the population variation methods are limited to multiple linear

regression, including the analysis of variance and covariance.   Throughout, it will be assumed that the

person designing the study is a scientist who will only be allowed to discuss results if a null hypothesis is

rejected at some conventional significance level such as α = 0.05 or α = 0.01.  Thus, it is vitally

important that the study be designed so that scientifically interesting effects are likely to be be detected as

statistically significant.  

The classical power method.  The term "null hypothesis" has mostly been avoided until now, but

it's much easier to talk about the classical power method if we're allowed to use it.  Most statistical tests

are based on comparing a full model to a reduced model.  Under the reduced model, the values of

population parameters are constrained in some way.  For example, in a one-way ANOVA comparing

three treatments, the parameters are  µ1, µ2, µ3 and σ2.  The reduced model says that µ1=µ2=µ3.  This is

a constraint on the parameter values.  The null hypothesis (symbolized H0) is a statement of how the

parameters are constrained under the reduced model. When a test of a null hypothesis yields a small p-

value, it means that the data are quite unlikely if the null hypothesis is true. We then reject the null

hypothesis -- that is, we conclude it's not true, and therefore that some effect of interest is present in the

population.

The following definition applies to hypothesis tests in general, not just those associated with common

multiple regression.  Assume that data are drawn from some population with parameter θ -- that's the

Greek letter theta. Theta is typically a vector; for example, in simple linear regression with normal errors,

θ = (β0, β1, σ2). 

The ppppoooowwwweeeerrrr of a statistical test is the probability of obtaining significant results. Power is a function of

the true parameter values. That is, it is a function of θ.
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The power of a statistical test is the probability of obtaining significant results. Power is a function of the

true parameter values. That is, it is a function of θ.

a) The common statistical tests have infinitely many power values.

b) If the null hypothesis is true, power cannot exceed å; in fact, this is the technical 

definition of α.  Usually, α = 0.05.

c) If the null hypothesis is false, more power is good.

d) For a good test, power  →  1 (for fixed n) as the true parameter values get farther 

from those specified by the null hypothesis. 

e) For a good test, power  →  1 as n  →   ∞  for any combination of fixed parameter 

values, provided the null hypothesis is false.  

Classical power analysis is used to select a sample size n as follows.  Choose an effect -- a particular

combination of parameter values that makes the null hypothesis false. If possible, select the weakest effect

that would still be scientifically important if it were present in the population.  If the null hypothesis is

false in this way, we would like to have a high probability of rejecting it and obtaining significance.

Choose a sample size n, and calculate the probability of significance (that is, calculate power) for that

sample size and that set of parameter values. Increase (or decrease) n, calculating power each time.  Stop

when the power is what you want. A common target value for power is 0.80.  My guess is that it would

be higher, except that, for common tests and effect sizes, the sample would have to be prohibitively large.

There are only two difficulties with carrying out a classical power analysis in practice; one is conceptual,

the other technical.  The conceptual problem is that scientists often have difficulty choosing a

configuration of parameter values corresponding to an effect that is scientifically interesting.  Maybe that's

not too surprising, because scientists usually think in terms of data rather than in terms of statistical

models.  It could be different if the statistical models were serious scientific models of what the scientists

are studying, but usually they're quite generic.  

The technical problem is that sometimes -- especially for statistical methods other than those based on

common multiple regression -- it can be difficult to calculate the probability of significance when the null

hypothesis is false.  This problem is not really serious; it can always be overcome with some effort and
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the right software.  Once you move beyond multiple regression, SAS is not the right software.

Power for Factorial ANOVA.  Considering this special case will provide a concrete example of the

classical power method.  It is also the most common example of power analysis.

The distributions commonly used for practical hypothesis testing (mainly the chi-square, t and F) are ones

that hold when the null hypothesis is true.  When the null hypothesis is false, these are no longer the

distributions of the common test statistics; instead, they have probability distributions that migrate more

into the rejection region (tail area, above the critical value) of the statistical test.  The F distribution used

for testing hypotheses in multiple regression is the central F distribution.  If the null hypothesis is false,

the F statistic has a non-central F distribution with parameters s, n-p and φ.  The quantity φ is a kind of

squared distance between the reduced model and the true model.  It is called the

non–centrality parameter of the non-central F distribution; φ≥0, and φ = 0 gives the usual central F

distribution.  The larger the non-centrality parameter, the greater the chance of significance -- that is, the

greater the power. 

The general formula for φ is best written in the notation of matrix algebra; it will not be given here. But

the general idea, and some of its essential properties, are shown by the special case where we are

comparing two treatment means (as in a two-sample t-test, or a simple regression with a binary

independent variable).  In this situation, the general formula for the non-centrality parameter of the non-

central F distribution reduces to

φ  =  
  (µ1 – µ2)

2

σ2( 1
n1

+ 1
n2

)
=   δ2

( 1
n1

+ 1
n2

)
, (4.3)

where δ = 
  |µ1 – µ2|

σ .  Right away, it is possible to make some useful comments.  
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φ  =  
  (µ1 – µ2)

2

σ2( 1
n1

+ 1
n2

)
=   δ2

( 1
n1

+ 1
n2

)
, (4.3)

where δ = 
  |µ1 – µ2|

σ .

° The quantity δ is called effect size.  It specifies how wrong the statement  µ1=µ2 is, 

by expressing the absolute difference between  µ1 and µ2 in units of the common 

within-cell standard deviation σ.  

° For any statistical test, power is a function of the parameter values.  Here, the non-

centrality parameter (and hence, power) depends on the three parameters  µ1, µ2 and σ2

only through the effect size.  This is quite wonderful; it does not always happen, even 

in the analysis of variance.

° The larger the effect size (that is, the more wrong the reduced model is -- in this 

metric), the larger the non-centrality parameter φ, and therefore the larger the 

probability of significance.

° If µ1=µ2, then δ=0, φ=0,the non-central F distribution becomes the usual central F 

distribution, and the probability of significance becomes exactly α=0.05.  

° The size of the non-centrality parameter depends on another quantity involving both n1

and n2, not just the total sample size n = n1+n2.  

Chapter 7, Page 80



This last point can be illuminated by a bit of algebra.  Let

°  δ = 
  |µ1 – µ2|

σ
° n = n1+n2

° q =  n1
n , the proportion of the sample allocated to Group One. 

Then expression (4.3) can be re-written

φ = n q(1-q) δ2. (4.4)

Now it's clear.  

° For any non-zero effect size and any (?) allocation of sample size to the two treatments,

the greater the total sample size, the greater the power.

° For any sample size and any (?) allocation of sample size to the two treatments, the 

greater the effect size, the greater the power.

° Power depends not just on sample size and effect size, but on an aspect of design -- 

the allocation of sample size to the two treatments.  This is a general feature of power in

the analysis of variance and other statistical methods.  It is important, but usually not 

mentioned.

Let's continue to pursue this interesting special case.  For any given sample size and any non-zero effect

size, we can maximize power by choosing q (the proportion of cases allocated to Group One) so that the

function f(q) = q(1-q) is as large as possible.  What's the best value of q?  

This is a simple calculus exercise, but the following plot gives the answer by brute force. I just computed

f(q) = q(1–q) for 100 equally spaced values of q ranging from zero to one.
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So the best value of q is 1/2.  That is, for comparing two means using the classical normal model, power

is highest when the sample sizes are equal -- and this holds regardless of the total sample size or the

magnitude of the effect.

This is a clear, simple example of something that holds for any classical ANOVA.  The non-centrality

parameter, and hence the power, depends on the total sample size, the effect, and the allocation of the

sample to treatment combinations.  

Equal sample sizes do not always yield the highest power.  In general, the optimal allocation depends on

the hypothesis being tested and the nature of the true effect.  For example, suppose you have a design

with 18 treatment combinations, and the test in question is to compare µ1 with the average of µ2 and µ3.

Further, suppose that  µ2 = µ3 ≠ µ1 (σ2 can be anything); this is the effect.  The optimal allocation is to

give half the sample to Treatment One, split the other half any way at all between Treatments 2 and 3, and

let n=0 for the other 15 treatments.   This is why observations are not usually allocated to treatments

based on a power analysis; it often advises you to put all your eggs in one basket. 
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In the analysis of variance, power analysis is used to select a sample size n as follows. 

1. Choose an allocation of observations to treatments; usually, this is done without 

formal analysis, equal sample sizes being the most common choice. 

2. Choose an effect.  Your null hypothesis says that some collection of contrasts (of the 

treatment combination means) are all zero in the population.  The "effect" you need 

to specify is that one or more of those contrasts is not zero.  You must provide 

exact non-zero values, in units of the common within-treatment population standard 

deviation σ -- like, the difference between µ1 and the average of µ2 and µ3 is minus

0.75σ. You don't need to know the numerical value of σ (thank goodness!), but you 

do need to be able to express differences between population means in units of σ.  If 

possible, select the weakest effect that is still scientifically important.  

3. Choose a desired power; again, a common choice is 0.80, but it's up to you.  

4. Start with a modest but realistic value for the total sample size n.  Increase it, each 

time determining the critical value of F, calculating the non-centrality parameter φ 

(you have enough information), and using φ to compute the probability that F will 

exceed the critical value.  When that power becomes high enough, stop.

This is a rational strategy for choosing sample size.  In practice, the hard part is selecting an effect.

Scientists often can say what's a scientifically meaningful difference between means, but they usually

have no clue about σ.  Statisticians respond with the suggestion that σ2 be estimated by MSEF from

similar studies. Scientists respond that there are no "similar" studies; the investigation being planned is

new -- that's why we're doing it.  In the end, the whole thing is based on so much guesswork that

everyone feels uncomfortable.  In my experience, this is what happens most of the time when people try

to do a classical power analysis.  Of course, there are exceptions; sometimes, everyone is happy.
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The Sample Variation Method (Note STA442f05 has better sas programs. Fix this up!)

There are at least two main meanings of ``significance." One is statistical significance, and another is

explanatory significance in the sense of explained variation. Formula (4.4) from Chapter 4 is relevant.  It

is reproduced here.

F =  n – p
s  a

1 – a ,  (4.4)

where, after controlling for the effects in a reduced model, a is the proportion of the remaining variation

that is explained by the full model.

Formula (4.4) tells us that the two meanings of ``significance" need not coincide, since statistical

significance can come from either strong results or from a large sample. The sample variation method can

be viewed as a way of bringing the two types of significance into agreement. It's not really a power

analysis, but it is a rational way to decide on sample size.

In equation (4.4), F is an increasing function of both n and a, so its p-value (the tail area beyond F) is a

decreasing function of both n and a.  The sample variation method is to choose a value of a that is just

large enough to be interesting, and increase n, calculating F and its p-value each time until p < 0.05; then

stop.  The final value of n is the smallest sample size for which an effect explaining that much of the

remaining variation will be significant.  With that sample size, the effect will be significant if and only if it

explains a or more of the remaining variation.   

That's all there is to it.  You tell me a proportion of remaining variation that you want to be significant,

and I'll tell you a sample size. In exchange, you agree not to moan and complain and go fishing for more

covariates if your results are almost significant, because they were too weak to be interesting anyway.
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There are two questions you might want to ask.  

° For a given proportion of the remaining variation, what sample size do I need for 

statistical significance?

° For a given sample size, what proportion of the remaining variation do I need for 

statistical significance?

To make things more definite, let us suppose we are contemplating a 2x3x4 analysis of covariance, with

two covariates and factors cleverly named A, B and C.  We are setting it up as a regression model, with

one dummy variable for A, 2 dummy variables for B, and 3 for C.  Interactions are represented by

product terms, and there are 2 products for the AxB interaction, 3 for AxC, 6 for BxC, and 1*2*3 = 6

for AxBxC.  The regression coefficients for these plus two for the covariates and one for the intercept

give us p = 26.  The null hypothesis is that of no BxC interaction, so s = 6.  The "other effects in the

model" for which we are "controlling" are represented by 2 covariates and 17 dummy variables and

products of dummy variables.

First, let's find out what sample size we need for the interaction to be significant provided it explains at

least 10% of the remaining variation after controlling for other effects in the model.  This is accomplished

by the program sampvar1.sas.  It is a little unusual in that it uses the SAS put statement to write

results to the log file. It never produces a list file, because there is no proc step.
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/**************************  sampvar1.sas **************************/
/*      Finds n needed for significance, for a given proportion of */
/*      remaining variation                                        */
/*******************************************************************/

options linesize = 79 pagesize = 200;
data explvar;     /* Can replace alpha, s, p, and a below.   */
   alpha = 0.05;  /* Significance level.                     */
   s = 6;         /* Numerator df = # IVs being tested.      */
   p = 26;        /* There are p beta parameters.            */
   a = .10  ;     /* Proportion of remaining variation after */
                  /* controlling for all other variables.    */

   /* Initializing ... */  pval = 1; n = p+1;
   do until (pval <= alpha);
      F = (n-p)/s * a/(1-a);
      df2 = n-p;
      pval = 1-probf(F,s,df2);
      n = n+1 ;
   end;
   /* When finished, n is one too many */
   n = n-1; F = (n-p)/s * a/(1-a); df2 = n-p;
   pval = 1-probf(F,s,df2);

   put ' *********************************************************';
   put ' ';
   put '  For a multiple regression model with ' p 'betas, ';
   put '  testing ' s ' variables controlling for the others,';
   put '  a sample size of ' n 'is needed for significance at the';
   put '  alpha = ' alpha 'level, when the effect explains a = ' a ;
   put '  of the remaining variation after allowing for all other ';
   put '  variables in the model. ';
   put '  F = ' F ',df = (' s ',' df2 '), p = ' pval;
   put ' ';
   put ' *********************************************************';

Here is the part of the log file produced by the put statements.

 *********************************************************

  For a multiple regression model with 26 betas,
  testing 6  variables controlling for the others,
  a sample size of 144 is needed for significance at the
  alpha = 0.05 level, when the effect explains a = 0.1
  of the remaining variation after allowing for all other
  variables in the model.
  F = 2.1851851852 ,df = (6 ,118 ), p = 0.0491182815

 *********************************************************
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Suppose you were considering n=120, and you wanted to know what proportion of the remaining

variation the interaction must explain in order to be significant.  This is accomplished by

sampvar2.sas.

/**************************  sampvar2.sas ****************************/
/*  Finds proportion of remaining variation needed for significance, */
/*  given sample size n                                              */
/*********************************************************************/

options linesize = 79 pagesize = 200;
data explvar;     /* Replace alpha, s, p, and a below.  */
   alpha = 0.05;  /* Significance level.                */
   s = 6;         /* Numerator df = # IVs being tested. */
   p = 26;        /* There are p beta parameters.       */
   n = 120  ;     /* Sample size                        */

   /* Initializing ... */  pval = 1; a = 0; df2 = n-p;
   do until (pval <= alpha);
      F = (n-p)/s * a/(1-a);
      pval = 1-probf(F,s,df2);
      a = a + .001 ;
     end;
  /* When finished, a is .001 too much */
   a = a-.001; F = (n-p)/s * a/(1-a); pval = 1-probf(F,s,df2);

   put ' ******************************************************';
   put ' ';
   put '  For a multiple regression model with ' p 'betas, ';
   put '  testing ' s ' variables at significance level ';
   put '  alpha = ' alpha ' controlling for the other variables,';
   put '  and a sample size of ' n', the variables need to explain';
   put '  a = ' a ' of the remaining variation to be significant.';
   put '  F = ' F ', df = (' s ',' df2 '), p = ' pval;
   put '   ';
   put ' *******************************************************';
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And here is the output.

 ******************************************************

  For a multiple regression model with 26 betas,
  testing 6  variables at significance level
  alpha = 0.05  controlling for the other variables,
  and a sample size of 120 , the variables need to explain
  a = 0.123  of the remaining variation to be significant.
  F = 2.1972633979 , df = (6 ,94 ), p = 0.0499350803

 *******************************************************

It's worth mentioning that the Sample Variation method is so simple that lots of people must know about it -- but I

have never seen it described in print.  

The Population Variation Method

This is a method of sample size selection for multiple regression due to Cohen (1988).  It combines elements of

classical power analysis and the sample variation method. Cohen does not call it the ``Population Variation

Method;" he calls it ``Statistical Power Analysis."  For most research psychologists, the population variation

method is statistical power analysis, period.  

The basic idea is this.  Looking closely at the formula for the non-centrality parameter φ, Cohen decides that it is

based on something he interprets as a population version of the quantity we are denoting by a.  That is, one

thinks of it as the proportion of remaining variation (Cohen uses the term variance instead of variation) that is

explained by the effect in question -- in the population.  He calls it ``effect size." 

Just a comment:  Of course the problem of comparing two means is a special case of multiple regression, but

``effect size" in the population variation method does not reduce to the traditional definition of effect size for the

two-sample t-test with equal variances.  In fact, effect size in the population variation method mixes the effect

together with the design in such a way that they cannot be separated (by the way, this is true of the sample

variation method too).
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Still, from a so-called ``effect size" and a sample size, it's easy to calculate a non-centrality parameter, and then

you can compute power, and increase the sample size until the power is as high as you wish.  For most people,

most of the time, it's a lot easier to think about proportions of explained variation than to think about collections of

non-zero contrasts in units of σ.  Plus, it applies to regression models in general, not just factorial ANOVA.  To

do a classical power analysis with observational data, you need the joint probability distribution of all the observed

independent variables (which are presumably independent of any manipulated independent variables).  Cohen's

method is a lot easier.  Here's a program that does it.

/***********************  popvar.sas *****************************/
options linesize = 79 pagesize = 200;
data fpower;        /* Replace alpha, s, p, and wantpow below    */
     alpha = 0.05;  /* Significance level                        */
     s = 6;         /* Numerator df = # IVs being tested         */
     p = 26;        /* There are p beta parameters               */
     a = .10  ;     /* Effect size                               */
     wantpow = .80; /* Find n to yield this power.               */
     power = 0; n = p+1; oneminus = 1-alpha; /* Initializing ... */
     do until (power >= wantpow);
        ncp = (n-p)*a/(1-a);
        df2 = n-p;
        power = 1-probf(finv(oneminus,s,df2),s,df2,ncp);
        n = n+1 ;
     end;
     n = n-1;
     put ' *********************************************************';
     put '   ';
     put '   For a multiple regression model with ' p 'betas, ';
     put '   testing ' s 'independent variables using alpha = ' alpha ',';
     put '   a sample size of ' n 'is needed';
     put '   in order to have probability ' wantpow 'of rejecting H0';
     put '   for an effect of size a = ' a ;
     put '   ';
     put ' *********************************************************';

 *********************************************************

   For a multiple regression model with 26 betas,
   testing 6 independent variables using alpha = 0.05 ,
   a sample size of 155 is needed
   in order to have probability 0.8 of rejecting H0
   for an effect of size a = 0.1

 *********************************************************
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For comparison, when we specified a sample proportion of remaining variation equal to 10%, a sample size of

144 was required for significance.  Getting into the spirit of the population variation method, we can talk about it

like this.  If the population effect size is 0.10 and n=155, then with 80% probability we'll get a sample effect

size large enough for significance.  How big does the sample effect size have to be?  Running sampvar2.sas,

it turns out that with n=155, you need a sample a=0.092 for significance.  So if a=0.10 in the population and

n=155, the probability that the sample a exceeds 0.092 is equal to 0.80.
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Chapter 9

Multivariate and Within-cases
Analysis

9.1 Multivariate Analysis of Variance

Multivariate means more than one response variable at once. Why do it? Primarily
because if you do parallel analyses on lots of outcome measures, the probability of getting
significant results just by chance will definitely exceed the apparent α = 0.05 level. It
is also possible in principle to detect results from a multivariate analysis that are not
significant at the univariate level.

The simplest way to do a multivariate analysis is to do a univariate analysis on each
response variable separately, and apply a Bonferroni correction. The disadvantage is that
testing this way is less powerful than doing it with real multivariate tests.

Another advantage of a true multivariate analysis is that it can “notice” things missed
by several Bonferroni-corrected univariate analyses, because under the surface, a classical
multivariate analysis involves the construction of the unique linear combination of the
response variables that shows the strongest relationship (in the sense explaining the re-
maining variation) with the explanatory variables. The linear combination in question is
called the first canonical variate or canonical variable.

• The number of canonical variables equals the number of dependent variables (or
explanatory variables, whichever is fewer).

• The canonical variables are all uncorrelated with each other. The second one is
constructed so that it has as strong a relationship as possible to the explanatory
variables – subject to the constraint that it have zero correlation with the first one,
and so on.

• This why it is not optimal to do a principal components analysis (or factor analysis)
on a set of response variables, and then treat the components (or factor scores) as
response variables. Ordinary multivariate analysis is already doing this, and doing
it much better.

254
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9.1.1 Assumptions

As in the case of univariate analysis, the statistical assumptions of multivariate analysis
concern conditional distributions – conditional upon various configurations of explanatory
variable X values. Here we are talking about the conditional joint distribution of several
response variables observed for each case, say Y1, . . . , Yk. These are often described as a
“vector” of observations. It may help to think of the collection of response variable values
for a case as a point in k-dimensional space, and to imagine an arrow pointing from the
origin (0, ..., 0) to the point (Y1, . . . , Yk); the arrow is literally a vector. As I say, this may
help. Or it may not.

The classical assumptions of multivariate analysis depend on the idea of a population
covariance. The population covariance between Y2 and Y4 is denoted σ2,4, and is defined
by

σ2,4 = ρ2,4σ2σ4,

where

σ2 is the population standard deviation of Y2,

σ4 is the population standard deviation of Y4, and

ρ2,4 is the population correlation between Y2 and Y4 (That’s the Greek letter rho).

The population covariance can be estimated by the sample covariance, defined in a parallel
way by s2,4 = r2,4s2s4, where s2 and s4 are the sample standard deviations and r is the
Pearson correlation coefficient. Whether we are talking about population parameters or
sample statistics, it is clear that zero covariance means zero correlation and vice versa.

We will use Σ (the capital Greek letter sigma) to stand for the population variance-
covariance matrix. This is a k by k rectangular array of numbers with variances on the
main diagonal, and covariances on the off-diagonals. For 4 response variables it would
look like this:

Σ =


σ2
1 σ1,2 σ1,3 σ1,4

σ1,2 σ2
2 σ2,3 σ2,4

σ1,3 σ2,3 σ2
3 σ3,4

σ1,4 σ2,4 σ3,4 σ2
4

 .
Notice the symmetry: Element (i, j) of a covariance matrix equals element (j, i).

With this background, the assumptions of classical multivariate analysis are parallel
to those of the standard univariate analysis of variance. Conditionally on the explanatory
variable values,

• Sample vectors Y = (Y1, . . . , Yk) represent independent observations for different
cases.

• Each conditional distribution is multivariate normal.

• Each conditional distribution has the same population variance- covariance matrix.
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Figure 9.1: Bivariate Normal Density
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The multivariate normal distribution is a generalization of the one-dimensional normal.

Instead of probabilities being areas under a curve they are now volumes under a surface.
Here is a picture of the bivariate normal density (for k = 2 response variables).

9.1.2 Significance Testing

In univariate analysis, different standard methods for deriving tests (these are hidden
from you) all point to Fisher’s F test. In multivariate analysis there are four major test
statistics, Wilks’ Lambda, Pillai’s Trace, the Hotelling-Lawley Trace, and Roy’s Greatest
Root.

When there is only one response variable, these are all equivalent to F . When there
is more than one response variable they are all about equally ”good” (in any reasonable
sense), and conclusions from them generally agree – but not always. Sometimes one will
designate a finding as significant and another will not. In this case you have borderline
results and there is no conventional way out of the dilemma.

The four multivariate test statistics all have F approximations that are used by SAS
and other stat packages to compute p-values. Tables are available in textbooks on multi-
variate analysis. For the first three tests (Wilks’ Lambda, Pillai’s Trace and the Hotelling-
Lawley Trace), the F approximations are very good. For Roy’s greatest root the F ap-
proximation is lousy. This is a problem with the cheap method for getting p-values, not
with the test itself. One can always use tables.

When a multivariate test is significant, many people then follow up with ordinary
univariate tests to see ”which response variable the results came from.” This is a reason-
able exploratory strategy. More conservative is to follow up with Bonferroni-corrected



9.1. MULTIVARIATE ANALYSIS OF VARIANCE 257

univariate tests. When you do this, however, there is no guarantee that any of the
Bonferroni-corrected tests will be significant.

It is also possible, and in some ways very appealing, to follow up a significant multi-
variate test with Scheffé tests. For example, Scheffé follow-ups to a significant one-way
multivariate ANOVA would include adjusted versions of all the corresponding univariate
one-way ANOVAs, all multivariate pairwise comparisons, all univariate pairwise compar-
isons, and countless other possibilities — all simultaneously protected at the 0.05 level.

You can also try interpret a significant multivariate effect by looking at the canonical
variates, but there is no guarantee they will make sense.

9.1.3 The Hospital Example

In the following example, cases are hospitals in 4 different regions of the U.S.. The
hospitals either have a medical school affiliation or not. The response variables are average
length of time a patient stays at the hospital, and infection risk – the estimated probability
that a patent will acquire an infection unrelated to what he or she came in with. We will
analyze these data as a two-way multivariate analysis of variance.

/******************** senicmv96a.sas *************************/

title ’Senic data: SAS glm & reg multivariate intro’;

%include ’/folders/myfolders/senicdef.sas’; /* senicdef.sas reads data, etc.

Includes reg1-reg3, ms1 & mr1-mr3 */

proc glm;

class region medschl;

model infrisk stay = region|medschl;

manova h = _all_;

The proc glm output starts with full univariate output for each response variable.
Then (for each effect tested) there is some multivariate output you ignore,

General Linear Models Procedure

Multivariate Analysis of Variance

Characteristic Roots and Vectors of: E Inverse * H, where

H = Type III SS&CP Matrix for REGION E = Error SS&CP Matrix

Characteristic Percent Characteristic Vector V’EV=1

Root

INFRISK STAY

0.14830859 95.46 -0.00263408 0.06067199

0.00705986 4.54 0.08806967 -0.03251114
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followed by the interesting part.

Manova Test Criteria and F Approximations for

the Hypothesis of no Overall REGION Effect

H = Type III SS&CP Matrix for REGION E = Error SS&CP Matrix

S=2 M=0 N=51

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.86474110 2.6127 6 208 0.0183

Pillai’s Trace 0.13616432 2.5570 6 210 0.0207

Hotelling-Lawley Trace 0.15536845 2.6672 6 206 0.0163

Roy’s Greatest Root 0.14830859 5.1908 3 105 0.0022

NOTE: F Statistic for Roy’s Greatest Root is an upper bound.

NOTE: F Statistic for Wilks’ Lambda is exact.

. . .

Manova Test Criteria and Exact F Statistics for

the Hypothesis of no Overall MEDSCHL Effect

H = Type III SS&CP Matrix for MEDSCHL E = Error SS&CP Matrix

S=1 M=0 N=51

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.92228611 4.3816 2 104 0.0149

Pillai’s Trace 0.07771389 4.3816 2 104 0.0149

Hotelling-Lawley Trace 0.08426224 4.3816 2 104 0.0149

Roy’s Greatest Root 0.08426224 4.3816 2 104 0.0149

NOTE: F Statistic for Roy’s Greatest Root is an upper bound.

. . .

Manova Test Criteria and F Approximations for

the Hypothesis of no Overall REGION*MEDSCHL Effect

H = Type III SS&CP Matrix for REGION*MEDSCHL E = Error SS&CP Matrix

S=2 M=0 N=51
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Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.95784589 0.7546 6 208 0.6064

Pillai’s Trace 0.04228179 0.7559 6 210 0.6054

Hotelling-Lawley Trace 0.04387599 0.7532 6 206 0.6075

Roy’s Greatest Root 0.04059215 1.4207 3 105 0.2409

NOTE: F Statistic for Roy’s Greatest Root is an upper bound.

NOTE: F Statistic for Wilks’ Lambda is exact.

Remember the output started with the univariate analyses. We’ll look at them here
(out of order) – just Type III SS, because that’s parallel to the multivariate tests. We are
tracking down the significant multivariate effects for Region and Medical School Affilia-
tion. Using Bonferroni correction means only believe it if p < 0.025.

Dependent Variable: INFRISK prob of acquiring infection in hospital

Source DF Type III SS Mean Square F Value Pr > F

REGION 3 6.61078342 2.20359447 1.35 0.2623

MEDSCHL 1 6.64999500 6.64999500 4.07 0.0461

REGION*MEDSCHL 3 5.32149160 1.77383053 1.09 0.3581

Dependent Variable: STAY av length of hospital stay, in days

Source DF Type III SS Mean Square F Value Pr > F

REGION 3 41.61422755 13.87140918 5.19 0.0022

MEDSCHL 1 22.49593643 22.49593643 8.41 0.0045

REGION*MEDSCHL 3 0.92295998 0.30765333 0.12 0.9511

We conclude that the multivariate effect comes from a univariate relationship between
the explanatory variables and stay. Question: If this is what we were going to do in the
end, why do a multivariate analysis at all? Why not just two univariate analyses with a
Bonferroni correction?

9.2 Within-cases (Repeated Measures) Analysis of

Variance

In certain kinds of experimental research, it is common to obtain repeated measurements
of a variable from the same individual at several different points in time. Usually it is



260 CHAPTER 9. MULTIVARIATE AND WITHIN-CASES ANALYSIS

unrealistic to assume that these repeated observations are uncorrelated, and it is very
desirable to build their inter-correlations into the statistical model.

Sometimes, an individual (in some combination of experimental conditions) is mea-
sured under essentially the same conditions at several different points in time. In that
case we will say that time is a within-subjects factor, because each subject contributes
data at more than one value of the explanatory variable “time.” If a subject experiences
only one value of an explanatory variable, it is called a between subjects factor.

Sometimes, an individual experiences more than one experimental treatment — for
example judging the same stimuli under different background noise levels. In this case, the
order of presentation of different noise levels would be counterbalanced so that time and
noise level are unrelated (not confounded). Here noise level would be a within-subjects
factor. The same study can definitely have more than one within-subjects factor and
more than one between subjects factor.

The meaning of main effects and interactions, as well as their graphical presentation,
is the same for within and between subjects factors.

We will discuss three methods for analyzing repeated measures data. In an order that
is convenient but not historically chronological they are

1. The multivariate approach

2. The classical univariate approach

3. The covariance structure approach

9.2.1 The multivariate approach to repeated measures

First, note that any of the 3 methods can be multivariate, in the sense that several
response variables can be measured at more than one time point. We will start with the
simple case in which a single response variable is measured for each subject on several
different occasions.

The basis of the multivariate approach to repeated measures is that the different
measurements conducted on each individual should be considered as multiple response
variables.

If there are k response variables, regular multivariate analysis allows for the anal-
ysis of up to k linear combinations of those response variables, instead of the original
response variables. The multivariate approach to repeated measures sets up those linear
combinations to be meaningful in terms of representing the within-cases structure of the
data.

For example, suppose that men and women in 3 different age groups are tested on
their ability to detect a signal under 5 different levels of background noise. There are 10
women and 10 men in each age group for a total n = 60. Order of presentation of noise
levels is randomized for each subject, and the subjects themselves are tested in random
order. This is a three-factor design. Age and sex are between subjects factors, and noise
level is a within-subjects factor.
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Let Y1, Y2, Y3, Y4 and Y5 be the “Detection Scores” under the 5 different noise levels.
Their population means are µ1, µ2, µ3, µ4 and µ5, respectively.

We now construct 5 linear combinations of the Y variables, and give their expected val-

ues (population means).

W1 = (Y1 + Y2 + Y3 + Y4 + Y5)/5 E(W1) = (µ1 + µ2 + µ3 + µ4 + µ5)/5
W2 = Y1 − Y2 E(W2) = µ1 − µ2

W3 = Y2 − Y3 E(W3) = µ2 − µ3

W4 = Y3 − Y4 E(W4) = µ3 − µ4

W5 = Y4 − Y5 E(W5) = µ4 − µ5

Tests for main effects and interactions are obtained by treating these linear combinations
(the W s) as response variables.

Between-subjects effects The main effects for age and sex, and the age by sex inter-
action, are just analyses conducted as usual on a single linear combination of the response
variables, that is, on W1. This is what we want; we are just averaging across within-subject
values.

Within-subject effects Suppose that (averaging across treatment groups) E(W2) =
E(W3) = E(W4) = E(W5) = 0. This means µ1 = µ2, µ2 = µ3, µ3 = µ4 and µ4 = µ5.
That is, there is no difference among noise level means, i.e., no main effect for the within-
subjects factor.

Interactions of between and within-subjects factors are between-subjects effects tested
simultaneously on the response variables representing differences among within-subject
values – W2 through W5 in this case. For example, a significant sex difference in W2

through W5 means that the pattern of differences in mean discrimination among noise
levels is different for males and females. Conceptually, this is exactly a noise level by sex
interaction.

Similarly, a sex by age interaction on W2 through W5 means that the pattern of
differences in mean discrimination among noise levels depends on special combinations of
age and sex – a three-way (age by sex by noise) interaction.

9.2.2 The Noise Example

Here is the first part of noise.dat. Order of vars is ident, interest, sex, age, noise level,
time noise level presented, discrim score. Notice that there are five lines of data for each
case.

1 2.5 1 2 1 4 50.7

1 2.5 1 2 2 1 27.4

1 2.5 1 2 3 3 39.1

1 2.5 1 2 4 2 37.5

1 2.5 1 2 5 5 35.4
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2 1.9 1 2 1 3 40.3

2 1.9 1 2 2 1 30.1

2 1.9 1 2 3 5 38.9

2 1.9 1 2 4 2 31.9

2 1.9 1 2 5 4 31.6

3 1.8 1 3 1 2 39.0

3 1.8 1 3 2 5 39.1

3 1.8 1 3 3 4 35.3

3 1.8 1 3 4 3 34.8

3 1.8 1 3 5 1 15.4

4 2.2 0 1 1 2 41.5

4 2.2 0 1 2 4 42.5

/**************** noise96a.sas ***********************/

options pagesize=250;

title ’Repeated measures on Noise data: Multivariate approach’;

proc format; value sexfmt 0 = ’Male’ 1 = ’Female’ ;

data loud;

infile ’/folders/myfolders/noise.dat’; /* Multivariate data read */

input ident interest sex age noise1 time1 discrim1

ident2 inter2 sex2 age2 noise2 time2 discrim2

ident3 inter3 sex3 age3 noise3 time3 discrim3

ident4 inter4 sex4 age4 noise4 time4 discrim4

ident5 inter5 sex5 age5 noise5 time5 discrim5 ;

format sex sex2-sex5 sexfmt.;

/* noise1 = 1, ... noise5 = 5. time1 = time noise 1 presented etc.

ident, interest, sex & age are identical on each line */

label interest = ’Interest in topic (politics)’;

proc glm;

class age sex;

model discrim1-discrim5 = age|sex;

repeated noise profile/ short summary;

First we get univariate analyses of discrim1-discrim5 – not the transformed vars yet.
Then,

General Linear Models Procedure

Repeated Measures Analysis of Variance

Repeated Measures Level Information

Dependent Variable DISCRIM1 DISCRIM2 DISCRIM3 DISCRIM4 DISCRIM5
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Level of NOISE 1 2 3 4 5

Manova Test Criteria and Exact F Statistics for

the Hypothesis of no NOISE Effect

H = Type III SS&CP Matrix for NOISE E = Error SS&CP Matrix

S=1 M=1 N=24.5

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.45363698 15.3562 4 51 0.0001

Pillai’s Trace 0.54636302 15.3562 4 51 0.0001

Hotelling-Lawley Trace 1.20440581 15.3562 4 51 0.0001

Roy’s Greatest Root 1.20440581 15.3562 4 51 0.0001

Manova Test Criteria and F Approximations for

the Hypothesis of no NOISE*AGE Effect

H = Type III SS&CP Matrix for NOISE*AGE E = Error SS&CP Matrix

S=2 M=0.5 N=24.5

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.84653930 1.1076 8 102 0.3645

Pillai’s Trace 0.15589959 1.0990 8 104 0.3700

Hotelling-Lawley Trace 0.17839904 1.1150 8 100 0.3597

Roy’s Greatest Root 0.16044230 2.0857 4 52 0.0960

NOTE: F Statistic for Roy’s Greatest Root is an upper bound.

NOTE: F Statistic for Wilks’ Lambda is exact.

Manova Test Criteria and Exact F Statistics for

the Hypothesis of no NOISE*SEX Effect

H = Type III SS&CP Matrix for NOISE*SEX E = Error SS&CP Matrix

S=1 M=1 N=24.5

Statistic Value F Num DF Den DF Pr > F
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Wilks’ Lambda 0.93816131 0.8404 4 51 0.5060

Pillai’s Trace 0.06183869 0.8404 4 51 0.5060

Hotelling-Lawley Trace 0.06591477 0.8404 4 51 0.5060

Roy’s Greatest Root 0.06591477 0.8404 4 51 0.5060

Manova Test Criteria and F Approximations for

the Hypothesis of no NOISE*AGE*SEX Effect

H = Type III SS&CP Matrix for NOISE*AGE*SEX E = Error SS&CP Matrix

S=2 M=0.5 N=24.5

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.84817732 1.0942 8 102 0.3735

Pillai’s Trace 0.15679252 1.1058 8 104 0.3654

Hotelling-Lawley Trace 0.17313932 1.0821 8 100 0.3819

Roy’s Greatest Root 0.12700316 1.6510 4 52 0.1755

NOTE: F Statistic for Roy’s Greatest Root is an upper bound.

NOTE: F Statistic for Wilks’ Lambda is exact.

General Linear Models Procedure

Repeated Measures Analysis of Variance

Tests of Hypotheses for Between Subjects Effects

Source DF Type III SS Mean Square F Value Pr > F

AGE 2 1751.814067 875.907033 5.35 0.0076

SEX 1 77.419200 77.419200 0.47 0.4946

AGE*SEX 2 121.790600 60.895300 0.37 0.6911

Error 54 8839.288800 163.690533

Then we are given “Univariate Tests of Hypotheses for Within Subject Effects” We
will discuss these later. After that in the lst file,

Repeated measures on Noise data: Multivariate approach

General Linear Models Procedure

Repeated Measures Analysis of Variance

Analysis of Variance of Contrast Variables

NOISE.N represents the nth successive difference in NOISE
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Contrast Variable: NOISE.1

Source DF Type III SS Mean Square F Value Pr > F

MEAN 1 537.00416667 537.00416667 5.40 0.0239

AGE 2 10.92133333 5.46066667 0.05 0.9466

SEX 1 45.93750000 45.93750000 0.46 0.4996

AGE*SEX 2 83.67600000 41.83800000 0.42 0.6587

Error 54 5370.09100000 99.44612963

Contrast Variable: NOISE.2

Source DF Type III SS Mean Square F Value Pr > F

MEAN 1 140.14816667 140.14816667 1.36 0.2489

AGE 2 106.89233333 53.44616667 0.52 0.5985

SEX 1 33.90016667 33.90016667 0.33 0.5688

AGE*SEX 2 159.32233333 79.66116667 0.77 0.4670

Error 54 5569.94700000 103.14716667

Contrast Variable: NOISE.3

Source DF Type III SS Mean Square F Value Pr > F

MEAN 1 50.41666667 50.41666667 0.72 0.4012

AGE 2 56.40633333 28.20316667 0.40 0.6720

SEX 1 195.84266667 195.84266667 2.78 0.1012

AGE*SEX 2 152.63633333 76.31816667 1.08 0.3456

Error 54 3802.61800000 70.41885185

Contrast Variable: NOISE.4

Source DF Type III SS Mean Square F Value Pr > F

MEAN 1 518.61600000 518.61600000 7.77 0.0073

AGE 2 449.45100000 224.72550000 3.37 0.0418
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SEX 1 69.55266667 69.55266667 1.04 0.3118

AGE*SEX 2 190.97433333 95.48716667 1.43 0.2479

Error 54 3602.36600000 66.71048148

9.2.3 The classical univariate approach to repeated measures

The univariate approach to repeated measures is chronologically the oldest. It can be
derived in a clever way from the multivariate tests involving within subjects factors. It’s
what you get at the end of the default glm output – before the analysis of transformed
variables, which you have to request specially.

General Linear Models Procedure

Repeated Measures Analysis of Variance

Univariate Tests of Hypotheses for Within Subject Effects

Source: NOISE

Adj Pr > F

DF Type III SS Mean Square F Value Pr > F G - G H - F

4 2289.31400000 572.32850000 14.12 0.0001 0.0001 0.0001

Source: NOISE*AGE

Adj Pr > F

DF Type III SS Mean Square F Value Pr > F G - G H - F

8 334.42960000 41.80370000 1.03 0.4134 0.4121 0.4134

(The adj. G - G business will be explained later)

Source: NOISE*SEX

Adj Pr > F

DF Type III SS Mean Square F Value Pr > F G - G H - F

4 142.42280000 35.60570000 0.88 0.4777 0.4722 0.4777

Source: NOISE*AGE*SEX

Adj Pr > F

DF Type III SS Mean Square F Value Pr > F G - G H - F

8 345.66440000 43.20805000 1.07 0.3882 0.3877 0.3882

Source: Error(NOISE)

DF Type III SS Mean Square

216 8755.83320000 40.53626481

Greenhouse-Geisser Epsilon = 0.9356
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Huynh-Feldt Epsilon = 1.1070

The classical univariate model for repeated measures is a mixed or sometimes a random
effects model in which subject is a factor that, because its values are randomly sampled
from a large population of potential subjects (just pretend), is a random factor. This
factor is nested within any between-subjects factors; for example, Subject One in the
“Male” group is a different person from Subject One in the “Female” group. The factor
subject does not interact with any other factors. Interactions between subjects and various
factors may sometimes be formally computed, but if they are computed they are always
error terms; they are never tested.

In the noise level example, we could do

/**************** noise96b.sas ***********************/

options pagesize=250;

title ’Repeated measures on Noise data: Univariate approach’;

proc format; value sexfmt 0 = ’Male’ 1 = ’Female’ ;

data loud;

infile ’/folders/myfolders/noise.dat’; /* Univariate data read */

input ident interest sex age noise time discrim ;

format sex sexfmt.;

label interest = ’Interest in topic (politics)’

time = ’Order of presenting noise level’;

proc glm;

class age sex noise ident;

model discrim = ident(age*sex) age|sex|noise;

random ident(age*sex) / test;

• Notice the univariate data read! We are assuming n = number of observations,
not number of cases.

• The results are identical to the univariate output produced as a by-product of the
multivariate approach to repeated measures – if you know where to look.

• The overall (initial) test, and tests associated with Type I and Type III SS are all
invalid.

• There are expected mean squares, which you should probably ignore.

• There are also repeated warnings that ”This test assumes one or more other

fixed effects are zero.” SAS is buying testability of the hypotheses by assum-
ing that you’re only interested in an effect if all the higher-order interactions involv-
ing the effect are absent.
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The univariate approach to repeated measures has some real virtues, sometimes. Be-
cause n = the number of observations rather than the number of cases, it is possible to
have more parameters in a model than cases, or even more measurements than cases. In
this situation the multivariate approach just blows up. It’s either the classical univariate
approach or the covariance structure approach, which will be discussed later.

The univariate approach may assume n is the number of observations, but it does not
assume those observations are independent. In fact, the observations that come from the
same subject are assumed to be correlated. The following discussion assumes that the
model has no interactions between subjects and other factors; they’re not only not tested,
they’re not even computed. This is not the only way to do it, and in fact sometimes the
univariate tests produced by the repeated statement in proc glm are based on models
with such interactions. But the strict no-interaction model is quite common, and easy to
talk about.

The “random effect” for subjects is a little piece of random error, characteristic of an
individual. We think of it as random because the individual was randomly sampled from
a population. If, theoretically, the only reason that the measurements from a case are
correlated is that each one is affected by this same little piece of under-performance or
over-performance, the univariate approach represents a very good model.

The ”random effect for a subject” idea implies a variance-covariance matrix of the
response variables (say Y1, . . . , 4) with a compound symmetry structure.

Σ =


σ2 + σ1 σ1 σ1 σ1
σ1 σ2 + σ1 σ1 σ1
σ1 σ1 σ2 + σ1 σ1
σ1 σ1 σ1 σ2 + σ1

 .
Actually, compound symmetry is sufficient but not necessary for the univariate repeated
F tests to be valid. All that’s necessary is sphericity, which means the covariances of all
differences among Y ’s within a case are the same.

The classical univariate approach does have some weak points.

• The model is good if the only reason for correlation among the repeated measures
is that one little piece of individuality added to each measurement by a subject.
However, if there are other sources of covariation among the repeated measures
(like learning, or fatigue, or memory of past performance), there is too much chance
rejection of the null hypothesis. In this case the multivariate approach, with its un-
known variance-covariance matrix, is more conservative. It is also more appropriate,
if you have sufficient sample size.

• Even more conservative (overly so, if the assumptions of the multivariate approach
are met) is the Greenhouse-Geisser correction, which compensates for the problem
by reducing the error degrees of freedom.

• If the design is unbalanced (non-proportional n’s), the “F -tests” of the classical
univariate approach do not have an F distribution (even if all the statistical as-
sumptions are satisfied), and it is unclear what they mean, if anything.
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• Like the multivariate approach, the univariate approach to repeated measures anal-
ysis throws out a case if any of the observations are missing. (Did somebody say
“mean substitution?” Oh no!)

• The univariate approach has real trouble with unequally spaced observations, and
with very natural and high quality data sets where there may be different numbers
of observations are collected for each individual.

9.2.4 The covariance structure approach to repeated measures

In the covariance structure approach, the data are set up to be read in a univariate
manner, and one of the variables is a case identification, which will be used to determine
which observations of a variable come from the same case. Naturally, data lines from the
same case should be adjacent in the file.

Instead of assuming independence or inducing compound symmetry within subjects by
random effects assumptions, one directly specifies the structure of the covariance matrix
of the observations that come from the same subject.

The following present no problem at all:

• Time-varying covariates (categorical, too)

• Unbalanced designs

• Unequally spaced observations

• Missing or unequal numbers of observations within subjects 1

• More variables than subjects (but not more parameters than subjects)

It’s implemented with SAS proc mixed. Only SAS seems to have it, though this
should change as other software companies work to catch up.

• The “mixed” in proc mixed refers to mixed-model ANOVA. SAS proc mixed is
indeed very strong in this, but we’re just using it here for within-cases ANOVA. A
good number of other powerful features will not be discussed here.

• Lots of different covariance structures are possible, including compound symmetry
and unknown.

• Everything’s still assumed multivariate normal.

/**************** noise96c.sas ***********************/

options pagesize=250;

title ’Repeated measures on Noise data: Cov Struct Approach’;

1Provided this is unrelated to the variable being repeatedly measured. Like if the response variable is
how sick a person is, and the data might be missing because the person is too sick to be tested, there is
a serious problem.
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proc format; value sexfmt 0 = ’Male’ 1 = ’Female’ ;

data loud;

infile ’/folders/myfolders/noise.dat’; /* Univariate data read */

input ident interest sex age noise time discrim ;

format sex sexfmt.;

label interest = ’Interest in topic (politics)’

time = ’Order of presenting noise level’;

proc mixed method = ml;

class age sex noise;

model discrim = age|sex|noise;

repeated / type = un subject = ident r;

lsmeans age noise;

proc mixed method = ml;

class age sex noise;

model discrim = age|sex|noise;

repeated / type = cs subject = ident r;

Now part of the output file.

The MIXED Procedure

Class Level Information

Class Levels Values

AGE 3 1 2 3

SEX 2 Female Male

NOISE 5 1 2 3 4 5

ML Estimation Iteration History

Iteration Evaluations Objective Criterion

0 1 1521.4783527

1 1 1453.7299937 0.00000000

Convergence criteria met.
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R Matrix for Subject 1

Row COL1 COL2 COL3 COL4 COL5

1 54.07988333 17.08300000 21.38658333 17.91785000 24.27668333

2 17.08300000 69.58763333 15.56748333 29.98861667 21.71448333

3 21.38658333 15.56748333 54.37978333 25.15906667 21.00126667

4 17.91785000 29.98861667 25.15906667 59.31531667 27.58265000

5 24.27668333 21.71448333 21.00126667 27.58265000 55.88941667

Covariance Parameter Estimates (MLE)

Cov Parm Estimate Std Error Z Pr > |Z|

DIAG UN(1,1) 54.07988333 9.87359067 5.48 0.0001

UN(2,1) 17.08300000 8.22102992 2.08 0.0377

UN(2,2) 69.58763333 12.70490550 5.48 0.0001

UN(3,1) 21.38658333 7.52577602 2.84 0.0045

UN(3,2) 15.56748333 8.19197469 1.90 0.0574

UN(3,3) 54.37978333 9.92834467 5.48 0.0001

UN(4,1) 17.91785000 7.66900119 2.34 0.0195

UN(4,2) 29.98861667 9.15325956 3.28 0.0011

UN(4,3) 25.15906667 8.01928166 3.14 0.0017

UN(4,4) 59.31531667 10.82944565 5.48 0.0001

UN(5,1) 24.27668333 7.75870531 3.13 0.0018

UN(5,2) 21.71448333 8.52518917 2.55 0.0109

UN(5,3) 21.00126667 7.61610965 2.76 0.0058

UN(5,4) 27.58265000 8.24206793 3.35 0.0008

UN(5,5) 55.88941667 10.20396474 5.48 0.0001

Residual 1.00000000 . . .

Model Fitting Information for DISCRIM

Description Value

Observations 300.0000

Variance Estimate 1.0000

Standard Deviation Estimate 1.0000

Log Likelihood -1002.55
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Akaike’s Information Criterion -1017.55

Schwarz’s Bayesian Criterion -1045.32

-2 Log Likelihood 2005.093

Null Model LRT Chi-Square 67.7484

Null Model LRT DF 14.0000

Null Model LRT P-Value 0.0000

Tests of Fixed Effects

Source NDF DDF Type III F Pr > F

AGE 2 54 5.95 0.0046

SEX 1 54 0.53 0.4716

AGE*SEX 2 54 0.41 0.6635

NOISE 4 216 18.07 0.0001

AGE*NOISE 8 216 1.34 0.2260

SEX*NOISE 4 216 0.99 0.4146

AGE*SEX*NOISE 8 216 1.30 0.2455

From the multivariate approach we had F = 5.35, p < .001 for age & approx F = 15.36 for noise.

Least Squares Means

Level LSMEAN Std Error DDF T Pr > |T|

AGE 1 38.66100000 1.21376060 54 31.85 0.0001

AGE 2 35.24200000 1.21376060 54 29.04 0.0001

AGE 3 32.76700000 1.21376060 54 27.00 0.0001

NOISE 1 39.82166667 0.94938474 216 41.94 0.0001

NOISE 2 36.83000000 1.07693727 216 34.20 0.0001

NOISE 3 35.30166667 0.95201351 216 37.08 0.0001

NOISE 4 34.38500000 0.99427793 216 34.58 0.0001

NOISE 5 31.44500000 0.96513744 216 32.58 0.0001

Now for the second mixed run we get the same kind of beginning, and then for compound symmetry structure,

Tests of Fixed Effects



9.2. WITHIN-CASES (REPEATED MEASURES) ANALYSIS OF VARIANCE 273

Source NDF DDF Type III F Pr > F

AGE 2 54 5.95 0.0046

SEX 1 54 0.53 0.4716

AGE*SEX 2 54 0.41 0.6635

NOISE 4 216 15.69 0.0001

AGE*NOISE 8 216 1.15 0.3338

SEX*NOISE 4 216 0.98 0.4215

AGE*SEX*NOISE 8 216 1.18 0.3096

Now proc glm will allow easy examination of residuals no matter which approach you
take to repeated measures, provided the data are read in a univariate manner.

/**************** noise96d.sas ***********************/

options pagesize=60;

title ’Repeated measures on Noise data: Residuals etc.’;

proc format; value sexfmt 0 = ’Male’ 1 = ’Female’ ;

data loud;

infile ’/folders/myfolders/noise.dat’; /* Univariate data read */

input ident interest sex age noise time discrim ;

format sex sexfmt.;

label interest = ’Interest in topic (politics)’

time = ’Order of presenting noise level’;

proc glm;

class age sex noise;

model discrim = age|sex|noise;

output out=resdata predicted=predis residual=resdis;

/* Look at some residuals */

proc sort; by time;

proc univariate plot;

var resdis; by time;

proc plot;

plot resdis * (ident interest);

/* Include time */

proc mixed method = ml;

class age sex noise time;

model discrim = time age|sex|noise;

repeated / type = un subject = ident r;

lsmeans time age noise;
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Then I generated residuals from this new model using glm, and plotted again. Nothing.

Variable=RESDIS

|

25 +

|

|

|

20 + 0

| |

| |

| |

15 + |

| | |

| | |

| | | |

10 + | | |

| | | | +-----+

| | | | | |

| | | +-----+ *-----*

5 + | | | | | |

| | +-----+ | | | + |

| | | | | | | |

| | | | *-----* | |

0 + | | | | + | | |

| +-----+ *--+--* | | +-----+

| | | | | | | |

| | | | | +-----+ |

-5 + | + | +-----+ | |

| *-----* | | |

| | | | | |

| | | | | |

-10 + +-----+ | | |

| | | | |

| | | | |

| | | | |

-15 + | | | |

| | | |

| | 0 |

| |

-20 + | 0

| |

| |
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| |

-25 +

------------+-----------+-----------+-----------+-----------

TIME 1 2 3 4

Unfortunately time = 5 wound up on a separate page. When time is included in the
model, the results get stronger but conclusions don’t change.

Tests of Fixed Effects

Source NDF DDF Type III F Pr > F

TIME 4 266 17.67 0.0001

AGE 2 266 18.45 0.0001

SEX 1 266 1.63 0.2027

AGE*SEX 2 266 1.28 0.2789

NOISE 4 266 10.95 0.0001

AGE*NOISE 8 266 0.51 0.8488

SEX*NOISE 4 266 0.44 0.7784

AGE*SEX*NOISE 8 266 0.74 0.6573

Least Squares Means

Level LSMEAN Std Error DDF T Pr > |T|

TIME 1 29.54468242 0.91811749 266 32.18 0.0001

TIME 2 34.61557451 0.91794760 266 37.71 0.0001

TIME 3 36.18863723 0.92819179 266 38.99 0.0001

TIME 4 39.72344496 0.91838886 266 43.25 0.0001

TIME 5 37.71099421 0.93376736 266 40.39 0.0001

AGE 1 38.66100000 0.68895774 266 56.12 0.0001

AGE 2 35.24200000 0.68895774 266 51.15 0.0001

AGE 3 32.76700000 0.68895774 266 47.56 0.0001

NOISE 1 39.69226830 0.89132757 266 44.53 0.0001

NOISE 2 36.80608879 0.89274775 266 41.23 0.0001

NOISE 3 35.35302821 0.89130480 266 39.66 0.0001

NOISE 4 34.12899017 0.89502919 266 38.13 0.0001

NOISE 5 31.80295787 0.89180628 266 35.66 0.0001
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Some nice covariance structures are available in proc mixed.

Variance Components: type = vc Σ =


σ2
1 0 0 0

0 σ2
2 0 0

0 0 σ2
3 0

0 0 0 σ2
4



Compound Symmetry: type = cs Σ =


σ2 + σ1 σ1 σ1 σ1
σ1 σ2 + σ1 σ1 σ1
σ1 σ1 σ2 + σ1 σ1
σ1 σ1 σ1 σ2 + σ1



Unknown: type = un Σ =


σ2
1 σ1,2 σ1,3 σ1,4

σ1,2 σ2
2 σ2,3 σ2,4

σ1,3 σ2,3 σ2
3 σ3,4

σ1,4 σ2,4 σ3,4 σ2
4



Banded: type = un(1) Σ =


σ2
1 σ5 0 0
σ5 σ2

2 σ6 0
0 σ6 σ2

3 σ7
0 0 σ7 σ2

4



First order autoregressive: type = ar(1) Σ = σ2


1 ρ ρ2 ρ3

ρ 1 ρ ρ2

ρ2 ρ 1 ρ
ρ3 ρ2 ρ 1


There are more, including Toeplitz, Banded Toeplitz, Factor analytic, ARMA, and

Spatial (covariance is a function of Euclidean distance between observations).



Chapter 10

Introduction to R

10.1 History and Terminology

Most major statistical packages are computer programs that have their own control lan-
guage. The syntax goes with one computer program and just one. The SAS language
controls the SAS software, and that’s it. Minitab syntax controls Minitab, and that’s
it. S is a little different. Originally, S was both a program and a language; they were
developed together at the former AT&T Bell Labs starting in the late 1970’s. Like the
unix operating system (also developed around the same time at Bell Labs, among other
places), S was open-source and in the public domain. “Open-source” means that the
actual program code (initially in Fortran, later in C) was public. It was free to anyone
with the expertise to compile and install it.

Later, S was spun off into a private company that is now called Insightful Corporation.
They incorporated both the S syntax and the core of the S software into a commercial
product called S-Plus. S-Plus is not open-source. The “Plus” part of S-Plus is definitely
proprietary. S-Plus uses the S language, but the S language is not owned by Insightful
Corporation. It’s in the public domain.

R also uses the S language. This is a unix joke. You know, like how the unix less

command is an improved version of more. Get it? R is produced by a team of volunteer
programmers and statisticians, under the auspices of the Free Software Foundation. It
is an official GNU project. What is GNU? GNU stands for “GNU’s Not Unix.” The
recursive nature of this answer is a unix joke. Get it?

The GNU project was started by a group of programmers (led by the great Richard
Stallman, author of emacs) who believed that software should be open-source and free for
anyone to use, copy or modify. They were irritated by the fact that corporations could
take unix, enhance it in a few minor (or major) ways, and copyright the result. Solaris,
the version of unix used on many Sun workstations, is an example. An even more extreme
example is Macintosh OS X, which is just a very elaborate graphical shell running on top
of Berkeley Standard Distribution unix.

The GNU operating system was to look and act like unix, but to be rewritten from
the ground up, and legally protected in such a way that it could not be incorporated into
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any piece of software that was proprietary. Anybody would be able to modify it and even
sell the modified version – or the original. But any modified version, like the original,
would have to be open-source, with no restrictions on copying or use of the software. The
main GNU project has been successful; the result is called linux.

R is another successful GNU project. The R development team rewrote the S soft-
ware from scratch without using any of the original code. It runs under the unix, linux,
MS Windows and Macintosh operating systems. It is free, and easy to install. Go to
http://www.R-project.org to obtain a copy of the software or more information. There
are also links on the course home page.

While they were redoing S, the R development team quietly fixed an extremely serious
problem. While the S language provides a beautiful environment for simulation and
customized computer-intensive statistical methods, the S software did the job in a terribly
inefficient way. The result was that big simulations ran very slowly, and long-running jobs
often aborted or crashed the system unless special and very unpleasant measures were
taken. S-Plus, because it is based on the original S code, inherits these problems. R is
immune to them.

Anyway, S is a language, and R is a piece of software that is controlled by the S
language. The discussion that follows will usually refer to S, but all the examples will use
the R implementation of S, running in a unix environment. However, R is supposed to be
almost entirely the same regardless of hardware and operating system. Mostly, what we
do here will also work in S-Plus. Why would you ever want to use S-Plus? Well, it does
have some capabilities that R does not have (yet), particularly in the areas of survival
analysis and spatial statistics.

10.2 S as a Calculator

To start R, type “R” and return at the unix prompt. Like this:

/res/jbrunner/442/S > R

R : Copyright 2001, The R Development Core Team

Version 1.4.0 (2001-12-19)

R is free software and comes with ABSOLUTELY NO WARRANTY.

You are welcome to redistribute it under certain conditions.

Type ‘license()’ or ‘licence()’ for distribution details.

R is a collaborative project with many contributors.

Type ‘contributors()’ for more information.

Type ‘demo()’ for some demos, ‘help()’ for on-line help, or

‘help.start()’ for a HTML browser interface to help.

Type ‘q()’ to quit R.
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>

S is built around functions. As you can see above, even asking for help and quitting
are functions (with no arguments).

The primary mode of operation of S is line oriented and interactive. It is quite unix-
like, with all the good and evil that implies. S gives you a prompt that looks like a ”greater
than” sign. You type a command, press Return (Enter), and the program does what you
say. Its default behaviour is to return the value of what you type, often a numerical value.
In the first example, we receive the “>” prompt, type “1+1” and then press the Enter
key. S tells us that the answer is 2. Then we obtain 23 = 8.

> 1+1

[1] 2

> 2^3 # Two to the power 3

[1] 8

What is this [1] business? It’s clarified when we ask for the numbers from 1 to 30.

> 1:30

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

[26] 26 27 28 29 30

S will give you an array of numbers in compact form, using a number in brackets to
indicate the ordinal position of the first item on each line. When it answered “1+1” with
[1] 2, it was telling us that the first item in this array (of one item) was 2.

S has an amazing variety of mathematical and statistical functions. For example, the
gamma function is defined by Γ(a) =

∫∞
0
e−tta−1 dt, and with enough effort you can prove

that Γ(1
2
) =
√
π. Note that everything to the left of a # is a comment.

> gamma(.5)^2 # Gamma(1/2) = Sqrt(Pi)

[1] 3.141593

Assignment of values is carried out by a “less than” sign followed immediately by a
minus sign; it looks like an arrow pointing to the left. The command x <- 1 would be
read “x gets 1.”

> x <- 1 # Assigns the value 1 to x

> y <- 2

> x+y

[1] 3

> z <- x+y

> z

[1] 3

> x <- c(1,2,3,4,5,6) # Collect these numbers; x is now a vector

Originally, x was a single number. Now it’s a vector (array) of 6 numbers. S operates
naturally on vectors.
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> y <- 1 + 2*x

> cbind(x,y)

x y

[1,] 1 3

[2,] 2 5

[3,] 3 7

[4,] 4 9

[5,] 5 11

[6,] 6 13

The cbind command binds the vectors x and y into columns. The result is a matrix
whose value is returned (displayed on the screen), since it is not assigned to anything.

The bracket (subscript) notation for selecting elements of an array is very powerful.
The following is just a simple example.

> z <- y[x>4] # z gets y such that x > 4

> z

[1] 11 13

If you put an array of integers inside the brackets, you get those elements, in the order
indicated.

> y[c(6,5,4,3,2,1)] # y in opposite order

[1] 13 11 9 7 5 3

> y[c(2,2,2,3,4)] # Repeats are okay

[1] 5 5 5 7 9

> y[7] # There is no seventh element. NA is the missing value code

[1] NA

Most operations on arrays are performed element by element. If you take a function
of an array, S applies the function to each element of the array and returns an array of
function values.

> z <- x/y # Most operations are performed element by element

> cbind(x,y,z)

x y z

[1,] 1 3 0.3333333

[2,] 2 5 0.4000000

[3,] 3 7 0.4285714

[4,] 4 9 0.4444444

[5,] 5 11 0.4545455

[6,] 6 13 0.4615385

> x <- seq(from=0,to=3,by=.1) # A sequence of numbers

> y <- sqrt(x)
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S is a great environment for producing high-quality graphics, though we won’t use it
much for that. Here’s just one example. We activate the pdf graphics device, so that all
subsequent graphics in the session are written to a file that can be viewed with Adobe’s
Acrobat Reader. We then make a line plot of the function y =

√
x, and quit.

> pdf("testor.pdf")

> plot(x,y,type=’l’) # That’s a lower case L

> q()

Actually, graphics are a good reason to download and install R on your desktop or
laptop computer. By default, you’ll see nice graphics output on your screen. Under unix,
it’s a bit of a pain unless you’re in an X-window environment (and we’re assuming that
you are not). You have to transfer that pdf file somewhere and view it with Acrobat or
Acrobat Reader.

Continuing the session, a couple of interesting things happen when we quit. First,
we are asked if we want to save the “workspace image.” The responses are Yes, No and
Cancel (don’t quit yet). If you say Yes, R will write a file containing all the objects (x, y
and z in the present case) that have been created in the session. Next time you start R,
your work will be “restored” to where it was when you quit.

Save workspace image? [y/n/c]: y

credit.erin > ls

testor.pdf

Notice that when we type ls, to list the files, we see only testor.pdf, the pdf file
containing the plot of y =

√
x. Where is the workspace image? It’s an invisible file; type

ls -a to see all the files.

credit.erin > ls -a

./ ../ .RData testor.pdf

There it is: .RData. Files beginning with a period don’t show up in output to the ls

command unless you use the -a option. R puts .RData in the (sub)directory from which
R was invoked. This means that if if you have a separate subdirectory for each project or
assignment (not a bad way to organize your work), R will save the workspace from each
job in a separate place, so that you can have variables with names like x in more than
one place, containing different numbers. When we return to R,

credit.erin > R

R : Copyright 2001, The R Development Core Team

Version 1.4.0 (2001-12-19)

R is free software and comes with ABSOLUTELY NO WARRANTY.

You are welcome to redistribute it under certain conditions.

Type ‘license()’ or ‘licence()’ for distribution details.
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R is a collaborative project with many contributors.

Type ‘contributors()’ for more information.

Type ‘demo()’ for some demos, ‘help()’ for on-line help, or

‘help.start()’ for a HTML browser interface to help.

Type ‘q()’ to quit R.

[Previously saved workspace restored]

> ls()

[1] "x" "y" "z"

> max(x)

[1] 3

All the examples so far (and many of the examples to follow) are interactive, but for
serious work, it’s better to work with a command file. Put your commands in a file and
execute them all at once. Suppose your commands are in a file called commands.R. At
the S prompt, you’d execute them with source("commands.R"). From the unix prompt,
you’d do it like this. The --vanilla option invokes a “plain vanilla” mode of operation
suitable for this situation.

credit.erin > R --vanilla < commands.R > homework.out

For really big simulations, you may want to run the job in the background at a lower
priority. The & suffix means run it in the background. nohup means don’t hang up on me
when I log out. nice means be nice to other users, and run it at a lower priority.

credit.erin > nohup nice R --vanilla < bvnorm.R > bvnorm.out &

10.3 S as a Stats Package

Here, we illustrate traditional multiple regression with S, testing the parallel slopes as-
sumption for the metric cars data. Compare mcars.sas and the output file it produces
to what you see below. There are lots of comment statements that help explain what is
going on. More detail will be given in lecture. In addition, the course home page has a
link to a nice 100-page manual. If you plan to use R seriously, you should download this
manual and read it. But if you come to lecture, you probably don’t need to look at it for
the purposes of this class.

Here is the “program” named lesson2.R.

####################################################################

# lesson2.R: execute with R --vanilla < lesson2.R > lesson2.out #

####################################################################
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datalist <- scan("mcars.dat",list(id=0,country=0,kpl=0,weight=0,length=0))

# datalist is a linked list.

datalist

# There are other ways to read raw data. See help(read.table).

weight <- datalist$weight ; length <- datalist$length ; kpl <- datalist$kpl

country <- datalist$country

cor(cbind(weight,length,kpl))

# The table command gives a bare-bones frequency distribution

table(country)

# That was a matrix. The numbers 1 2 3 are labels.

# You can save it, and you can get at its contents

countrytable <- table(country)

countrytable[2]

# There is an "if" function that you could use to make dummy variables,

# but it’s easier to use factor.

countryfac <- factor(country,levels=c(1,2,3),

label=c("US","Japanese","European"))

# This makes a FACTOR corresponding to country, like declaring it

# to be categorical. How are dummy variables being set up?

contrasts(countryfac)

# The first level specified is the reference category. You can get a

# different reference category by specifying the levels in a different order.

cntryfac <- factor(country,levels=c(2,1,3),

label=c("Japanese","US","European"))

contrasts(cntryfac)

# Test interaction. For comparison, with SAS we got F = 11.5127, p < .0001

# First fit (and save!) the reduced model. lm stands for linear model.

redmod <- lm(kpl ~ weight+cntryfac)

# The object redmod is a linked list, including lots of stuff like all the

# residuals. You don’t want to look at the whole thing, at least not now.

summary(redmod)

# Full model is same stuff plus interaction. You COULD specify the whole thing.

fullmod <- update(redmod,. ~ . + weight*cntryfac)

anova(redmod,fullmod)

# The ANOVA summary table is a matrix. You can get at its (i,j)th element.

aovtab <- anova(redmod,fullmod)

aovtab[2,5] # The F statistic

aovtab[2,6] < .05 # p < .05 -- True or false?

1>6 # Another example of an expression taking the logical value true or false.

Here is the output file lesson2.out. Note that it shows the commands. This would
not happen if you used source("lesson2.R") from within R. I have added some blank
lines to the output file to make it more readable.

> ####################################################################

> # lesson2.R: execute with R --vanilla < lesson2.R > lesson2.out #

> ####################################################################

>

> datalist <- scan("mcars.dat",list(id=0,country=0,kpl=0,weight=0,length=0))

Read 100 records

> # datalist is a linked list.

> datalist

$id

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

[19] 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

[37] 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

[55] 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

[73] 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90

[91] 91 92 93 94 95 96 97 98 99 100

$country

[1] 1 2 1 1 1 1 3 1 3 1 2 1 1 3 2 1 1 1 3 2 1 1 1 3 2 1 1 1 1 1 2 1 2 1 1 1 3
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[38] 3 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 3 1 1 1 2 1 1 1 1 2 2 1 1 1 2 1 1

[75] 1 2 2 3 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 3 3 3 1 1 1

$kpl

[1] 5.04 10.08 9.24 7.98 7.98 7.98 9.66 7.56 5.88 10.92 12.60 8.40

[13] 8.82 10.92 7.56 12.18 5.04 5.88 7.14 13.02 5.88 10.92 6.72 10.50

[25] 8.82 5.88 6.72 11.76 9.24 7.56 7.56 11.76 10.50 5.88 9.24 7.98

[37] 7.14 17.22 6.72 7.98 7.14 6.30 5.88 8.82 9.24 9.24 5.88 8.40

[49] 10.50 9.24 7.56 7.56 12.60 12.60 7.98 7.56 8.40 9.66 7.56 6.30

[61] 5.88 7.56 10.08 5.04 8.82 11.76 14.70 10.08 9.24 10.92 10.50 7.56

[73] 8.82 7.56 7.14 7.56 10.08 8.82 5.88 8.82 8.82 10.08 17.22 6.72

[85] 9.24 5.88 7.56 11.76 7.98 8.82 5.88 5.88 7.14 5.04 17.22 17.22

[97] 7.14 10.50 6.72 7.56

$weight

[1] 2178.0 1026.0 1188.0 1444.5 1485.0 1485.0 972.0 1665.0 1539.0 1003.5

[11] 891.0 1273.5 1930.5 823.5 1084.5 949.5 2178.0 1755.0 1426.5 990.0

[21] 1827.0 1134.0 1813.5 1192.5 1237.5 1858.5 1813.5 1062.0 1431.0 1651.5

[31] 1201.5 1062.0 1008.0 1858.5 1318.5 1440.0 1273.5 918.0 1813.5 1530.0

[41] 1683.0 1836.0 1723.5 1827.0 1449.0 1318.5 1858.5 1273.5 868.5 1318.5

[51] 1665.0 1620.0 954.0 954.0 1516.5 1665.0 1462.5 972.0 1665.0 1674.0

[61] 1755.0 1201.5 1237.5 2178.0 1930.5 1062.0 922.5 1026.0 1449.0 1134.0

[71] 990.0 1084.5 1930.5 1516.5 1507.5 1084.5 1026.0 958.5 1858.5 1930.5

[81] 1192.5 1237.5 918.0 1813.5 1449.0 1755.0 1561.5 1062.0 1489.5 1192.5

[91] 1827.0 1755.0 1683.0 2178.0 918.0 918.0 1426.5 990.0 1660.5 1498.5

$length

[1] 591.82 431.80 426.72 510.54 502.92 502.92 436.88 543.56 487.68 431.80

[11] 391.16 495.30 518.16 360.68 441.96 414.02 591.82 518.16 490.22 419.10

[21] 561.34 462.28 523.24 449.58 467.36 551.18 523.24 431.80 490.22 553.72

[31] 444.50 431.80 436.88 551.18 472.44 505.46 480.06 393.70 523.24 508.00

[41] 558.80 563.88 510.54 558.80 508.00 472.44 551.18 495.30 393.70 472.44

[51] 543.56 523.24 414.02 414.02 508.00 543.56 497.84 436.88 543.56 538.48

[61] 518.16 444.50 454.66 591.82 518.16 431.80 416.56 431.80 508.00 462.28

[71] 419.10 441.96 518.16 502.92 439.42 441.96 431.80 408.94 551.18 518.16

[81] 454.66 454.66 393.70 523.24 508.00 518.16 502.92 431.80 502.92 454.66

[91] 561.34 518.16 558.80 591.82 393.70 393.70 490.22 419.10 538.48 510.54

> # There are other ways to read raw data. See help(read.table).

> weight <- datalist$weight ; length <- datalist$length ; kpl <- datalist$kpl

> country <- datalist$country

> cor(cbind(weight,length,kpl))

weight length kpl

weight 1.0000000 0.9462018 -0.7704194

length 0.9462018 1.0000000 -0.7899859

kpl -0.7704194 -0.7899859 1.0000000

> # The table command gives a bare-bones frequency distribution

> table(country)

country

1 2 3

73 13 14

> # That was a matrix. The numbers 1 2 3 are labels.

> # You can save it, and you can get at its contents

> countrytable <- table(country)

> countrytable[2]

2

13

> # There is an "if" function that you could use to make dummy variables,

> # but it’s easier to use factor.

> countryfac <- factor(country,levels=c(1,2,3),

+ label=c("US","Japanese","European"))

> # This makes a FACTOR corresponding to country, like declaring it
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> # to be categorical. How are dummy variables being set up?

> contrasts(countryfac)

Japanese European

US 0 0

Japanese 1 0

European 0 1

> # The first level specified is the reference category. You can get a

> # different reference category by specifying the levels in a different order.

> cntryfac <- factor(country,levels=c(2,1,3),

+ label=c("Japanese","US","European"))

> contrasts(cntryfac)

US European

Japanese 0 0

US 1 0

European 0 1

> # Test interaction. For comparison, with SAS we got F = 11.5127, p < .0001

> # First fit (and save!) the reduced model. lm stands for linear model.

> redmod <- lm(kpl ~ weight+cntryfac)

> # The object redmod is a linked list, including lots of stuff like all the

> # residuals. You don’t want to look at the whole thing, at least not now.

> summary(redmod)

Call:

lm(formula = kpl ~ weight + cntryfac)

Residuals:

Min 1Q Median 3Q Max

-3.0759 -0.9810 -0.1919 0.4725 5.0795

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 16.2263357 0.7631228 21.263 <2e-16 ***

weight -0.0060407 0.0005708 -10.583 <2e-16 ***

cntryfacUS 1.2361472 0.5741299 2.153 0.0338 *

cntryfacEuropean 1.4595914 0.6456563 2.261 0.0260 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.676 on 96 degrees of freedom

Multiple R-Squared: 0.618, Adjusted R-squared: 0.606

F-statistic: 51.76 on 3 and 96 DF, p-value: 0

>

> # Full model is same stuff plus interaction. You COULD specify the whole thing.

> fullmod <- update(redmod,. ~ . + weight*cntryfac)

> anova(redmod,fullmod)

Analysis of Variance Table

Model 1: kpl ~ weight + cntryfac

Model 2: kpl ~ weight + cntryfac + weight:cntryfac

Res.Df RSS Df Sum of Sq F Pr(>F)

1 96 269.678

2 94 216.617 2 53.061 11.513 3.372e-05 ***

---
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Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> # The ANOVA summary table is a matrix. You can get at its (i,j)th element.

> aovtab <- anova(redmod,fullmod)

> aovtab[2,5] # The F statistic

[1] 11.51273

> aovtab[2,6] < .05 # p < .05 -- True or false?

[1] TRUE

> 1>6 # Another example of an expression taking the logical value true or false.

[1] FALSE

$

10.4 Random Numbers and Simulation

S is a superb environment for simulation and customized computer-intensive statistical
methods. That’s really why it is being discussed. Simulation is an extremely general
and powerful method for calculating probabilities that are difficult to figure out by other
means. Well, technically it’s a way of estimating those probabilities, based a sample of
random numbers. Before proceeding, we need a couple of definitions.

We will use the term statistical experiment to refer to any procedure whose outcome
is not known in advance with certainty. The most standard, and the most boring example
of a statistical experiment is to toss a coin and observe whether it comes up heads or tails.
We model statistical experiments by pretending that they obey the laws of probability.

When we carry out a statistical experiment, the things that can happen (the things
we pay attention to) are called outcomes. Sets of outcomes are called events. For
example, if you roll a die, the outcomes are the numbers 1 through 6, and “even” is an
event consisting of the outcomes {2, 4, 6}.

The main principle we will use is called the Law of Large Numbers. There are quite
a few versions of this law. Here’s a verbal statement of the one we will use. If a statis-
tical experiment is carried out independently a very large number of times (trials) under
identical conditions, the proportion of times an event occurs approaches the probability of
the event, as the number of trials increases. In elementary texts, this is sometimes used
as the definition of probability. But in more sophisticated treatments, it’s a theorem.

For example, suppose you are planning to test differences between means for an ex-
perimental versus a control group, and you have strong reason to believe that your data
will have a chi-square distribution within groups. You are going to log-transform the data
to take care of the positive skewness of the chi-square, and then use a common t-test.

Suppose data in the experimental group is chi-square with one degree of freedom (so
the population mean is one and the variance is two), and the data in the control group
is chi-square with two degree of freedom (so the population mean is two and the variance
is four). What is the power of the t-test on the transformed data with n = 20 in each
group?

Nobody can figure this out mathematically, but it’s pretty easy with simulation. Here’s
how to do it.

1. Using the random number generator in some software package, generate 20 indepen-
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dent chi-square values with one degree of freedom, and 20 independent chi-square
values with two degrees of freedom.

2. Log transform all the values.

3. Compute the t-test.

4. Check to see if p < 0.05.

Do this a large number of times. The proportion of times p < 0.05 is the power — or
more precisely, a Monte Carlo estimate of the power.

The number of times a statistical experiment is repeated is called the Monte Carlo
sample size. How big should the Monte Carlo sample size be? It depends on how
much precision you need. We will produce confidence intervals for all our Monte Carlo
estimates, to get a handle on the probable margin of error of the statements we make.
Sometimes, Monte Carlo sample size can be chosen by a power analysis. More details will
be given later.

The example below shows several simulations of taking a random sample of size 20 from
a standard normal population (µ = 0, σ2 = 1). Now actually, computer-generated random
numbers are not really random; they are completely determined by the execution of the
computer program that generates them. The most common (and best) random number
generators actually produce a stream of pseudo-random numbers that will eventually
repeat. In the good ones (and R uses a good one), “eventually” means after the end of
the universe. So the pseudo-random numbers that R produces really act random, even
though they are not. It’s safe to say that they come closer to satisfying the assumptions
of significance tests than any real data.

If you don’t instruct it otherwise, R will use the system clock to decide on where in the
random number stream it should begin. But sometimes you want to be able to reproduce
the results of a simulation exactly, say if you’re debugging your program, or you have
already spent a lot of time making a graph based on it. In this case you can control the
starting place in the random number stream, by setting the “seed” of the random number
generator. The seed is a big integer; I used 12345 just as an example.

> rnorm(20) # 20 standard normals

[1] 0.24570675 -0.38857202 0.47642336 0.75657595 0.71355871 -0.74630629

[7] -0.02485569 1.93346357 0.15663167 1.16734485 0.57486449 1.32309413

[13] 0.63712982 2.00473940 0.04221730 0.70896768 0.42128470 -0.12115292

[19] 1.42043470 -1.04957255

> set.seed(12345) # Be able to reproduce the stream of pseudo-random numbers.

> rnorm(20)

[1] 0.77795979 -0.89072813 0.05552657 0.67813726 0.80453336 -0.35613672

[7] -1.24182991 -1.05995791 -2.67914037 -0.01247257 -1.22422266 0.88672878

[13] -1.32824804 -2.73543539 0.40487757 0.41793236 -1.47520817 1.15351981

[19] -1.24888614 1.11605686

> rnorm(20)

[1] 0.866507371 2.369884323 0.393094088 -0.970983967 -0.292948278

[6] 0.867358962 0.495983546 0.331635970 0.702292771 2.514734599

[11] 0.522917841 -0.194668990 -0.089222053 -0.491125596 -0.452112445

[16] -0.515548826 -0.244409517 -0.008373764 -1.459415684 -1.433710170
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> set.seed(12345)

> rnorm(20)

[1] 0.77795979 -0.89072813 0.05552657 0.67813726 0.80453336 -0.35613672

[7] -1.24182991 -1.05995791 -2.67914037 -0.01247257 -1.22422266 0.88672878

[13] -1.32824804 -2.73543539 0.40487757 0.41793236 -1.47520817 1.15351981

[19] -1.24888614 1.11605686

The rnorm function is probably the most important random number generator, because
it is used so often to investigate the properties of statistical tests that assume a normal
distribution. Here is some more detail about rnorm.

> help(rnorm)

Normal package:base R Documentation

The Normal Distribution

Description:

Density, distribution function, quantile function and random

generation for the normal distribution with mean equal to ‘mean’

and standard deviation equal to ‘sd’.

Usage:

dnorm(x, mean=0, sd=1, log = FALSE)

pnorm(q, mean=0, sd=1, lower.tail = TRUE, log.p = FALSE)

qnorm(p, mean=0, sd=1, lower.tail = TRUE, log.p = FALSE)

rnorm(n, mean=0, sd=1)

Arguments:

x,q: vector of quantiles.

p: vector of probabilities.

n: number of observations. If ‘length(n) > 1’, the length is

taken to be the number required.

mean: vector of means.

sd: vector of standard deviations.

log, log.p: logical; if TRUE, probabilities p are given as log(p).

lower.tail: logical; if TRUE (default), probabilities are P[X <= x],

otherwise, P[X > x].

Details:

If ‘mean’ or ‘sd’ are not specified they assume the default values

of ‘0’ and ‘1’, respectively.

The normal distribution has density

f(x) = 1/(sqrt(2 pi) sigma) e^-((x - mu)^2/(2 sigma^2))

where mu is the mean of the distribution and sigma the standard
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deviation.

‘qnorm’ is based on Wichura’s algorithm AS 241 which provides

precise results up to about 16 digits.

Value:

‘dnorm’ gives the density, ‘pnorm’ gives the distribution

function, ‘qnorm’ gives the quantile function, and ‘rnorm’

generates random deviates.

References:

Wichura, M. J. (1988) Algorithm AS 241: The Percentage Points of

the Normal Distribution. Applied Statistics, 37, 477-484.

See Also:

‘runif’ and ‘.Random.seed’ about random number generation, and

‘dlnorm’ for the Lognormal distribution.

Examples:

dnorm(0) == 1/ sqrt(2*pi)

dnorm(1) == exp(-1/2)/ sqrt(2*pi)

dnorm(1) == 1/ sqrt(2*pi*exp(1))

## Using "log = TRUE" for an extended range :

par(mfrow=c(2,1))

plot(function(x)dnorm(x, log=TRUE), -60, 50, main = "log { Normal density }")

curve(log(dnorm(x)), add=TRUE, col="red",lwd=2)

mtext("dnorm(x, log=TRUE)", adj=0); mtext("log(dnorm(x))", col="red", adj=1)

plot(function(x)pnorm(x, log=TRUE), -50, 10, main = "log { Normal Cumulative }")

curve(log(pnorm(x)), add=TRUE, col="red",lwd=2)

mtext("pnorm(x, log=TRUE)", adj=0); mtext("log(pnorm(x))", col="red", adj=1)

After generating normal random numbers, the next most likely thing you might want
to do is randomly scramble some existing data values. The sample function will select
the elements of some array, either with replacement or without replacement. If you select
all the numbers in a set without replacement, you’ve rearranged them in a random order.
This is the basis of randomization tests. Sampling with replacement is the basis of the
bootstrap.

> help(sample)

sample package:base R Documentation

Random Samples and Permutations

Description:

‘sample’ takes a sample of the specified size from the elements of

‘x’ using either with or without replacement.

Usage:

sample(x, size, replace = FALSE, prob = NULL)

Arguments:

x: Either a (numeric, complex, character or logical) vector of

more than one element from which to choose, or a positive
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integer.

size: A positive integer giving the number of items to choose.

replace: Should sampling be with replacement?

prob: A vector of probability weights for obtaining the elements of

the vector being sampled.

Details:

If ‘x’ has length 1, sampling takes place from ‘1:x’.

By default ‘size’ is equal to ‘length(x)’ so that ‘sample(x)’

generates a random permutation of the elements of ‘x’ (or ‘1:x’).

The optional ‘prob’ argument can be used to give a vector of

weights for obtaining the elements of the vector being sampled.

They need not sum to one, but they should be nonnegative and not

all zero. If ‘replace’ is false, these probabilities are applied

sequentially, that is the probability of choosing the next item is

proportional to the probabilities amongst the remaining items. The

number of nonzero weights must be at least ‘size’ in this case.

Examples:

x <- 1:12

# a random permutation

sample(x)

# bootstrap sampling

sample(x,replace=TRUE)

# 100 Bernoulli trials

sample(c(0,1), 100, replace = TRUE)

10.4.1 Illustrating the Regression Artifact by Simulation

In the ordinary use of the English language, to “regress” means to go backward. In
Psychiatry and Abnormal Psychology, the term “regression” is used when a person’s
behaviour changes to become more typical of an earlier stage of development — like when
an older child starts wetting the bed, or an adult under extreme stress sucks his thumb.
Isn’t this a strange word to use for the fitting of hyperplanes by least-squares?

The term “regression” (as it is used in Statistics) was coined by Sir Francis Galton
(1822-1911). For reasons that now seem to have a lot to do with class privilege and
White racism, he was very interested in heredity. Galton was investigating the relation-
ship between the heights of fathers and the heights of sons. What about the mothers?
Apparently they had no height.

Anyway, Galton noticed that very tall fathers tended to have sons that were a bit
shorter than they were, though still taller than average. On the other hand, very short
fathers tended to have sons that were taller than they were, though still shorter than
average. Galton was quite alarmed by this “regression toward mediocrity” or “regression
toward the mean,” particularly when he found it in a variety of species, for a variety
of physical characteristics. See Galton’s “Regression towards mediocrity in hereditary
stature”, Journal of the Anthropological Institute 15 (1886), 246-263. It even happens
when you give a standardized test twice to the same people. The people who did the very
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best the first time tend to do a little worse the second time, and the people who did the
very worst the first time tend to do a little better the second time.

Galton thought he had discovered a Law of Nature, though in fact the whole thing
follows from the algebra of least squares. Here’s a verbal alternative. Height is influenced
by a variety of chance factors, many of which are not entirely shared by fathers and sons.
These include the mother’s height, environment and diet, and the vagaries of genetic
recombination. You could say that the tallest fathers included some who “got lucky,” if
you think it’s good to be tall (Galton did, of course). The sons of the tall fathers had
some a genetic predisposition to be tall, but on average, they didn’t get as lucky as their
fathers in every respect. A similar argument applies to the short fathers and their sons.

This is the basis for the so-called regression artifact. Pre-post designs with extreme
groups are doomed to be misleading. Programs for the disadvantaged “work” and pro-
grams for the gifted “hurt.” This is a very serious methodological trap that has doomed
quite a few evaluations of social programs, drug treatments – you name it.

Is this convincing? Well, the argument above may be enough for some people. But
perhaps if it’s illustrated by simulation, you’ll be even more convinced. Let’s find out.

Suppose an IQ test is administered to the same 10,000 students on two occasions.
Call the scores pre and post. After the first test, the 100 individuals who did worst are
selected for a special remedial program, but it does nothing. And, the 100 individuals
who did best on the pre-test get a special program for the gifted, but it does nothing.
We do a matched t-test on the students who got the remedial program, and a matched
t− test on the students who got the gifted program.

What should happen? If you followed the stuff about regression artifacts, you’d expect
significant improvement from the students who got the remedial program, and significant
deterioration from the students who got the gifted program – even though in fact, both
programs are completely ineffective (and harmless). How will we simulate this?

According to classical psychometric theory, a test score is the sum of two independent
pieces, the True Score and measurement error. If you measure an individual twice, she
has the same True Score, but the measurement error component is different.

True Score and measurement error have population variances. Because they are inde-
pendent, the variance of the observed score is the sum of the true score variance and the
error variance. The proportion of the observed score variance that is True Score variance
is called the test’s reliability. Most “intelligence” tests have a mean of 100, a standard
deviation of 15, and a reliability around 0.80.

So here’s what we do. Making everything normally distributed and selecting parameter
values so the means, standard deviations and reliability come out right, we

• Simulate 10,000 true scores.

• Simulate 10,000 measurement errors for the pre-test and an independent 10,000
measurement errors for the post-test.

• Calculate 10,000 pre-test scores by pre = True + error1.

• Calculate 10,000 post-test scores by pre = True + error2.
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• Do matched t-tests on the individuals with the 100 worst and the 100 best pre-test
scores.

This procedure is carried out once by the program regart.R. In addition, regart.R

carries out a matched t-test on the entire set of 10,000 pairs, just to verify that there is
no systematic change in “IQ” scores.

# regart.R Demonstrate Regression Artifact

###################### Setup #######################

N <- 10000 ; n <- 100

truevar <- 180 ; errvar <- 45

truesd <- sqrt(truevar) ; errsd <- sqrt(errvar)

# set.seed(44444)

# Now define the function ttest, which does a matched t-test

ttest <- function(d) # Matched t-test. It operates on differences.

{

ttest <- numeric(4)

names(ttest) <- c("Mean Difference"," t "," df "," p-value ")

ave <- mean(d) ; nn <- length(d) ; sd <- sqrt(var(d)) ; df <- nn-1

tstat <- ave*sqrt(nn)/sd

pval <- 2*(1-pt(abs(tstat),df))

ttest[1] <- ave ; ttest[2] <- tstat; ttest[3] <- df; ttest[4] <- pval

ttest # Return the value of the function

}

#####################################################

error1 <- rnorm(N,0,errsd) ; error2 <- rnorm(N,0,errsd)

truescor <- rnorm(N,100,truesd)

pre <- truescor+error1 ; rankpre <- rank(pre)

# Based on their rank on the pre-test, we take the n worst students and

# place them in a special remedial program, but it does NOTHING.

# Based on their rank on the pre-test, we take the n best students and

# place them in a special program for the gifted, but it does NOTHING.

post <- truescor+error2

diff <- post-pre # Diff represents "improvement."

# But of course diff = error2-error1 = noise

cat("\n") # Skip a line
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cat("------------------------------------ \n")

dtest <- ttest(diff)

cat("Test on diff (all scores) \n") ; print(dtest) ; cat("\n")

remedial <- diff[rankpre<=n] ; rtest <- ttest(remedial)

cat("Test on Remedial \n") ; print(rtest) ; cat("\n")

gifted <- diff[rankpre>=(N-n+1)] ; gtest <- ttest(gifted)

cat("Test on Gifted \n") ; print(gtest) ; cat("\n")

cat("------------------------------------ \n")

The ttest function is a little unusual because it takes a whole vector of numbers
(length unspecified) as input, and returns an array of 4 values. Often, functions take one
or more numbers as input, and return a single value. We will see some more examples
shortly. At the R prompt,
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> source("regart.R")

------------------------------------

Test on diff (all scores)

Mean Difference t df p-value

1.872566e-02 1.974640e-01 9.999000e+03 8.434685e-01

Test on Remedial

Mean Difference t df p-value

7.192531e+00 8.102121e+00 9.900000e+01 1.449729e-12

Test on Gifted

Mean Difference t df p-value

-8.311569e+00 -9.259885e+00 9.900000e+01 4.440892e-15

------------------------------------

> source("regart.R")

------------------------------------

Test on diff (all scores)

Mean Difference t df p-value

2.523976e-02 2.659898e-01 9.999000e+03 7.902525e-01

Test on Remedial

Mean Difference t df p-value

5.510484e+00 5.891802e+00 9.900000e+01 5.280147e-08

Test on Gifted

Mean Difference t df p-value

-8.972938 -10.783356 99.000000 0.000000

------------------------------------

> source("regart.R")

------------------------------------

Test on diff (all scores)

Mean Difference t df p-value

0.0669827 0.7057641 9999.0000000 0.4803513

Test on Remedial

Mean Difference t df p-value

8.434609e+00 9.036847e+00 9.900000e+01 1.376677e-14
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Test on Gifted

Mean Difference t df p-value

-8.371483 -10.215295 99.000000 0.000000

------------------------------------

The preceding simulation was unusual in that the phenomenon it illustrates happens
virtually every time. In the next example, we need to use the Law of Large Numbers.

10.4.2 An Example of Power Analysis by Simulation

Suppose we want to test the effect of some experimental treatment on mean response,
comparing an experimental group to a control. We are willing to assume normality, but
not equal variances. We’re ready to use an unequal-variances t-test, and we want to do a
power analysis.

Unfortunately it’s safe to say that nobody knows the exact non-central distribution
of this monster. In fact, even the central distribution isn’t exact; it’s just a very good
approximation. So, we have to resort to first principles. There are four parameters:
θ = (µ1, µ2, σ

2
1, σ

2
2). For a given set of parameter values, we will simulate samples of size

n1 and n2 from normal distributions, do the significance test, and see if it’s significant.
We’ll do it over and over. By the Law of Large Numbers, the proportion of times the test
is significant will approach the power as the Monte Carlo sample size (the number of data
sets we simulate) increases.

The number we get, of course, will just be an estimate of the power. How accurate
is the estimate? As promised earlier, we’ll accompany every Monte Carlo estimate of a
probability with a confidence interval. Here’s the formula. For the record, it’s based on
the normal approximation to the binomial, not bothering with a continuity correction.

P̂ ± z1−α
2

√
P̂ (1− P̂ )

m
(10.1)

This formula will be implemented in the S function merror for “margin of error.”

merror <- function(phat,m,alpha) # (1-alpha)*100% merror for a proportion

{

z <- qnorm(1-alpha/2)

merror <- z * sqrt(phat*(1-phat)/m) # m is (Monte Carlo) sample size

merror

}

The Monte Carlo estimate of the probability is denoted by P̂ , the quantity m is the
Monte Carlo sample size, and z1−α/2 is the value with area 1 − α

2
to the left of it, under

the standard normal curve. Typically, we will choose α = 0.01 to get a 99% confidence
interval, so z1−α/2 = 2.575829.



296 CHAPTER 10. INTRODUCTION TO R

How should we choose m? In other words, how many data sets should we simulate?
It depends on how much accuracy we want.Since our policy is to accompany Monte Carlo
estimates with confidence intervals, we will choose the Monte Carlo sample size to control
the width of the confidence interval.

According to Equation (10.1), the confidence interval is an estimated probability, plus

or minus a margin of error. The margin of error is z1−α
2

√
P̂ (1−P̂ )

m
, which may be viewed

as an estimate of z1−α
2

√
P (1−P )

m
. So, for any given probability we are trying to estimate,

we can set the desired margin of error to some small value, and solve for m. Denoting the
criterion margin of error by c, the general solution is

m =
z21−α

2

c2
P (1− P ), (10.2)

which is implemented in the S function mmargin.

mmargin <- function(p,cc,alpha)

# Choose m to get (1-alpha)*100% margin of error equal to cc

{

mmargin <- p*(1-p)*qnorm(1-alpha/2)^2/cc^2

mmargin <- trunc(mmargin+1) # Round up to next integer

mmargin

} # End definition of function mmargin

Suppose we want a 99% confidence interval around a power of 0.80 to be accurate to plus
or minus 0.01.

> mmargin(.8,.01,.01)

[1] 10616

The table below shows Monte Carlo sample sizes for estimating power with a 99%
confidence interval.

Table 6.1: Monte Carlo Sample Size Required to Estimate Power with a Specified 99%
Margin of Error

Power Being Estimated
Margin of Error 0.70 0.75 0.80 0.85 0.90 0.99

0.10 140 125 107 85 60 7
0.05 558 498 425 339 239 27
0.01 13,934 12,441 10,616 8,460 5,972 657
0.005 55,734 49,762 42,464 33,838 23,886 2,628
0.001 1,393,329 1,244,044 1,061,584 845,950 59,7141 65,686

It’s somewhat informative to see how the rows of the table were obtained.
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> wpow <- c(.7,.75,.8,.85,.9,.99)

> mmargin(wpow,.1,.01)

[1] 140 125 107 85 60 7

> mmargin(wpow,.05,.01)

[1] 558 498 425 339 239 27

> mmargin(wpow,.01,.01)

[1] 13934 12441 10616 8460 5972 657

> mmargin(wpow,.005,.01)

[1] 55734 49762 42464 33838 23886 2628

> mmargin(wpow,.001,.01)

[1] 1393329 1244044 1061584 845950 597141 65686

Equations (10.1) and (10.2) are general; they apply to the Monte Carlo estimation
of any probability, and Table 6.1 applies to any Monte Carlo estimation of power. Let’s
return to the specific example at hand. Suppose we the population standard deviation of
the Control Group is 2 and the standard deviation of the Experimental Group is 6. We’ll
let the population means be µ1 = 1 and µ2 = 3, so that the difference between population
means is half the average within-group population standard deviation.

To select a good starting value of n, let’s pretend that the standard deviations are
equal to the average value, and we are planning an ordinary two-sample t-test. Referring
to formula (4.4) for the non-centrality parameter of the non-central F -distribution, we’ll
let q = 1

2
; this is optimal when the variances are equal. Since δ = 1

2
, we have φ =

n q(1 − q) δ2 = n
16

. Here’s some S. It’s short — and sweet. Well, maybe it’s an acquired
taste. It’s also true that I know this problem pretty well, so I knew a good range of n
values to try.

> n <- 125:135

> pow <- 1-pf(qf(.95,1,(n-2)),1,(n-2),(n/16))

> cbind(n,pow)

n pow

[1,] 125 0.7919594

[2,] 126 0.7951683

[3,] 127 0.7983349

[4,] 128 0.8014596

[5,] 129 0.8045426

[6,] 130 0.8075844

[7,] 131 0.8105855

[8,] 132 0.8135460

[9,] 133 0.8164666

[10,] 134 0.8193475

[11,] 135 0.8221892

We will start the unequal variance search at n = 128. And, though we are interested
in more accuracy, it makes sense to start with a target margin of error of 0.05. The idea
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is to start out with rough estimation, and get more accurate only once we think we are
close to the right n.

> n1 <- 64 ; mu1 <- 1 ; sd1 <- 2 # Control Group

> n2 <- 64 ; mu2 <- 3 ; sd2 <- 6 # Experimental Group

>

> con <- rnorm(n1,mu1,sd1) ; exp <- rnorm(n2,mu2,sd2)

> help(t.test)

The output of help is omitted, but we learn that the default is a test assuming unequal
variances – just what we want.

> t.test(con,exp)

Welch Two Sample t-test

data: con and exp

t = -2.4462, df = 78.609, p-value = 0.01667

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-3.4632952 -0.3556207

sample estimates:

mean of x mean of y

1.117435 3.026893

> t.test(con,exp)[1]

$statistic

t

-2.446186

> t.test(con,exp)[3]

$p.value

[1] 0.01667109

>

> m <- 500 # Monte Carlo sample size (Number of simulations)

> numsig <- 0 # Initializing

> for(i in 1:m)

+ {

+ con <- rnorm(n1,mu1,sd1) ; exp <- rnorm(n2,mu2,sd2)

+ numsig <- numsig+(t.test(con,exp)[3]<.05)

+ }
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> pow <- numsig/m

> cat ("Monte Carlo Power = ",pow,"\n") ; cat ("\n")

Monte Carlo Power = 0.708

> m <- 500 # Monte Carlo sample size (Number of simulations)

> numsig <- 0 # Initializing

> for(i in 1:m)

+ {

+ con <- rnorm(n1,mu1,sd1) ; exp <- rnorm(n2,mu2,sd2)

+ numsig <- numsig+(t.test(con,exp)[3]<.05)

+ }

> pow <- numsig/m

> cat ("Monte Carlo Power = ",pow,"\n") ; cat ("\n")

Monte Carlo Power = 0.698

Try it again.

>

> m <- 500 # Monte Carlo sample size (Number of simulations)

> numsig <- 0 # Initializing

> for(i in 1:m)

+ {

+ con <- rnorm(n1,mu1,sd1) ; exp <- rnorm(n2,mu2,sd2)

+ numsig <- numsig+(t.test(con,exp)[3]<.05)

+ }

> pow <- numsig/m

> cat ("Monte Carlo Power = ",pow,"\n") ; cat ("\n")

Monte Carlo Power = 0.702

Try a larger sample size.

> n1 <- 80 ; mu1 <- 1 ; sd1 <- 2 # Control Group

> n2 <- 80 ; mu2 <- 3 ; sd2 <- 6 # Experimental Group

> m <- 500 # Monte Carlo sample size (Number of simulations)

> numsig <- 0 # Initializing

> for(i in 1:m)

+ {

+ con <- rnorm(n1,mu1,sd1) ; exp <- rnorm(n2,mu2,sd2)

+ numsig <- numsig+(t.test(con,exp)[3]<.05)

+ }

> pow <- numsig/m

> cat ("Monte Carlo Power = ",pow,"\n") ; cat ("\n")

Monte Carlo Power = 0.812

Try it again.
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> n1 <- 80 ; mu1 <- 1 ; sd1 <- 2 # Control Group

> n2 <- 80 ; mu2 <- 3 ; sd2 <- 6 # Experimental Group

> m <- 500 # Monte Carlo sample size (Number of simulations)

> numsig <- 0 # Initializing

> for(i in 1:m)

+ {

+ con <- rnorm(n1,mu1,sd1) ; exp <- rnorm(n2,mu2,sd2)

+ numsig <- numsig+(t.test(con,exp)[3]<.05)

+ }

> pow <- numsig/m

> cat ("Monte Carlo Power = ",pow,"\n") ; cat ("\n")

Monte Carlo Power = 0.792

It seems that was a remarkably lucky guess. Now seek margin of error around 0.01.

>

> m <- 10000 # Monte Carlo sample size (Number of simulations)

> numsig <- 0 # Initializing

> for(i in 1:m)

+ {

+ con <- rnorm(n1,mu1,sd1) ; exp <- rnorm(n2,mu2,sd2)

+ numsig <- numsig+(t.test(con,exp)[3]<.05)

+ }

> pow <- numsig/m

> cat ("Monte Carlo Power = ",pow,"\n") ; cat ("\n")

Monte Carlo Power = 0.8001

> merror <- function(phat,m,alpha) # (1-alpha)*100% merror for a proportion

+ {

+ z <- qnorm(1-alpha/2)

+ merror <- z * sqrt(phat*(1-phat)/m) # m is (Monte Carlo) sample size

+ merror

+ }

> margin <- merror(.8001,10000,.01) ; margin

[1] 0.01030138

> cat("99% CI from ",(pow-margin)," to ",(pow+margin),"\n")

99% CI from 0.7897986 to 0.810

This is very nice, except that I can’t believe equal sample sizes are optimal when the
variances are unequal. Let’s try sample sizes proportional to the standard deviations,
so n1 = 40 and n2 = 120. The idea is that perhaps the two population means should
be estimated with roughly the same precision, and we need a bigger sample size in the
experimental condition to compensate for the larger variance. Well, actually I chose the
relative sample sizes to minimize the standard deviation of the sampling distribution of
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the difference between means — the quantity that is estimated by the denominator of the
t statistic.

> n1 <- 40 ; mu1 <- 1 ; sd1 <- 2 # Control Group

> n2 <- 120 ; mu2 <- 3 ; sd2 <- 6 # Experimental Group

> m <- 500 # Monte Carlo sample size (Number of simulations)

> numsig <- 0 # Initializing

> for(i in 1:m)

+ {

+ con <- rnorm(n1,mu1,sd1) ; exp <- rnorm(n2,mu2,sd2)

+ numsig <- numsig+(t.test(con,exp)[3]<.05)

+ }

> pow <- numsig/m

> cat ("Monte Carlo Power = ",pow,"\n") ; cat ("\n")

Monte Carlo Power = 0.89

> margin <- merror(pow,m,.01)

> cat("99% CI from ",(pow-margin)," to ",(pow+margin),"\n")

99% CI from 0.8539568 to 0.9260432

>

> # This is promising. Get some precision.

>

> n1 <- 40 ; mu1 <- 1 ; sd1 <- 2 # Control Group

> n2 <- 120 ; mu2 <- 3 ; sd2 <- 6 # Experimental Group

> m <- 10000 # Monte Carlo sample size (Number of simulations)

> numsig <- 0 # Initializing

> for(i in 1:m)

+ {

+ con <- rnorm(n1,mu1,sd1) ; exp <- rnorm(n2,mu2,sd2)

+ numsig <- numsig+(t.test(con,exp)[3]<.05)

+ }

> pow <- numsig/m

> cat ("Monte Carlo Power = ",pow,"\n") ; cat ("\n")

Monte Carlo Power = 0.8803

> margin <- merror(pow,m,.01)

> cat("99% CI from ",(pow-margin)," to ",(pow+margin),"\n")

99% CI from 0.8719386 to 0.8886614

So again we see that power depends on design as well as on effect size and sample
size. It will be left as an exercise to find out how much sample size we could save (over
the n1 = n2 = 80 solution) by taking this into account in the present case.

Finally, it should be clear that R has a t-test function, and the custom function ttest

was unnecessary. What other classical tests are available?
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> library(help=ctest)

ctest Classical Tests

Description:

Package: ctest

Version: 1.4.0

Priority: base

Title: Classical Tests

Author: Kurt Hornik <Kurt.Hornik@ci.tuwien.ac.at>, with major

contributions by Peter Dalgaard <p.dalgaard@kubism.ku.dk> and

Torsten Hothorn <Torsten.Hothorn@rzmail.uni-erlangen.de>.

Maintainer: R Core Team <R-core@r-project.org>

Description: A collection of classical tests, including the

Ansari-Bradley, Bartlett, chi-squared, Fisher, Kruskal-Wallis,

Kolmogorov-Smirnov, t, and Wilcoxon tests.

License: GPL

Index:

ansari.test Ansari-Bradley Test

bartlett.test Bartlett Test for Homogeneity of Variances

binom.test Exact Binomial Test

chisq.test Pearson’s Chi-squared Test for Count Data

cor.test Test for Zero Correlation

fisher.test Fisher’s Exact Test for Count Data

fligner.test Fligner-Killeen Test for Homogeneity of

Variances

friedman.test Friedman Rank Sum Test

kruskal.test Kruskal-Wallis Rank Sum Test

ks.test Kolmogorov-Smirnov Tests

mantelhaen.test Cochran-Mantel-Haenszel Chi-Squared Test for

Count Data

mcnemar.test McNemar’s Chi-squared Test for Count Data

mood.test Mood Two-Sample Test of Scale

oneway.test Test for Equal Means in a One-Way Layout

pairwise.prop.test Pairwise comparisons of proportions

pairwise.t.test Pairwise t tests

pairwise.table Tabulate p values for pairwise comparisons

pairwise.wilcox.test Pairwise Wilcoxon rank sum tests

power.prop.test Power calculations two sample test for of

proportions

power.t.test Power calculations for one and two sample t



10.4. RANDOM NUMBERS AND SIMULATION 303

tests

print.pairwise.htest Print method for pairwise tests

print.power.htest Print method for power calculation object

prop.test Test for Equal or Given Proportions

prop.trend.test Test for trend in proportions

quade.test Quade Test

shapiro.test Shapiro-Wilk Normality Test

t.test Student’s t-Test

var.test F Test to Compare Two Variances

wilcox.test Wilcoxon Rank Sum and Signed Rank Tests



Chapter 11

Computer-intensive Tests

This chapter covers two methods of statistical inference in which computing power and
random number generation largely substitute for statistical theory: randomization tests
and tests based on the bootstrap. These methods allow the creation of customized non-
parametric tests without having to produce a new statistical theory each time.

11.1 Permutation Tests and Randomization Tests

11.1.1 Permutation Tests

Randomization tests use the Law of Large Numbers to approximate permutation tests,
so we will begin with permutation tests. A permutation is an arrangement of a set of
objects in some order; so for example, we say there are 5! = 5×4×3×2×1 permutations
of 5 objects. That is, 5 objects may be arranged in 120 different orders.

Permutation tests are most natural in the setting of a true experimental study with
random assignment of subjects to treatments, so that all possible assignments are equally
likely. The reasoning goes like this. If the treatment is completely ineffective, then the
data are what they are, and the only reason that some test statistic might differ between
treatments is by chance, because of the random assignment. This is the null hypothesis.

The set of all possible permutations of the data yields the set of all possible assignments
to experimental conditions. Under the null hypothesis, these are equally likely. This does
not mean that all values of the test statistic are equally likely; not at all! Depending on
the particular values of the data, there might be quite a few ties, and the distribution
of the test statistic might have an arbitrarily peculiar shape. However, if we had enough
time, we could calculate exactly what it is, as follows.

Generate all possible permutations of the data. For each permutation, compute the
value of the test statistic. The histogram of the test statistic’s values (to be precise, the
relative frequency histogram of those values) is called the permutation distribution of
the test statistic.

If the null hypothesis holds, the test statistic has the permutation distribution. If not,
it has some other distribution. Suppose the observed value of the test statistic (that is, the
one that we computed from the unscrambled data) is far out on the tail of the permutation

304
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distribution. Then the data may be deemed unlikely given the hull hypothesis — possibly
unlikely enough so that the null hypothesis may be rejected, and we may conclude that
the treatment has some effect.

In particular, the proportion of the permutation distribution at or beyond the observed
test statistic will be called the permutation p-value. As usual,if p < 0.05, we’ll claim
statistical significance.

Don’t you think this is more reasonable than doing an experiment with random as-
signment, and then proceeding to assume a normal distribution in some hypothetical
“population” of subjects who might have received the various experimental treatments?
Fisher (who came up with permutation tests as well as the F -test) thought so. In his
classic Statistical Methods for Research Workers (1936) he wrote, after describing how to
do a permutation test,

Actually, the statistician does not carry out this very tedious process but his
conclusions have no justification beyond the fact they could have been arrived
at by this very elementary method.

To summarize, a permutation test is conducted by following these three steps.

1. Compute some test statistic using the set of original observations

2. Re-arrange the observations in all possible orders, computing the test statistic each
time.

3. Calculate the permutation test p-value, which is the proportion of test statistic
values from the re-arranged data that equal or exceed the value of the test statistic
from the original data.

Several comments about permutation tests are in order.

• Please notice that no distribution at all is being assumed for the data. They are
what they are, period. In fact, for observational data as well as experimental data,
permutation tests are distribution-free under the null hypothesis. In this sense, per-
mutation tests are non-parametric.

• For observational studies too, the null hypothesis is that the explanatory variable(s)
and response variable(s) are independent.

• It’s even better than that. Bell and Doksum (1967) proved that any valid distribu-
tion test of independence must be a permutation test (maybe a permutation test in
disguise).

• Some non-parametric methods depend on large sample sizes for their validity. Per-
mutation tests do not. Even for tiny samples, the chance of false significance cannot
exceed 0.05.

• It doesn’t matter if data are categorical or quantitative. By scrambling the data,
any possible relationship between explanatory variable and response variable is de-
stroyed.
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• If either explanatory variable or response variable is multivariate, scramble vectors
of data.

• The explanation of permutation tests referred to “the” test statistic, without indi-
cating what that test statistic might be. In fact, the test statistic is up to you. No
matter what you choose, the chance of false significance is limited to 0.05.

What choice is best? It depends on the exact way in which the explanatory and
response variables are related. A test statistic that captures the nature of the
dependence will yield a more powerful, and hence a better test. So one option is to
use your intuition, and make something up. Another option is to look in a book like
Good’s Permutation Tests. There, you’ll find good suggestions for a lot of common
hypothesis-testing problems. These suggestions are not just based on hunches. They
are based on research, in which the statistical researcher has tried to derive a test
statistic with maximum power for some class of alternative hypotheses. If you think
the null hypothesis might be false in the specified way, such a test statistic will likely
perform better than anything you happen to come up with.

Many scientists who use permutation tests just compute something traditional like
an F statistic, but compare it to a permutation distribution rather than the F
distribution. You usually can’t go too far wrong with this approach. It’s optimal
when the traditional assumptions hold, quite good when they almost hold, and
the resulting tests tend to become very powerful for a broad range of alternative
hypotheses as the sample size increases.

Another advantage of using traditional test statistics is that everyone has heard
of them, and they do not arouse suspicion. If you make up something strange,
people may think that you tried more traditional quantities first, and then eventually
found a statistic that made the test significant. There’s no doubt about it; you can
fraudulently obtain significance with a permutation test by fishing for a test statistic
until you find one that exploits a chance pattern in the data.

• Even with some combinatoric simplification (you can often get away without listing
all the permutations) and a lot of computing power, permutation tests are not
easy to do in practice. Fisher himself considered permutation tests to be entirely
hypothetical, but that was before computers.

• One way around the computational problem is to convert the data to ranks, and
then do it. Then, permutation distributions can be figured out in advance, by
a combination of cleverness and brute force. All the common non-parametric rank
tests are permutation tests carried out on ranks. Fisher’s exact test is a permutation
test for categorical data.

Often, you’ll see Z or chi-square statistics for the rank tests. Since the normal and
chi-square distributions are continuous, while permutation distributions are always
discrete, you know these have to be large-sample approximations based somehow on
the Central Limit Theorem. But aren’t permutation tests valid for small samples?
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Yes! The way it works is that good nonparametric books have tables that give exact
critical values for small samples; the Z and chi-square approximations are used once
the sample size becomes big enough for the approximations to be valid – and big
enough so that the exact permutation distribution (even of the ranks) is hard to
compute. But statistical software often gives you p-values based on the large-sample
approximation, regardless of what the sample size is. This throws away the small-
sample virtues of the tests. If you use rank tests with small samples, it’s up to you
to find the appropriate table and learn how to use it.

• The modern way around the computational problem is to approximate (that is,
estimate) the p-value of a permutation test using the Law of Large Numbers. That’s
called a randomization test, and it’s the topic of the next section.

11.1.2 Randomization Tests

The permutation test p-value is the area under the curve (relative frequency histogram) of
the permutation distribution, at or beyond the observed value of the test statistic. When
we approximate the p-value of a permutation test by simulation, it’s called a random-
ization test. Here’s how to do it.

• Place the values of the response variable in a random order.

• Compute the test statistic for the randomly shuffled data.

In this way, we have randomly sampled a value of the test statistic from its permuta-
tion distribution. Carry out this procedure a large number of times. By the Law of
Large Numbers, the the permutation p-value is approximated by the proportion of ran-
domly generated values that exceed or equal the observed value of the test statistic. This
proportion is the p-value of the randomization test.

The approximation gets better as the Monte Carlo sample size increases. We’ll denote
the Monte Carlo sample size by m, the permutation test p-value by p, and the random-
ization test p-value by p̂.

How big should the Monte Carlo sample size be? Here’s one approach. As usual, it’s
based on a normal approximation to the binomial distribution.
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##########################################################

# Choose Monte Carlo sample size for a randomization #

# test. Estimate p (p-value of permutation test) with #

# p-hat. For a given true p (default = 0.04) and #

# a given alpha (default = 0.05), returns the MC sample #

# size needed to get p-hat < alpha with probability cc #

# (default = .99). #

##########################################################

randm <- function(p=.04,alpha=0.05,cc=.99)

{

randm <- qnorm(cc)^2 * p*(1-p) / (alpha-p)^2

randm <- trunc(randm+1) # Round up to next integer

randm

} # End of function randm

> probs <- c(.01,.02,.03,.04,.045,.049)

> cbind(probs,randm(p=probs)) # Use default values of alpha and cc

[,1] [,2]

[1,] 0.010 34

[2,] 0.020 118

[3,] 0.030 394

[4,] 0.040 2079

[5,] 0.045 9304

[6,] 0.049 252189

Student’s Sleep Data

This example is simple as well as classical, but its simplicity allows the examination of
basic issues. The data are from a paper by William Gossett, who published anonymously
under the name “Student,” and after whom the Student’s t distribution is named. The
data show the effect of two soporific drugs (increase in hours of sleep) on groups consisting
of 10 patients each. The explanatory variable is group, and the response variable is extra
(for extra hours of sleep). The source is Student (1908) The probable error of the mean.
Biometrika, 6, 20.

credit.erin > cat sleep.dat

extra group

1 0.7 1

2 -1.6 1

3 -0.2 1

4 -1.2 1

5 -0.1 1

6 3.4 1
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7 3.7 1

8 0.8 1

9 0.0 1

10 2.0 1

11 1.9 2

12 0.8 2

13 1.1 2

14 0.1 2

15 -0.1 2

16 4.4 2

17 5.5 2

18 1.6 2

19 4.6 2

20 3.4 2

credit.erin > R --vanilla < randex1.R > randex1.out

credit.erin > cat randex1.out

R : Copyright 2001, The R Development Core Team

Version 1.4.0 (2001-12-19)

R is free software and comes with ABSOLUTELY NO WARRANTY.

You are welcome to redistribute it under certain conditions.

Type ‘license()’ or ‘licence()’ for distribution details.

R is a collaborative project with many contributors.

Type ‘contributors()’ for more information.

Type ‘demo()’ for some demos, ‘help()’ for on-line help, or

‘help.start()’ for a HTML browser interface to help.

Type ‘q()’ to quit R.

> # randex1.R : First randomization test example, with Student’s Sleep Data

> # Monte Carlo sample size m may be set interactively

> set.seed(4444) # Set seed for random number generation

>

> # Define margin of error functions

> merror <- function(phat,M,alpha) # (1-alpha)*100% merror for a proportion

+ {

+ z <- qnorm(1-alpha/2)

+ merror <- z * sqrt(phat*(1-phat)/M) # M is (Monte Carlo) sample size

+ merror

+ }

> mmargin <- function(p,cc,alpha)
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+ # Choose m to get (1-alpha)*100% margin of error equal to cc

+ {

+ mmargin <- p*(1-p)*qnorm(1-alpha/2)^2/cc^2

+ mmargin <- trunc(mmargin+1) # Round up to next integer

+ mmargin

+ } # End definition of function mmargin

> ##############

> sleepy <- read.table("sleep.dat")

> t.test(extra ~ group, var.equal=TRUE, data = sleepy)

Two Sample t-test

data: extra by group

t = -1.8608, df = 18, p-value = 0.07919

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-3.3638740 0.2038740

sample estimates:

mean in group 1 mean in group 2

0.75 2.33

> t.test(extra ~ group, var.equal=TRUE, data = sleepy)[1]

$statistic

t

-1.860813

> # It’s a list element, not a number

> ObsT <- t.test(extra ~ group, var.equal=TRUE, data = sleepy)[[1]]

> ObsT

t

-1.860813

>

> # If M is not assigned, it’s 1210

> if(length(objects(pattern="M"))==0) M <- 1210

> cat("Monte Carlo Sample size M = ",M,"\n")

Monte Carlo Sample size M = 1210

> dv <- sleepy$extra ; iv <- sleepy$group

> trand <- numeric(M)

> for(i in 1:M)

+ { trand[i] <- t.test(sample(dv) ~ iv, var.equal=TRUE)[[1]] }

> randp <- length(trand[abs(trand)>=abs(ObsT)])/M

> margin <- merror(randp,M,.01)

>

> cat ("\n")
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> cat ("Randomization p-value = ",randp,"\n")

Randomization p-value = 0.08429752

> cat("99% CI from ",(randp-margin)," to ",(randp+margin),"\n")

99% CI from 0.06372398 to 0.1048711

> cat ("\n")

>

> # Now try difference between medians

> cat("\n")

> cat("Median extra sleep for Group = 1: ",median(dv[iv==1]),"\n")

Median extra sleep for Group = 1: 0.35

> cat("Median extra sleep for Group = 2: ",median(dv[iv==2]),"\n")

Median extra sleep for Group = 2: 1.75

> ObsMedDif <- abs(median(dv[iv==1])-median(dv[iv==2]))

> cat("Absolute difference is ",ObsMedDif,"\n")

Absolute difference is 1.4

> cat("\n")

> trand2 <- numeric(M)

> for(i in 1:M)

+ {

+ rdv <- sample(dv)

+ trand2[i] <- abs(median(rdv[iv==1])-median(rdv[iv==2]))

+ }

> randp2 <- length(trand2[abs(trand2)>=abs(ObsMedDif)])/M

> margin <- merror(randp2,M,.01)

>

> cat ("\n")

> cat ("Randomization p-value for diff bet medians = ",randp2,"\n")

Randomization p-value for diff bet medians = 0.2090909

> cat("99% CI from ",(randp2-margin)," to ",(randp2+margin),"\n")

99% CI from 0.1789778 to 0.239204

> cat ("\n")

The main conclusion here is that the difference between group means is not significant.
The traditional t-test (in fact, the first published t-test!) and the randomization test both
have p-values around 0.08. This is not too surprising. We randomized the t statistic, and
the traditional t-test is going to be appropriate for these data.
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Then we try another test statistic — the difference between medians. This time we get
a p-value near 0.21. This probably reflects lower power of the randomization test when
we test medians rather than means on data that are actually normal.

Another thing to notice is that the 99% confidence interval for p does not include 0.05.
This means that p̂ is not just less than 0.05, it’s significantly less than 0.05 (at the 0.01
level). This is good. In fact, maybe it should be obligatory.

If it’s really obligatory, then we need some kind of power analysis for choosing m.
Letting p denote the true p-value from the permutation test, and letting α denote the
significance level (for us, α = 0.05 unless we’re applying a Bonferroni correction), the
traditional statistic for testing whether p is different from α would be

Z∗ =
P̂ − α√
α(1−α)
m

,

which has a standard normal distribution under the null hypothesis. Some medium-grade
calculations show that the probability that P̂ will be significantly different from α at level
L (i.e., the power) with a true p-value of p is approximately

1− Pr

{√
m(α− p)√
p(1− p)

− z1−L/2

√
α(1− α)

p(1− p)
< Z <

√
m(α− p)√
p(1− p)

+ z1−L/2

√
α(1− α)

p(1− p)

}

where Z has a standard normal distribution, and the approximation is excellent for m
larger than a few hundred.

The preceding formula is just for the record, and to provide another opportunity to
illustrate how a formula can be transcribed more or less directly into an S function.

# Power for detecting p-hat significantly different from alpha at

# significance level L, given true p and MC sample size M.

randmpow <- function(M,alpha=0.05,p=0.04,L=0.01)

{

z <- qnorm(1-L/2)

left <- sqrt(M)*(alpha-p)/sqrt(p*(1-p))

right <- sqrt( alpha/p * (1-alpha)/(1-p) )

randmpow <- 1 - pnorm(left+z*right) + pnorm(left-z*right)

randmpow

} # End function randmpow

The function findm uses randmpow to search for the Monte Carlo sample size needed for
a specified power. Again, the power we’re talking about here is the power of a test for
whether the randomization test p-value P̂ is different from 0.05.
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Table 11.1: Monte Carlo sample size required to have specified probability that P̂ will be
significantly different from 0.05 at the 0.01 level, when the true p-value is P

Probability of Significance
P 0.70 0.75 0.80 0.85 0.90

0.0001 129 130 131 132 133
0.0010 140 142 144 148 151
0.0050 177 184 191 199 210
0.0100 236 247 261 276 297
0.0200 448 478 513 555 610
0.0300 1,059 1,144 1,243 1,363 1,522
0.0400 4,411 4,811 5,276 5,845 6,602
0.0450 17,962 19,669 21,660 24,103 27,362
0.0550 18,548 20,459 22,697 25,452 29,143
0.0600 4,705 5,207 5,796 6,522 7,496
0.0700 1,209 1,345 1,506 1,705 1,974
0.0800 551 616 693 789 919
0.0900 317 356 403 461 539
0.1000 207 234 265 305 358
0.3000 11 13 15 18 22
0.5000 4 4 5 6 8

findm <- function(wantpow=.8,mstart=1,aa=0.05,pp=0.04,LL=0.01)

{

pow <- 0

mm <- mstart

while(pow < wantpow)

{

mm <- mm+1

pow <- randmpow(mm,aa,pp,LL)

} # End while

findm <- mm

findm

} # End function findm

Table 11.1.2 shows the result of applying the function findm to a selected set of true
p values and desired power values.
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The Greenhouse Data Again

With permutation and randomization tests, it’s a tricky business to carry out a test for
a set of explanatory variables while controlling for another set. It’s easy to preserve
the relationships among multiple explanatory variables or multiple response variables by
keeping them together, but it’s hard to preserve the relationship of the response variable
to one set of explanatory variables while destroying its relationship to another set by
randomization.

There’s one very important case where this is not a problem. In factorial designs with
equal or proportional sample sizes, the explanatory variables are completely unrelated
to each other, so we can just randomize the response variable (or collection of response
variables). Here’s an example from the greenhouse data.

credit.erin > head green.dat

PLANT MCG MEANLNG

1 1 7 50.714

2 1 9 10.793

3 3 8 106.514

4 3 7 102.243

5 3 9 73.214

6 1 3 10.471

7 2 2 13.536

credit.erin > R

> green <- read.table("green.dat")

> plant <- factor(green$PLANT) ; mcg <- factor(green$MCG)

> meanlng <- green$MEANLNG #$

> obs <- anova(lm(meanlng ~ plant*mcg))

> obs

Analysis of Variance Table

Response: meanlng

Df Sum Sq Mean Sq F value Pr(>F)

plant 2 221695 110848 113.9032 < 2.2e-16 ***

mcg 5 58740 11748 12.0719 5.894e-09 ***

plant:mcg 10 47581 4758 4.8893 1.273e-05 ***

Residuals 90 87586 973

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> # This agrees with what we got from SAS

> obsF <- obs[1:3,4]

> obsF

1 2 3
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113.903170 12.071871 4.889303

>

> set.seed(4444)

> M <- 500 ; simf <- NULL

> for(i in 1:M)

+ {

+ simf <- rbind(simf,anova(lm(sample(meanlng)~plant*mcg))[1:3,4])

+ } # Next i (next simulation)

>

> plantp <- length(simf[,1][simf[,1]>=obsF[1]])/M ; plantp

[1] 0

> max(simf[,1])

[1] 7.460185

> min(simf[,1])

[1] 0.0003066219

> mcgp <- length(simf[,2][simf[,2]>=obsF[2]])/M ; mcgp

[1] 0

> intp <- length(simf[,3][simf[,3]>=obsF[3]])/M ; intp

[1] 0

> max(simf[,2])

[1] 4.54209

> max(simf[,3])

[1] 3.209669

The randomization p-value is approximately zero. We can’t compute a meaningful
confidence interval (why not?) but we can conclude that the permutation p-value is less
than 0.05, because

> .05*sqrt(500)/sqrt(.05*.95)

[1] 5.129892

The Twins Data

Sherlock Holmes and the hat.
Long ago, there was more space in journals, and a journal called Human Biology

used to publish raw data. The twin data contains educational test scores and physical
measurements for a sample of high school age identical and fraternal twin pairs. Members
of each twin pair were of the same sex. Except for a few cases where the parents were not
sure, Twin One was born first and Twin Two was born second. The variables are:

1. SEX: 0=Male, 1=Female

2. IDENT: 0=Fraternal 1=Identical

3. PROGMAT1: Progressive matrices (puzzle) score for twin 1
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4. REASON1: Reasoning score for twin 1

5. VERBAL1: Verbal (reading and vocabulary) score for twin 1

6. PROGMAT2: Progressive matrices (puzzle) score for twin 2

7. REASON2: Reasoning score for twin 2

8. VERBAL2: Verbal (reading and vocabulary) score for twin 2

9. HEADLNG1: Head Length of Twin 1

10. HEADBRD1: Head Breadth of Twin 1

11. HEADCIR1: Head Circumference of Twin 1

12. HEADLNG2: Head Length of Twin 2

13. HEADBRD2: Head Breadth of Twin 2

14. HEADCIR2: Head Circumference of Twin 2

This is a subset of the original data. Some variables like height and weight are not
included. The reference is Clark, P. J., Vandenberg, S. G., and Proctor, C. H. (1961), ”On
the relationship of scores on certain psychological tests with a number of anthropometric
characters and birth order in twins,” Human Biology, 33, 163-180.

We want to see if performance on the educational tests is related to head size.

/res/jbrunner/www/442/S > head smalltwin.dat

sex ident progmat1 reason1 verbal1 progmat2 reason2 verbal2 headlng1 headbrd1

headcir1 headlng2 headbrd2 headcir2

1 1 1 48 53 66 35 42 61 183 140 522 188 138 535

2 1 1 47 69 88 53 74 84 189 137 542 186 140 543

3 1 1 35 68 92 42 61 86 185 145 549 186 140 550

4 1 1 34 42 73 26 38 68 183 151 544 185 147 545

5 1 1 49 71 95 38 72 97 174 145 534 186 143 543

6 1 1 50 90 122 46 82 101 191 143 551 191 141 552

7 1 1 25 30 42 28 37 43 184 143 511 186 143 535

8 1 1 25 74 64 41 78 65 180 146 532 179 144 527

9 1 1 23 19 52 23 36 59 193 146 560 191 145 551

/res/jbrunner/www/442/S > R

> twinframe <- read.table("smalltwin.dat")

> sex <- twinframe$sex ; ident <- twinframe$ident

> sexfac <- factor(twinframe$sex,levels=c(0,1),label=c("Male","Female"))

> identfac <- factor(twinframe$ident,levels=c(0,1),
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+ label=c("Fraternal","Identical"))

> table(sexfac,identfac)

identfac

sexfac Fraternal Identical

Male 13 21

Female 20 20

> mental <- twinframe[,3:8] # All rows, cols 3 to 8

> phys <- twinframe[,9:14] # All rows, cols 9 to 14

> cor(mental,phys)

headlng1 headbrd1 headcir1 headlng2 headbrd2 headcir2

progmat1 0.1945786 0.02669260 0.2046808 0.2070390 0.09577333 0.2204541

reason1 0.1232977 0.03186775 0.2052615 0.0978289 0.04733736 0.1955942

verbal1 0.2259473 0.05372263 0.2452086 0.2132409 0.07487114 0.2333709

progmat2 0.2863199 0.19917360 0.3128950 0.3446627 0.22308623 0.3739253

reason2 0.2127977 0.06950846 0.2767257 0.1226885 0.11543427 0.2521013

verbal2 0.2933130 0.16693928 0.3242051 0.2537764 0.22801336 0.3350497

>

> # But that’s IGNORING sex and ident-frat. Want to CONTROL for them.

> n <- length(sex)

> mf <- (1:n)[sex==0&ident==0] # mf are indices of male fraternal pairs

> mi <- (1:n)[sex==0&ident==1] # mi are indices of male identical pairs

> ff <- (1:n)[sex==1&ident==0] # ff are indices of female fraternal pairs

> fi <- (1:n)[sex==1&ident==1] # fi are indices of female identical pairs

> mf

[1] 62 63 64 65 66 67 68 69 70 71 72 73 74

> # Sub-sample sizes

> nmf <- length(mf) ; nmi <- length(mi)

> nff <- length(ff) ; nfi <- length(fi)

> nmf ; nmi ; nff ; nfi

[1] 13

[1] 21

[1] 20

[1] 20

> table(sexfac,identfac)

identfac

sexfac Fraternal Identical

Male 13 21

Female 20 20

> # mentalmf are mental scores of male fraternal pairs, etc.

> mentalmf <- mental[mf,] ; physmf <- phys[mf,]
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> mentalmi <- mental[mi,] ; physmi <- phys[mi,]

> mentalff <- mental[ff,] ; physff <- phys[ff,]

> mentalfi <- mental[fi,] ; physfi <- phys[fi,]

> mentalmf

progmat1 reason1 verbal1 progmat2 reason2 verbal2

62 58 91 128 54 73 129

63 44 46 79 42 34 42

64 44 43 70 43 36 58

65 36 40 63 42 39 63

66 34 21 53 45 31 70

67 50 70 93 45 67 109

68 50 81 101 41 47 96

69 31 76 122 43 70 75

70 23 29 62 26 29 42

71 52 66 114 42 69 120

72 48 51 62 30 35 49

73 23 48 78 38 62 87

74 28 38 62 55 70 105

> # First three rows

> mentalmf[1:3,]

progmat1 reason1 verbal1 progmat2 reason2 verbal2

62 58 91 128 54 73 129

63 44 46 79 42 34 42

64 44 43 70 43 36 58

> # Last 3 columns

> mentalmf[,4:6]

progmat2 reason2 verbal2

62 54 73 129

63 42 34 42

64 43 36 58

65 42 39 63

66 45 31 70

67 45 67 109

68 41 47 96

69 43 70 75

70 26 29 42

71 42 69 120

72 30 35 49

73 38 62 87

74 55 70 105

> # Rows in random order

> mentalmf[sample(1:13),]
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progmat1 reason1 verbal1 progmat2 reason2 verbal2

71 52 66 114 42 69 120

73 23 48 78 38 62 87

66 34 21 53 45 31 70

69 31 76 122 43 70 75

65 36 40 63 42 39 63

68 50 81 101 41 47 96

64 44 43 70 43 36 58

70 23 29 62 26 29 42

62 58 91 128 54 73 129

63 44 46 79 42 34 42

74 28 38 62 55 70 105

67 50 70 93 45 67 109

72 48 51 62 30 35 49

>

That’s how we’ll randomize. Back to CONTROLLING for sex, ident.

> # mentalmf are mental scores of male fraternal pairs, etc.

> mentalmf <- mental[mf,] ; physmf <- phys[mf,]

> mentalmi <- mental[mi,] ; physmi <- phys[mi,]

> mentalff <- mental[ff,] ; physff <- phys[ff,]

> mentalfi <- mental[fi,] ; physfi <- phys[fi,]

>

> cor(mentalmf,physmf)

headlng1 headbrd1 headcir1 headlng2 headbrd2 headcir2

progmat1 0.3534186 -0.53715165 0.05247501 -0.1486551 -0.3335911 -0.2541279

reason1 0.4784903 -0.04435345 0.40868525 0.2009069 -0.1853897 0.1574282

verbal1 0.3333061 0.02578888 0.36744645 0.1507982 -0.1958353 0.1267843

progmat2 0.5712273 -0.16389337 0.37080025 0.5622139 -0.1996214 0.4073323

reason2 0.4886337 0.38731941 0.63957418 0.4271557 0.2587126 0.6682264

verbal2 0.5278153 0.25599312 0.62836834 0.3403694 0.1966882 0.6113976

>

> # Don’t want to correlate mental twin 1 with phys twin 2

>

> cor(mentalmf[,1:3],physmf[,1:3])

headlng1 headbrd1 headcir1

progmat1 0.3534186 -0.53715165 0.05247501

reason1 0.4784903 -0.04435345 0.40868525

verbal1 0.3333061 0.02578888 0.36744645

> max(abs(cor(mentalmf[,1:3],physmf[,1:3])))

[1] 0.5371517

>
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> cor(mentalmf[,4:6],physmf[,4:6])

headlng2 headbrd2 headcir2

progmat2 0.5622139 -0.1996214 0.4073323

reason2 0.4271557 0.2587126 0.6682264

verbal2 0.3403694 0.1966882 0.6113976

> max(abs(cor(mentalmf[,4:6],physmf[,4:6])))

[1] 0.6682264

>

>

> cor(mentalmi[,1:3],physmi[,1:3])

headlng1 headbrd1 headcir1

progmat1 0.2334577 0.26536909 0.3193472

reason1 0.2622690 0.37549903 0.3534622

verbal1 0.4436284 0.06643773 0.3480645

> max(abs(cor(mentalmi[,1:3],physmi[,1:3])))

[1] 0.4436284

> cor(mentalmi[,4:6],physmi[,4:6])

headlng2 headbrd2 headcir2

progmat2 0.3645763 0.2537397 0.3699872

reason2 0.1682737 0.4212712 0.3873012

verbal2 0.1814358 0.1590209 0.2112241

> max(abs(cor(mentalmi[,4:6],physmi[,4:6])))

[1] 0.4212712

>

> cor(mentalff[,1:3],physff[,1:3])

headlng1 headbrd1 headcir1

progmat1 -0.09894825 0.1031112 0.1024857

reason1 0.10353527 0.1974691 0.2299249

verbal1 0.04068947 0.1458637 0.0710240

> max(abs(cor(mentalff[,1:3],physff[,1:3])))

[1] 0.2299249

> cor(mentalff[,4:6],physff[,4:6])

headlng2 headbrd2 headcir2

progmat2 -0.05058245 0.3809976 0.1205803

reason2 0.19569669 0.3570053 0.2617820

verbal2 0.24212501 0.3964967 0.2463883

> max(abs(cor(mentalff[,4:6],physff[,4:6])))

[1] 0.3964967

>

> cor(mentalfi[,1:3],physfi[,1:3])

headlng1 headbrd1 headcir1

progmat1 -0.01443227 -0.34580801 -0.004887716

reason1 0.15174745 0.04052029 0.304039946
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verbal1 0.22504203 -0.01581501 0.341174647

> max(abs(cor(mentalfi[,1:3],physfi[,1:3])))

[1] 0.345808

> cor(mentalfi[,4:6],physfi[,4:6])

headlng2 headbrd2 headcir2

progmat2 0.4030654 -0.02036423 0.4244152

reason2 0.3233766 0.05661767 0.4178053

verbal2 0.2702130 0.15930201 0.4025376

> max(abs(cor(mentalfi[,4:6],physfi[,4:6])))

[1] 0.4244152

>

> # test sta will be absobs = 0.6682264

> obsmax <- max( c(

+ cor(mentalmf[,1:3],physmf[,1:3]),

+ cor(mentalmf[,4:6],physmf[,4:6]),

+ cor(mentalmi[,1:3],physmi[,1:3]),

+ cor(mentalmi[,4:6],physmi[,4:6]),

+ cor(mentalff[,1:3],physff[,1:3]),

+ cor(mentalff[,4:6],physff[,4:6]),

+ cor(mentalfi[,1:3],physfi[,1:3]),

+ cor(mentalfi[,4:6],physfi[,4:6]) ) )

>

> obsmax

[1] 0.6682264

>

> obsmin <- min( c(

+ cor(mentalmf[,1:3],physmf[,1:3]),

+ cor(mentalmf[,4:6],physmf[,4:6]),

+ cor(mentalmi[,1:3],physmi[,1:3]),

+ cor(mentalmi[,4:6],physmi[,4:6]),

+ cor(mentalff[,1:3],physff[,1:3]),

+ cor(mentalff[,4:6],physff[,4:6]),

+ cor(mentalfi[,1:3],physfi[,1:3]),

+ cor(mentalfi[,4:6],physfi[,4:6]) ) )

> obsmin

[1] -0.5371517

>

> absobs <- max(abs(obsmax),abs(obsmin)) # Test Statistic

> absobs

[1] 0.6682264

>

> ####

> # Here’s how we’ll sample. Recall mentalmf <- mental[mf,]

> ####
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> mf

[1] 62 63 64 65 66 67 68 69 70 71 72 73 74

> mentalmf

progmat1 reason1 verbal1 progmat2 reason2 verbal2

62 58 91 128 54 73 129

63 44 46 79 42 34 42

64 44 43 70 43 36 58

65 36 40 63 42 39 63

66 34 21 53 45 31 70

67 50 70 93 45 67 109

68 50 81 101 41 47 96

69 31 76 122 43 70 75

70 23 29 62 26 29 42

71 52 66 114 42 69 120

72 48 51 62 30 35 49

73 23 48 78 38 62 87

74 28 38 62 55 70 105

> mental[sample(mf),]

progmat1 reason1 verbal1 progmat2 reason2 verbal2

72 48 51 62 30 35 49

66 34 21 53 45 31 70

62 58 91 128 54 73 129

69 31 76 122 43 70 75

70 23 29 62 26 29 42

71 52 66 114 42 69 120

67 50 70 93 45 67 109

74 28 38 62 55 70 105

63 44 46 79 42 34 42

68 50 81 101 41 47 96

73 23 48 78 38 62 87

65 36 40 63 42 39 63

64 44 43 70 43 36 58

>

> rmentalmf <- mental[sample(mf),]

> rmentalmi <- mental[sample(mi),]

> rmentalff <- mental[sample(ff),]

> rmentalfi <- mental[sample(fi),]

>

> rcorrs <- c(

+ cor(rmentalmf[,1:3],physmf[,1:3]),

+ cor(rmentalmf[,4:6],physmf[,4:6]),

+ cor(rmentalmi[,1:3],physmi[,1:3]),

+ cor(rmentalmi[,4:6],physmi[,4:6]),

+ cor(rmentalff[,1:3],physff[,1:3]),



11.1. PERMUTATION TESTS AND RANDOMIZATION TESTS 323

+ cor(rmentalff[,4:6],physff[,4:6]),

+ cor(rmentalfi[,1:3],physff[,1:3]),

+ cor(rmentalfi[,4:6],physff[,4:6]) )

>

> min(rcorrs) ; max(rcorrs)

[1] -0.5673855

[1] 0.5166834

> rmin <- NULL ; rmax <- NULL ; rabs <- NULL

>

> # Now simulate

> M <- 200 ; set.seed(4444)

> for(i in 1:M)

+ {

+ rmentalmf <- mental[sample(mf),]

+ rmentalmi <- mental[sample(mi),]

+ rmentalff <- mental[sample(ff),]

+ rmentalfi <- mental[sample(fi),]

+ rcorrs <- c(

+ cor(rmentalmf[,1:3],physmf[,1:3]),

+ cor(rmentalmf[,4:6],physmf[,4:6]),

+ cor(rmentalmi[,1:3],physmi[,1:3]),

+ cor(rmentalmi[,4:6],physmi[,4:6]),

+ cor(rmentalff[,1:3],physff[,1:3]),

+ cor(rmentalff[,4:6],physff[,4:6]),

+ cor(rmentalfi[,1:3],physff[,1:3]),

+ cor(rmentalfi[,4:6],physff[,4:6]) )

+ rmin <- c(rmin,min(rcorrs))

+ rmax <- c(rmax,max(rcorrs))

+ rabs <- c(rabs,max(abs(min(rcorrs)),abs(max(rcorrs))))

+ }

> cbind(rmin,rmax,rabs)[1:20,] # First 20 rows

rmin rmax rabs

[1,] -0.6521097 0.6024060 0.6521097

[2,] -0.4410713 0.6091124 0.6091124

[3,] -0.5635999 0.3953340 0.5635999

[4,] -0.6655059 0.6937127 0.6937127

[5,] -0.5110777 0.3692450 0.5110777

[6,] -0.4513148 0.7600707 0.7600707

[7,] -0.3180858 0.5724620 0.5724620

[8,] -0.6258317 0.4013421 0.6258317

[9,] -0.4061387 0.5174977 0.5174977

[10,] -0.5004209 0.4688702 0.5004209

[11,] -0.6437074 0.3458846 0.6437074

[12,] -0.4065318 0.2945435 0.4065318
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[13,] -0.6115288 0.5631299 0.6115288

[14,] -0.4709578 0.5452405 0.5452405

[15,] -0.6060098 0.6110585 0.6110585

[16,] -0.4220454 0.3177893 0.4220454

[17,] -0.3407132 0.5021933 0.5021933

[18,] -0.5861414 0.3645763 0.5861414

[19,] -0.6137978 0.4693924 0.6137978

[20,] -0.4509271 0.4157352 0.4509271

>

> length(rabs[rabs>=absobs])/M # Two sided

[1] 0.135

> length(rmin[rmin<=obsmin])/M # Lower tailed

[1] 0.395

> length(rmax[rmax>=obsmax])/M # Upper tailed

[1] 0.07

Now let’s put the wole thing together. Make a file that just does the analysis and
prints the results. How many simulations should we use? I’d like to make sure that P̂ is
significantly different from 0.07, so I run

> findm

function(wantpow=.8,mstart=1,aa=0.05,pp=0.04,LL=0.01)

{

pow <- 0

mm <- mstart

while(pow < wantpow)

{

mm <- mm+1

pow <- randmpow(mm,aa,pp,LL)

} # End while

findm <- mm

findm

} # End function findm

>

> findm(pp=.07)

[1] 1506

and choose m = 1600. First I’ll show you the output, then a listing of the program
twins.R.

> source("twins.R")

Male Fraternal

Twin 1

headlng1 headbrd1 headcir1

progmat1 0.3534186 -0.53715165 0.05247501
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reason1 0.4784903 -0.04435345 0.40868525

verbal1 0.3333061 0.02578888 0.36744645

Twin 2

headlng2 headbrd2 headcir2

progmat2 0.5622139 -0.1996214 0.4073323

reason2 0.4271557 0.2587126 0.6682264

verbal2 0.3403694 0.1966882 0.6113976

Male Identical

Twin 1

headlng1 headbrd1 headcir1

progmat1 0.2334577 0.26536909 0.3193472

reason1 0.2622690 0.37549903 0.3534622

verbal1 0.4436284 0.06643773 0.3480645

Twin 2

headlng2 headbrd2 headcir2

progmat2 0.3645763 0.2537397 0.3699872

reason2 0.1682737 0.4212712 0.3873012

verbal2 0.1814358 0.1590209 0.2112241

Female Fraternal

Twin 1

headlng1 headbrd1 headcir1

progmat1 -0.09894825 0.1031112 0.1024857

reason1 0.10353527 0.1974691 0.2299249

verbal1 0.04068947 0.1458637 0.0710240

Twin 2

headlng2 headbrd2 headcir2

progmat2 -0.05058245 0.3809976 0.1205803

reason2 0.19569669 0.3570053 0.2617820

verbal2 0.24212501 0.3964967 0.2463883

Female Identical

Twin 1

headlng1 headbrd1 headcir1

progmat1 -0.01443227 -0.34580801 -0.004887716

reason1 0.15174745 0.04052029 0.304039946

verbal1 0.22504203 -0.01581501 0.341174647

Twin 2

headlng2 headbrd2 headcir2

progmat2 0.4030654 -0.02036423 0.4244152

reason2 0.3233766 0.05661767 0.4178053
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verbal2 0.2702130 0.15930201 0.4025376

Correlations Between Mental and Physical

Minimum Observed Correlation: -0.5371517

Randomization p-value (one-sided): p-hat = 0.416875

Plus or minus 99% Margin of error = 0.03174979

Maximum Observed Correlation: 0.6682264

Randomization p-value (one-sided): p-hat = 0.10625

Plus or minus 99% Margin of error = 0.01984402

Maximum Observed Absolute Correlation: 0.6682264

Randomization p-value (two-sided): p-hat = 0.199375

Plus or minus 99% Margin of error = 0.02572806

And here is a listing of the program.

# twins.R

# Just do the analysis - no examples or explanation with source("twins.R")

twinframe <- read.table("smalltwin.dat")

sex <- twinframe$sex ; ident <- twinframe$ident

mental <- twinframe[,3:8] # All rows, cols 3 to 8

phys <- twinframe[,9:14] # All rows, cols 9 to 14

n <- length(sex)

mf <- (1:n)[sex==0&ident==0] # mf are indices of male fraternal pairs

mi <- (1:n)[sex==0&ident==1] # mi are indices of male identical pairs

ff <- (1:n)[sex==1&ident==0] # ff are indices of female fraternal pairs

fi <- (1:n)[sex==1&ident==1] # fi are indices of female identical pairs

# Sub-sample sizes

nmf <- length(mf) ; nmi <- length(mi)

nff <- length(ff) ; nfi <- length(fi)

# mentalmf are mental scores of male fraternal pairs, etc.

mentalmf <- mental[mf,] ; physmf <- phys[mf,]

mentalmi <- mental[mi,] ; physmi <- phys[mi,]

mentalff <- mental[ff,] ; physff <- phys[ff,]

mentalfi <- mental[fi,] ; physfi <- phys[fi,]

cat("Male Fraternal \n")

cat(" Twin 1 \n")

print(cor(mentalmf[,1:3],physmf[,1:3]))

cat(" Twin 2 \n")

print(cor(mentalmf[,4:6],physmf[,4:6]))
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cat(" \n")

cat("Male Identical \n")

cat(" Twin 1 \n")

print(cor(mentalmi[,1:3],physmi[,1:3]))

cat(" Twin 2 \n")

print(cor(mentalmi[,4:6],physmi[,4:6]))

cat(" \n")

cat("Female Fraternal \n")

cat(" Twin 1 \n")

print(cor(mentalff[,1:3],physff[,1:3]))

cat(" Twin 2 \n")

print(cor(mentalff[,4:6],physff[,4:6]))

cat(" \n")

cat("Female Identical \n")

cat(" Twin 1 \n")

print(cor(mentalfi[,1:3],physfi[,1:3]))

cat(" Twin 2 \n")

print(cor(mentalfi[,4:6],physfi[,4:6]))

cat(" \n")

# test sta will be absobs = 0.6682264

# Keep track of minimum (neg corr: obsmin = -0.5371517) and max too.

obsmax <- max( c(

cor(mentalmf[,1:3],physmf[,1:3]),

cor(mentalmf[,4:6],physmf[,4:6]),

cor(mentalmi[,1:3],physmi[,1:3]),

cor(mentalmi[,4:6],physmi[,4:6]),

cor(mentalff[,1:3],physff[,1:3]),

cor(mentalff[,4:6],physff[,4:6]),

cor(mentalfi[,1:3],physfi[,1:3]),

cor(mentalfi[,4:6],physfi[,4:6]) ) )

obsmin <- min( c(

cor(mentalmf[,1:3],physmf[,1:3]),

cor(mentalmf[,4:6],physmf[,4:6]),

cor(mentalmi[,1:3],physmi[,1:3]),

cor(mentalmi[,4:6],physmi[,4:6]),

cor(mentalff[,1:3],physff[,1:3]),

cor(mentalff[,4:6],physff[,4:6]),

cor(mentalfi[,1:3],physfi[,1:3]),
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cor(mentalfi[,4:6],physfi[,4:6]) ) )

absobs <- max(abs(obsmax),abs(obsmin)) # Test Statistic

rmin <- NULL ; rmax <- NULL ; rabs <- NULL

# Now simulate. Want p-hat sig diff from 0.07. Use findm(pp=.07), get

# 1506, so use m=1600

M <- 1600 ; set.seed(4444)

for(i in 1:M)

{

rmentalmf <- mental[sample(mf),]

rmentalmi <- mental[sample(mi),]

rmentalff <- mental[sample(ff),]

rmentalfi <- mental[sample(fi),]

rcorrs <- c(

cor(rmentalmf[,1:3],physmf[,1:3]),

cor(rmentalmf[,4:6],physmf[,4:6]),

cor(rmentalmi[,1:3],physmi[,1:3]),

cor(rmentalmi[,4:6],physmi[,4:6]),

cor(rmentalff[,1:3],physff[,1:3]),

cor(rmentalff[,4:6],physff[,4:6]),

cor(rmentalfi[,1:3],physff[,1:3]),

cor(rmentalfi[,4:6],physff[,4:6]) )

rmin <- c(rmin,min(rcorrs))

rmax <- c(rmax,max(rcorrs))

rabs <- c(rabs,max(abs(min(rcorrs)),abs(max(rcorrs))))

}

twot <- length(rabs[rabs>=absobs])/M # Two sided

lowt <- length(rmin[rmin<=obsmin])/M # Lower tailed

upt <- length(rmax[rmax>=obsmax])/M # Upper tailed

merror <- function(phat,M,alpha) # (1-alpha)*100% merror for a proportion

{

z <- qnorm(1-alpha/2)

merror <- z * sqrt(phat*(1-phat)/M) # M is (Monte Carlo) sample size

merror

} # End function merror

cat("Correlations Between Mental and Physical \n")

cat(" \n") ; cat(" \n")

cat(" Minimum Observed Correlation: ",obsmin,"\n")

cat(" Randomization p-value (one-sided): p-hat = ",lowt," \n")
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cat(" Plus or minus 99% Margin of error = ",merror(lowt,M,0.01),"\n")

cat(" \n")

cat(" Maximum Observed Correlation: ",obsmax,"\n")

cat(" Randomization p-value (one-sided): p-hat = ",upt," \n")

cat(" Plus or minus 99% Margin of error = ",merror(upt,M,0.01),"\n")

cat(" \n")

cat(" Maximum Observed Absolute Correlation: ",absobs,"\n")

cat(" Randomization p-value (two-sided): p-hat = ",twot," \n")

cat(" Plus or minus 99% Margin of error = ",merror(twot,M,0.01),"\n")

cat(" \n")
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11.2 Bootstrap

To appreciate the bootstrap, recall the idea of a sampling distribution.

If the sample size is large enough, the histogram of the sample data is a lot like the
histogram of the entire population. Thus, sampling from the sample with replacement is
a lot like sampling from the population. Sampling from the sample is called resampling.
One can approximate the sampling distribution of a statistic as follows.

• Select a random sample of size n from the sample data, with replacement.

• Compute the statistic from the resampled data.

• Do this over and over again, accumulating the values of the statistic.

• A histogram of the values you have accumulated will resemble the sampling distri-
bution of the statistic.

> # boot1.R Working on the bootstrap

> # Run with R --vanilla < boot1.R > boot1.out &

> # grades.dat has 4 columns: ID, Verbal SAT, Math SAT and 1st year GPA

>

> marks <- read.table("grades.dat")

> n <- length(marks$verbal) #$

> n

[1] 200

> marks[1:10,]

verbal math gpa

1 623 509 2.6

2 454 471 2.3

3 643 700 2.4

4 585 719 3.0

5 719 710 3.1

6 693 643 2.9

7 571 665 3.1

8 646 719 3.3

9 613 693 2.3

10 655 701 3.3

> obscorr <- cor(marks)

> obscorr

verbal math gpa

verbal 1.0000000 0.2746341 0.3224477

math 0.2746341 1.0000000 0.1942431

gpa 0.3224477 0.1942431 1.0000000

> # Question: Is the correlation between Verbal SAT and GPA the same as

> # the correlation between math SAT and GPA?
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> # What is the sampling distribution of the difference between correlation

> # coefficients?

> #

> obsdiff <- obscorr[3,1]-obscorr[3,2] # Verbal minus math

> obsdiff

[1] 0.1282046

> # The strategy will be to obtain a 95% bootstrap confidence interval for

> # the difference between verbal correlation and math correlation. This

> # confidence interval will be approximately centered around the observed

> # difference obsdiff = .128. If the confidence interval does not include

> # zero, we will conclude that the observed difference is significantly

> # different from zero.

>

> BOOT <- 1000 ; bsdiff <- NULL ; set.seed(9999)

> # Accumulate bootstrap values in bsdiff

> # For clarity, do operations in several separate steps inside the loop

> for(i in 1:BOOT)

+ {

+ bootmarks <- marks[sample(1:n,replace=TRUE),] # sample rows with

+ # replacement

+ bcorr <- cor(bootmarks) # Correlation matrix of bootstrap sample

+ bdiffer <- bcorr[3,1]-bcorr[3,2] # Differencce between correlation

+ # coefficients

+ bsdiff <- c(bsdiff,bdiffer) # Add bdiffer to the end of bsdiff

+ } # Next bootstrap sample

> bsdiff <- sort(bsdiff)

> # Now get lower and upper limits of 95% CI

> low <- bsdiff[.025*BOOT] ; up <- bsdiff[.975*BOOT + 1]

> low ; up

[1] -0.03643594

[1] 0.3032818

> (low+up)/2

[1] 0.1334230

> obsdiff

[1] 0.1282046

> write(bsdiff,"bsdiff.dat") # Maybe for later analysis

> pdf("bsdiff.pdf") # Send graphics output to pdf file

> hist(bsdiff)

Bootstrap regression tests Fit the reduced model. Assemble resampled data sets by
sampling with replacement from the residuals, and forming Ŷ plus the residual. Test full
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vs reduced model each time. Proportion of simulated F statistics at or above observed F
is the bootstrap p-value.

——————————————————————————-
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Chapter 12

GNU Free Documentation License

Version 1.3, 3 November 2008
Copyright c© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.

http://fsf.org

Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional and
useful document “free” in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or noncom-
mercially. Secondarily, this License preserves for the author and publisher a way to get
credit for their work, while not being considered responsible for modifications made by
others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals provid-
ing the same freedoms that the software does. But this License is not limited to software
manuals; it can be used for any textual work, regardless of subject matter or whether it
is published as a printed book. We recommend this License principally for works whose
purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms of this
License. Such a notice grants a world-wide, royalty-free license, unlimited in duration,
to use that work under the conditions stated herein. The “Document”, below, refers
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to any such manual or work. Any member of the public is a licensee, and is addressed
as “you”. You accept the license if you copy, modify or distribute the work in a way
requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document
or a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Doc-
ument that deals exclusively with the relationship of the publishers or authors of the
Document to the Document’s overall subject (or to related matters) and contains nothing
that could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated,
as being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for re-
vising the document straightforwardly with generic text editors or (for images composed
of pixels) generic paint programs or (for drawings) some widely available drawing editor,
and that is suitable for input to text formatters or for automatic translation to a variety of
formats suitable for input to text formatters. A copy made in an otherwise Transparent
file format whose markup, or absence of markup, has been arranged to thwart or dis-
courage subsequent modification by readers is not Transparent. An image format is not
Transparent if used for any substantial amount of text. A copy that is not “Transparent”
is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited only
by proprietary word processors, SGML or XML for which the DTD and/or processing
tools are not generally available, and the machine-generated HTML, PostScript or PDF
produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
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beginning of the body of the text.
The “publisher” means any person or entity that distributes copies of the Document

to the public.
A section “Entitled XYZ” means a named subunit of the Document whose title

either is precisely XYZ or contains XYZ in parentheses following text that translates
XYZ in another language. (Here XYZ stands for a specific section name mentioned below,
such as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To
“Preserve the Title” of such a section when you modify the Document means that it
remains a section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to be
included by reference in this License, but only as regards disclaiming warranties: any
other implication that these Warranty Disclaimers may have is void and has no effect on
the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license notice
saying this License applies to the Document are reproduced in all copies, and that you
add no other conditions whatsoever to those of this License. You may not use technical
measures to obstruct or control the reading or further copying of the copies you make
or distribute. However, you may accept compensation in exchange for copies. If you
distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may
publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers)
of the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the
back cover. Both covers must also clearly and legibly identify you as the publisher of
these copies. The front cover must present the full title with all words of the title equally
prominent and visible. You may add other material on the covers in addition. Copying
with changes limited to the covers, as long as they preserve the title of the Document and
satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest
onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
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copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If you use
the latter option, you must take reasonably prudent steps, when you begin distribution of
Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible
at the stated location until at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of it.
In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any, be
listed in the History section of the Document). You may use the same title as a
previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.
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I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version as
given on the Title Page. If there is no section Entitled “History” in the Document,
create one stating the title, year, authors, and publisher of the Document as given
on its Title Page, then add an item describing the Modified Version as stated in the
previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in
their titles. Section numbers or the equivalent are not considered part of the section
titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These titles
must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added
by (or through arrangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrangement made by the
same entity you are acting on behalf of, you may not add another; but you may replace
the old one, on explicit permission from the previous publisher that added the old one.
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The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you in-
clude in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the various
original documents, forming one section Entitled “History”; likewise combine any sections
Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You must delete
all sections Entitled “Endorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various docu-
ments with a single copy that is included in the collection, provided that you follow the
rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individ-
ually under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT

WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called an
“aggregate” if the copyright resulting from the compilation is not used to limit the legal
rights of the compilation’s users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to the other works in
the aggregate which are not themselves derivative works of the Document.
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If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of
the Document under the terms of section 4. Replacing Invariant Sections with translations
requires special permission from their copyright holders, but you may include translations
of some or all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the license notices in the
Document, and any Warranty Disclaimers, provided that you also include the original
English version of this License and the original versions of those notices and disclaimers.
In case of a disagreement between the translation and the original version of this License
or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or dis-
tribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright holder
fails to notify you of the violation by some reasonable means prior to 60 days after the
cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have been
terminated and not permanently reinstated, receipt of a copy of some or all of the same
material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE
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The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version” applies
to it, you have the option of following the terms and conditions either of that specified
version or of any later version that has been published (not as a draft) by the Free Software
Foundation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software Foundation. If
the Document specifies that a proxy can decide which future versions of this License can
be used, that proxy’s public statement of acceptance of a version permanently authorizes
you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide
Web server that publishes copyrightable works and also provides prominent facilities for
anybody to edit those works. A public wiki that anybody can edit is an example of such a
server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the site means
any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that
license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part
of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all
works that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts or
invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

ADDENDUM: How to use this License for your

documents

To use this License in a document you have written, include a copy of the License in
the document and put the following copyright and license notices just after the title page:
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Copyright c© YEAR YOUR NAME. Permission is granted to copy, distribute
and/or modify this document under the terms of the GNU Free Documenta-
tion License, Version 1.3 or any later version published by the Free Software
Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-
Cover Texts. A copy of the license is included in the section entitled “GNU
Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with . . . Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover
Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend re-
leasing these examples in parallel under your choice of free software license, such as the
GNU General Public License, to permit their use in free software.
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