
Sampling latent states for high-dimensional non-linear
state space models with the embedded HMM method

Alexander Y. Shestopaloff
Department of Statistical Sciences

University of Toronto
alexander@utstat.utoronto.ca

Radford M. Neal
Department of Statistical Sciences

& Department of Computer Science
University of Toronto

radford@utstat.utoronto.ca

18 February 2016

Abstract

We propose a new scheme for selecting pool states for the embedded Hidden Markov
Model (HMM) Markov Chain Monte Carlo (MCMC) method. This new scheme allows the
embedded HMM method to be used for efficient sampling in state space models where the
state can be high-dimensional. Previously, embedded HMM methods were only applied to
models with a one-dimensional state space. We demonstrate that using our proposed pool
state selection scheme, an embedded HMM sampler can have similar performance to a well-
tuned sampler that uses a combination of Particle Gibbs with Backward Sampling (PGBS)
and Metropolis updates. The scaling to higher dimensions is made possible by selecting
pool states locally near the current value of the state sequence. The proposed pool state
selection scheme also allows each iteration of the embedded HMM sampler to take time
linear in the number of the pool states, as opposed to quadratic as in the original embedded
HMM sampler. We also consider a model with a multimodal posterior, and show how a
technique we term “mirroring” can be used to efficiently move between the modes. We
show that the embedded HMM sampler with mirroring performs significantly better for this
multimodal example than a sampler combining PGBS and Metropolis updates.

1 Introduction

Consider a non-linear, non-Gaussian state space model for an observed sequence y = (y1, . . . , yn).
This model, with parameters θ, assumes that the Yi are drawn from an observation density
p(yi|xi, θ), where Xi is an unobserved Markov process with initial density p(x1|θ) and transition
density p(xi|xi−1, θ). Here, the xi might be either continuous or discrete. We may be interested in
inferring both the realized values of the Markov process x = (x1, . . . , xn) and the model parameters
θ. In a Bayesian approach to this problem, this can be done by drawing a sample of values for x

1

and θ using a Markov chain that alternately samples from the conditional posterior distributions
p(x|θ, y) and p(θ|x, y). In this paper, we will only consider inference for x by sampling from
p(x|θ, y), taking the parameters θ to be known. As a result, we will omit θ in model densities for
the rest of the paper. Except for linear Gaussian models and models with a finite state space, this
sampling problem has no exact solution and hence approximate methods such as MCMC must
be used.

One method for sampling state sequences in non-linear, non-Gaussian state space models is
the embedded HMM method (Neal, 2003; Neal, Beal and Roweis, 2004). An embedded HMM
update proceeds as follows. First, at each time i, a set of L “pool states” in the latent space
is constructed. In this set, L − 1 of the pool states are drawn from a chosen pool state density
and one is the current value of xi. This step can be thought of as temporarily reducing the state
space model to an HMM with a finite set of L states, hence the name of the method. Then, using
efficient forward-backward computations, which take time proportional to L2n, a new sequence
x′ is selected from the “ensemble” of Ln sequences passing through the set of pool states, with
the probability of choosing each sequence proportional to its posterior density divided by the
probability of the sequence under the pool state density. At the next iteration of the sampler, a
new set of pool states is constructed, so that the chain can sample all possible xi, even when the
set of possible values is infinite.

Another method is the Particle Gibbs with Backward Sampling (PGBS) method. The Particle
Gibbs (PG) method was first introduced in Andrieu, Doucet and Holenstein (2010); Whiteley
suggested the backward sampling modification in the discussion following this paper. Lindsten
and Schon (2012) implemented backward sampling and showed that it improves the efficiency
of PG. Starting with a current sequence x, PGBS first uses conditional Sequential Monte Carlo
(SMC) to construct a set of candidate sequences and then uses backward sampling to select a
new sequence from the set of candidate ones. Here, conditional SMC works in the same way as
ordinary SMC when generating a set of particles, except that one of the particles at time i is
always set to the current xi, similar to what is done in the embedded HMM method, which allows
the sampler to remain at xi if xi lies in a high-density region. While this method works well
for problems with low-dimensional state spaces, the reliance of the SMC procedure on choosing
an appropriate importance density can make it challenging to make the method work in high
dimensions. An important advantage of Particle Gibbs, however, is that each iteration takes time
that is only linear in the number of particles.

Both the PGBS and embedded HMM methods can facilitate sampling of a latent state se-
quence, x, when there are strong temporal dependencies amongst the xi. In this case, using a
method that samples xi conditional on fixed values of xi−1 and xi+1 can be an inefficient way of
producing a sample from p(x|y, θ), because the conditional density of xi given xi−1 and xi+1 can be
highly concentrated relative to the marginal density of xi. In contrast, with the embedded HMM
and PGBS methods it is possible to make changes to blocks of xi’s at once. This allows larger
changes to the state in each iteration of the sampler, making updates more efficient. However,
good performance of the embedded HMM and PGBS methods relies on appropriately choosing
the set of pool states or particles at each time i.

In this paper, our focus will be on techniques for choosing pool states for the embedded

2

HMM method. When the latent state space is one-dimensional, embedded HMMs work well
when choosing pool states in a variety of ways. For example, in Shestopaloff and Neal (2013), we
choose pool states at each time i by constructing a “pseudo-posterior” for each latent variable
by taking the product of a “pseudo-prior” and the observation density, the latter treated as a
“pseudo-likelihood” for the latent variable. In Shestopaloff and Neal (2014), we choose pool states
at each time i by sampling from the marginal prior density of the latent process.

Ways of choosing pool states that work well in one dimension begin to exhibit problems when
applied to models with higher-dimensional state spaces. This is true even for dimensions as
small as three. Since these schemes are global, designed to produce sets of pool states without
reference to the current point, as the dimension of the latent space grows, a higher proportion of
the sequences in the ensemble ends up having low posterior density. Ensuring that performance
doesn’t degrade in higher dimensions thus requires a significant increase in the number of pool
states. As a result, computation time may grow so large that any advantage that comes from
using embedded HMMs is eliminated. One advantage of the embedded HMM method over PGBS
is that the embedded HMM construction allows placing pool states locally near the current value
of xi, potentially allowing the method to scale better with the dimensionality of the state space.
Switching to such a local scheme fixes the problem to some extent. However, local pool state
schemes come with their own problems, such as making it difficult to handle models with multiple
posterior modes that are well-separated — the pool states might end up being placed near only
some of the modes.

In this paper, we propose an embedded HMM sampler suitable for models where the state space
is high dimensional. This sampler uses a sequential approximation to the density p(xi|y1, . . . yi)
or to the density p(xi|yi+1, . . . , yn) as the pool state density. We show that by using this pool
state density, together with an efficient MCMC scheme for sampling from it, we can reduce the
cost per iteration of the embedded HMM sampler to be proportional to nL, as with PGBS. At
the same time, we retain the ability to generate pool states locally, allowing better scaling for
high-dimensional state spaces. Our proposed scheme can thus be thought of as combining the best
features of the PGBS and the embedded HMM methods, while overcoming the deficiencies of both.
We use two sample state space models as examples. Both have Gaussian latent processes and
Poisson observations, with one model having a unimodal posterior and the second a multimodal
one. For the multimodal example, we introduce a “mirroring” technique that allows efficient
movement between the different posterior modes. For these models, we show how our proposed
embedded HMM method compares to a simple Metropolis sampler, a PGBS sampler, as well as
a sampler that combines PGBS and simple Metropolis updates.

2 Embedded HMM MCMC

We review the embedded HMM method (Neal, 2003; Neal, Beal and Roweis, 2004) here. We take
the model parameters, θ, to be fixed, so we do not write them explicitly. Let p(x) be the density
from which the state at time 1 is drawn, let p(xi|xi−1) be the transition density between states
at times i and i− 1, and let p(yi|xi) be the density of the observation yi given xi.

3

Suppose our current sequence is x = (x1, . . . , xn). The embedded HMM sampler updates x to
x′ as follows.

First, at each time i = 1, . . . , n, we generate a of L pool states at time i, denoted by Pi =
{x[1]i , . . . , x

[L]
i }. The pool states are sampled independently across the different times i. We choose

li ∈ {1, . . . , L} uniformly at random and set x
[li]
i to xi. We sample the remaining L − 1 pool

states x
[1]
i , . . . , x

[li−1]
i , x

[li+1]
i , . . . , x

[L]
n using a Markov chain that leaves a pool density κi invariant,

as follows. Let Ri(x
′|x) be the transitions of this Markov chain with R̃i(x|x′) the transitions for

this Markov chain reversed (i.e. R̃i(x|x′) = Ri(x
′|x)κi(x)/κi(x)), so that

κi(x)Ri(x
′|x) = κi(x

′)R̃i(x|x′) (1)

for all x and x′. Then, starting at j = li − 1, use reverse transitions R̃i(x
[j]
i |x

[j+1]
i) to gener-

ate x
[li−1]
i , . . . , x

[1]
i and starting at j = li + 1 use forward transitions Ri(x

[j]
i |x

[j−1]
i) to generate

x
[li+1]
i , . . . , x

[L]
n .

At each i = 1, . . . , n, we then compute the forward probabilities αi(x), with x taking values
in Pi. At time i = 1, we have

α1(x) =
p(x)p(y1|x)

κ1(x)
(2)

and at times i = 2, . . . , n, we have

αi(x) =
p(yi|x)

κi(x)

L∑
l=1

p(x|x[l]i−1)αi−1(x
[l]
i−1) (3)

Finally, we sample a new state sequence x′ using a stochastic backwards pass. This is done
by selecting x′n amongst the set, Pn, of pool states at time n, with probabilities proportional to
αn(x), and then going backwards, sampling x′i−1 from the set Pi−1, with probabilities proportional
to αi−1(x)p(x′i|x). Note that only the relative values of the αi(x) will be required, so the αi may
be computed up to some constant factor.

Alternatively, given a set of pool states, embedded HMM updates can be done by first comput-
ing the backward probabilities. We will see later on that the backward probability formulation
of the embedded HMM method allows us to introduce a variation of our proposed pool state
selection scheme. Setting βn(x) = 1 for all x ∈ Pn, we compute for i < n

βi(x) =
1

κi(x)

L∑
l=1

p(yi+1|x[l]i+1)p(x
[l]
i+1|x)βi+1(x

[l]
i+1) (4)

A new state sequence is then sampled using a stochastic forward pass, setting x′1 to one of
the x in the pool P1 with probabilities proportional to β1(x)p(x)p(y1|x) and choosing subsequent
states x′i from the pools Pi with probabilities proportional to βi(x)p(x|x′i−1)p(yi|x).

Computing the αi or βi at each time i > 1 takes time proportional to L2, since for each of
the L pool states it takes time proportional to L to compute the sums in (3) or (4). Hence each
iteration of the embedded HMM sampler takes time proportional to L2n.

4

3 Particle Gibbs with Backward Sampling MCMC

We review the Particle Gibbs with Backward Sampling (PGBS) sampler here. For full details,
see the articles by Andrieu, Doucet and Holenstein (2010) and Lindsten and Schon (2012).

Let q1(x|y1) be the importance density from which we sample particles at time 1, and let
qi(x|yi, xi−1) be the importance density for sampling particles at times i > 1. These may depend
on the current value of the parameters, θ, which we suppressed in this notation. Suppose we start
with a current sequence x. We set the first particle x

[1]
1 to the current state x1. We then sample

L− 1 particles x
[2]
1 , . . . , x

[L]
1 from q1 and compute and normalize the weights of the particles:

w
[l]
1 =

p(x
[l]
1)p(y1|x[l]1)

q1(x
[l]
1 |y1)

(5)

W
[l]
1 =

w
[l]
1∑L

l=1w
[l]
1

(6)

for l = 1, . . . , L.

For i > 1, we proceed sequentially. We first set x
[1]
i = xi. We then sample a set of L − 1

ancestor indices for particles at time i, defined by A
[l]
i−1 ∈ {1, . . . , L}, for l = 2, . . . , L, with

probabilities proportional to W
[l]
i−1. The ancestor index for the first state, A

[1]
i−1, is 1. We then

sample each of the L−1 particles, x
[l]
i , at time i, for l = 2, . . . , L, from qi(x|yi, x

[A
[l]
i−1]

i−1) and compute
and normalize the weights at time i

w
[l]
i =

p(x
[l]
i |x

[A
[l]
i−1]

i−1)p(yi|x[l]i)

qi(x
[l]
i |yi, x

[A
[l]
i−1]

i−1)

(7)

W
[l]
i =

w
[l]
i∑L

l=1w
[l]
i

(8)

A new sequence taking values in the set of particles at each time is then selected using a back-
wards sampling pass. This is done by first selecting x′n from the set of particles at time n with

probabilities W
[l]
i and then selecting the rest of the sequence going backward in time to time 1,

setting x′i to x
[l]
i with probability

w
[l]
i p(x

′
i+1|x

[l]
i)∑L

m=1w
[m]
i p(x′i+1|x

[m]
i)

(9)

A common choice for q is the model’s transition density, which is what is compared to in this
paper.

Note that each iteration of the PGBS sampler takes time proportional to Ln, since it takes
time proportional to L to create the set of particles at each time i, and to do one step of backward
sampling.

5

4 An embedded HMM sampler for high dimensions

We propose two new ways, denoted f and b, of generating pool states for the embedded HMM
sampler. Unlike previously-used pool state selection schemes, where pool states are selected
independently at each time, our new schemes select pool states sequentially, with pool states at
time i selected conditional on pool states at time i− 1, or alternatively at time i+ 1.

4.1 Pool state distributions

The first way to generate pool states is to use a forward pool state selection scheme, with a
sequential approximation to p(xi|y1, . . . , yi) as the pool state density. In particular, at time 1, we
set the pool state distribution of our proposed embedded HMM sampler to

κf1(x) ∝ p(x)p(y1|x) (10)

As a result of equation (2), α1(x) is constant. At time i > 1, we set the pool state distribution to

κfi (x|Pi−1) ∝ p(yi|x)
L∑
l=1

p(x|x[l]i−1) (11)

which makes αi(x) constant for i > 1 as well (see equation (3)).

We then draw a sequence composed of these pool states with the forward probability imple-
mentation of the embedded HMM method, with the αi(x)’s all set to 1.

The second way is to instead use a backward pool state selection scheme, with a sequential
approximation of p(xi|yi+1, . . . , yn) as the pool state density. We begin by creating the pool Pn,
consisting of the current state xn and the remaining L − 1 pool states sampled from pn(x), the
marginal density at time n, which is the same as p(x) if the latent process is stationary. The
backward probabilities βn(x), for x in Pn, are then set to 1. At time i < n we set the pool state
densities to

κbi(x|Pi+1) ∝
L∑
l=1

p(yi+1|x[l]i+1)p(x
[l]
i+1|x) (12)

so that βi(x) is constant for all i = 1, . . . , n (see equation 4).

We then draw a sequence composed of these pool states as in the backward probability im-
plementation of the embedded HMM method, with the βi(x)’s all set to 1.

If the latent process is Gaussian, and the latent state at time 1 is sampled from the stationary
distribution of the latent process, it is possible to update the latent variables by applying the
forward scheme to the reversed sequence (yn, . . . , y1) by making use of time reversibility, since Xn

is also sampled from the stationary distribution, and the latent process evolves backward in time
according to the same transition density as it would going forward. We then use the forward pool
state selection scheme along with a stochastic backward pass to sample a sequence (xn, . . . , x1),
starting with x1 and going to xn.

6

It can sometimes be advantageous to alternate between using forward and backward (or,
alternatively, forward applied to the reversed sequence) embedded HMM updates, since this can
improve sampling of certain xi. The sequential pool state selection schemes use only part of the
observed sequence in generating the pool states. By alternating update directions, the pool states
can depend on different parts of the observed data, potentially allowing us to better cover the
region where xi has high posterior density. For example, at time 1, the pool state density may
disperse the pool states too widely, leading to poor sampling for x1, but sampling x1 using a
backwards scheme can be much better, since we are now using all of the data in the sequence
when sampling pool states at time 1.

4.2 Sampling pool states

To sample from κfi or κbi , we can use any Markov transitions Ri that leave this distribution
invariant. The validity of the method does not depend on the Markov transitions for sampling
from κfi or κbi reaching equilibrium or even on them being ergodic.

Directly using these pool state densities in an MCMC routine leads to a computational cost
per iteration that is proportional to L2n, like in the original embedded HMM method, since at
times i > 1 we need at least L updates to produce L pool states, and the cost of computing an
acceptance probability is proportional to L.

However, it is possible to reduce the cost per iteration of the embedded HMM method to be
proportional to nL when we use κfi or κbi as the pool state densities. To do this, we start by
thinking of the pool state densities at each time i > 1 as marginal densities summing over the
variable l = 1, . . . , L that indexes a pool state at the previous time. Specifically, κfi can be viewed
as a marginal of the density

λi(x, l) ∝ p(yi|x)p(x|x[l]i−1) (13)

while κbi is a marginal of the density

γi(x, l) ∝ p(yi+1|x[l]i+1)p(x
[l]
i+1|x) (14)

We then use Markov transitions, Ri, to sample a set of values of xi and l, with probabilities
proportional to λi for the forward scheme, or probabilities proportional to γi for the backward
scheme.

The chain is started at the current xi, and the initial value of l is chosen randomly with
probabilities proportional to p(xi|x[l]i−1) for the forward scheme or p(yi+1|x[l]i+1)p(x

[l]
i+1|xi) for the

backward scheme. This stochastic initialization of l is needed to make the algorithm valid when
we use λi or γi to generate the pool states.

Sampling values of xi and l from λi or γi can be done by updating each of xi and l separately,
alternately sampling values of xi conditional on l, and values of l conditional on xi, or by updating
xi and l jointly, or by a combination of these.

Updating xi given l can be done with any appropriate sampler, such as Metropolis, or for a
Gaussian latent process we can use autoregressive updates, which we describe below. To update l

7

given xi, we can also use Metropolis updates, proposing l′ = l+k, with k drawn from some proposal
distribution on {−K, . . . ,−1, 1, . . . , K}. Alternatively, we can simply propose l′ uniformly at
random from {1, . . . , L}.

To jointly update xi and l, we propose two novel updates, a “shift” update and a “flip” update.
Since these are also Metropolis updates, using them together with Metropolis or autoregressive
updates, for each of xi and l separately, allows embedded HMM updates to be performed in time
proportional to nL.

4.3 Autoregressive updates

For sampling pool states in our embedded HMM MCMC schemes, as well as for comparison
MCMC schemes, we will make use of Neal’s (1998) “autoregressive” Metropolis-Hastings update,
which we review here. This update is designed to draw samples from a distribution of the form
p(w)p(y|w) where p(w) is multivariate Gaussian with mean µ and covariance Σ and p(y|w) is
typically a density for some observed data.

This autoregressive update proceeds as follows. Let L be the lower triangular Cholesky de-
composition of Σ, so Σ = LLT , and n be a vector of i.i.d. normal random variables with zero
mean and identity covariance. Let ε ∈ [−1, 1] be a tuning parameter that determines the scale of
the proposal. Starting at w, we propose

w′ = µ+
√

1− ε2(w − µ) + εLn (15)

Because these autoregressive proposals are reversible with respect to p(w), the proposal density
and p(w) cancel in the Metropolis-Hastings acceptance ratio. This update is therefore accepted
with probability

min

(
1,
p(y|w′)
p(y|w)

)
(16)

Note that for this update, the same value of ε is used for scaling along every dimension. It would
be of independent interest to develop a version of this update where ε can be different for each
dimension of w.

4.4 Shift updates

We can simultaneously update l and xi at time i > 1 by proposing to update (xi, l) to (x′i, l
′)

where l′ is proposed in any valid way while x′i is chosen in a way such that x′i and x
[l′]
i−1 are linked

in the same way as xi and x
[l]
i−1. The shift update makes it easier to generate a set of pool states

at time i with different predecessor states at time i− 1, helping to ensure that the pool states are
well-dispersed. This update is accepted with the usual Metropolis probability.

For a concrete example we use later, suppose that the latent process is an autoregressive
Gaussian process of order 1, with the model being that Xi|xi−1 ∼ N(Φxi−1,Σ). In this case,

8

given l′, we propose x′i = xi + Φ(x
[l′]
i−1 − x

[l]
i−1). This update is accepted with probability

min

(
1,
p(yi|x′i)
p(yi|xi)

)
(17)

as a result of the transition densities in the acceptance ratio cancelling out, since

x′i − Φx
[l′]
i−1 = xi + Φ(x

[l′]
i−1 − x

[l]
i−1)− Φx

[l′]
i−1 (18)

= xi − Φx
[l]
i−1 (19)

To be useful, shift updates normally need to be combined with other updates for generating
pool states. When combining shift updates with other updates, tuning of acceptance rates for
both updates needs to be done carefully in order to ensure that the shift updates actually improve
sampling performance. In particular, if the pool states at time i − 1 are spread out too widely,
then the shift updates may have a low acceptance rate and not be very useful. Therefore, jointly
optimizing proposals for xi and for xi and l may lead to a relatively high acceptance rate on
updates of xi, in order to ensure that the acceptance rate for the shift updates isn’t low.

4.5 Flip updates

Generating pool states locally can be helpful when applying embedded HMMs to high dimensions
but it also makes sampling difficult if the posterior is multimodal. Consider the case when the
observation probability depends on |xi| instead of xi, so that many modes with different signs
for some xi exist. We propose to handle this problem by adding an additional flip update that
creates a “mirror” set of pool states, in which −xi will be in the pool if xi is. By having a mirror
set of pool states, we are able to flip large segments of the sequence in a single update, allowing
efficient exploration of different posterior modes.

To generate a mirror set of pool states, we must correctly use the flip updates when sampling
the pool states. Since we want each pool state to have a negative counterpart, we choose the
number of pool states L to be even. The chain used to sample pool states then alternates two
types of updates, a usual update to generate a pool state and a flip update to generate its negated
version. The usual update can be a combination of any updates, such as those we consider above.
So that each state will have a flipped version, we start with a flip transition between x[1] and x[2],
a usual transition between x[2] and x[3], and so on up to a flip transition between x[L−1] to x[L].

At time 1, we start with the current state x1 and randomly assign it to some index l in the
chain used to generate pool states. Then, starting at x1 we generate pool states by reversing
the Markov chain transitions back to 1 and going forward up to L. Each flip update is then a
Metropolis update proposing to generate a pool state −x1 given that the chain is at some pool
state x1. Note that if the observation probability depends on x1 only through |x1| and p(x) is
symmetric around zero then this update is always accepted.

At time i > 1, a flip update proposes to update a pool state (xi, l) to (−xi, l′) such that

x
[l′]
i−1 = −x[l]i−1. Here, since the pool states at each time are generated by alternating flip and

9

usual updates, starting with a flip update to x
[1]
i , the proposal to move from l to l′ can be viewed

as follows. Suppose that instead of labelling our pool states from 1 to L we instead label them
0 to L − 1. The pool states at times 0 and 1, then 2 and 3, and so on will then be flipped
pairs, and the proposal to change l to l′ can be seen as proposing to flip the lower order bit in
a binary representation of l′. For example, a proposal to move from l = 3 to l = 2 can be seen
as proposing to change l from 11 to 10 (in binary). Such a proposal will always be accepted
assuming a transition density for which p(xi|xi−1) = p(–xi|–xi−1) and an observation probability
which depends on xi only via |xi|.

4.6 Relation to PGBS

The forward pool state selection scheme can be used to construct a sampler with properties similar
to PGBS. This is done by using independence Metropolis to sample values of xi and l from λfi .

At time 1, we propose our pool states from p(x). At times i > 2, we propose l′i−1 by selecting

it uniformly at random from {1, . . . , L} and we propose x′i by sampling from p(x|x[l
′
i−1]

i−1). The
proposals at all times i are accepted with probability

min

(
1,
p(y|x′i)
p(y|xi)

)
(20)

This sampler has computational cost proportional to Ln per iteration, like PGBS. It is analogous
to a PGBS sampler with importance densities

q1(x|y1) = p(x) (21)

and

qi(x|xi−1, yi) = p(x|xi−1), i > 2 (22)

with the key difference between these two samplers being that PGBS uses importance weights
p(y|xi) on each particle, instead of an independence Metropolis accept-reject step.

5 Proof of correctness

We modify the original proof of Neal (2003), which assumes that the sets of pool states P1, . . . ,Pn
are selected independently at each time, to show the validity of our new sequential pool state
selection scheme. Another change in the proof is to account for generating the pool states by
sampling them from λi or γi instead of κfi or κbi .

This proof shows that the probability of starting at x and moving to x′ with given sets of pool
states Pi, pool indices li of xi, and pool indices l′i of x′i is the same as the probability of starting
at x′ and moving to x with the same set of pool states Pi, pool indices l′i of x′i, and pool indices
li of xi. This in turn implies, by summing/integrating over Pi and li, that the embedded HMM

10

method with the sequential pool state scheme satisfies detailed balance with respect to p(x|y),
and hence leaves p(x|y) invariant.

Suppose we use the sequential forward scheme. The probability of starting at x and moving to
x′ decomposes into the product of the probability of starting at x, which is p(x|y), the probability
of choosing a set of pool state indices li, which is 1

Ln , the probability of selecting the initial values
of li−1 for the stochastic initialization step, the probability of selecting the sets of pool states Pi,
P (P1, . . . ,Pn), and finally the probability of choosing x′.

The probability of selecting given initial values for l1, . . . , ln−1 is

n∏
i=2

p(xi|x[li−1]
i−1)∑L

m=1 p(xi|x
[m]
i−1)

(23)

The probability of choosing a given set of pool states is

P (P1, . . . ,Pn) = P (P1)
n∏
i=2

P (Pi|Pi−1) (24)

At time 1, we use a Markov chain with invariant density κ1 to select pool states in P1. Therefore

P (P1) =
L∏

j=l1+1

R1(x
[j]
1 |x

[j−1]
1)

1∏
j=l1−1

R̃1(x
[j]
1 |x

[j+1]
1)

=
L∏

j=l1+1

R1(x
[j]
1 |x

[j−1]
1)

1∏
j=l1−1

R1(x
[j+1]
1 |x[j]1)

κ1(x
[j]
1)

κ1(x
[j+1]
1)

=
L−1∏
j=l1

R1(x
[j+1]
1 |x[j]1)

1∏
j=l1−1

R1(x
[j+1]
1 |x[j]1)

κ1(x
[j]
1)

κ1(x
[j+1]
1)

=
κ1(x

[1]
1)

κ1(x
[l1]
1)

L−1∏
j=1

R1(x
[j+1]
1 |x[j]1) (25)

For times i > 1 we use a Markov chain with invariant density λi to sample a set of xi and li−1,
given Pi. Therefore

P (Pi|Pi−1) =
λi(x

[1]
i , l

[1]
i−1|Pi−1)

λi(x
[li]
i , l

[li]
i−1|Pi−1)

L−1∏
j=1

Ri(x
[j+1]
i , l

[j+1]
i−1 |x

[j]
i , l

[j]
i−1,Pi−1) (26)

Finally, we choose a new sequence x′ amongst the collection of sequences consisting of the pool
states with a backward pass. This is done by first choosing a pool state x′n uniformly at random

from Pn. We then select the remaining states x
[l′i]
i by selecting l′1, . . . , l

′
n−1 with probability

n∏
i=2

p(x′i|x
[l′i−1]

i−1)∑L
m=1 p(x

′
i|x

[m]
i−1)

(27)

11

Thus, the probability of starting at x and going to x′, with given P1, . . . ,Pn, l1, . . . , ln and
l′1, . . . , l

′
n is

p(x|y)× 1

Ln
×

n∏
i=2

p(xi|x[li−1]
i−1)∑L

m=1 p(xi|x
[m]
i−1)
× κ1(x

[1]
1)

κ1(x
[l1]
1)

L−1∏
j=1

R1(x
[j+1]
1 |x[j]1)

×
n∏
i=2

[
λi(x

[1]
i , l

[1]
i−1|Pi−1)

λi(x
[li]
i , l

[li]
i−1|Pi−1)

L−1∏
j=1

Ri(x
[j+1]
i , l

[j+1]
i−1 |x

[j]
i , l

[j]
i−1,Pi−1)

]
× 1

L
×

n∏
i=2

p(x′i|x
[l′i−1]

i−1)∑L
m=1 p(x

′
i|x

[m]
i−1)

= κ1(x
[1]
1)

L−1∏
j=1

R1(x
[j+1]
1 |x[j]1)×

n∏
i=2

[
λi(x

[1]
i , l

[1]
i−1|Pi−1)

L−1∏
j=1

Ri(x
[j+1]
i , l

[j+1]
i−1 |x

[j]
i , l

[j]
i−1,Pi−1)

]

× 1

Ln+1
× p(x|y)

κ1(x1)
∏n

i=2 λi(xi, li−1|Pi−1)
×

n∏
i=2

p(xi|x[li−1]
i−1)∑L

m=1 p(xi|x
[m]
i−1)

n∏
i=2

p(x′i|x
[l′i−1]

i−1)∑L
m=1 p(x

′
i|x

[m]
i−1)

(28)

Here, we have x
[li]
i = xi and x

[l′i−1]

i = x′i−1. Also

n∏
i=2

λi(xi, li−1|Pi−1) =
n∏
i=2

p(yi|xi)p(xi|x[li−1]
i−1)∑

xi∈Pi

∑L
m=1 p(yi|xi)p(xi|x

[m]
i−1)

(29)

and

p(x|y) =
p(x1)

∏n
i=2 p(xi|xi−1)

∏n
i=1 p(yi|xi)

p(y)
(30)

Therefore (28) can be simplified to

=
1

p(y)
κ1(x

[1]
1)

L−1∏
j=1

R1(x
[j+1]
1 |x[j]1)×

n∏
i=2

[
λi(x

[1]
i , l

[1]
i−1|Pi−1)

L−1∏
j=1

Ri(x
[j+1]
i , l

[j+1]
i−1 |x

[j]
i , l

[j]
i−1,Pi−1)

]

× 1

Ln+1
×

n∏
i=2

p(xi|xi−1)×
n∏
i=2

p(x′i|x′i−1)×
n∏
i=2

1∑L
m=1 p(xi|x

[m]
i−1)
×

n∏
i=2

1∑L
m=1 p(x

′
i|x

[m]
i−1)

×
n∏
i=2

∑
xi∈Pi

L∑
m=1

p(yi|xi)p(xi|x[m]
i−1) (31)

The last factor in the product only depends on the selected set of pool states. By exchanging x
and x′ we see that the probability of starting at x′ and then going to x, with given sets of pool
states Pi, pool indices li of xi and pool indices l′i of x′i is the same.

12

6 Experiments

6.1 Test models

To demonstrate the performance of our new pool state scheme, we use two different state space
models. The latent process for both models is a vector autoregressive process, with

X1 ∼ N(0,Σinit) (32)

Xi|xi−1 ∼ N(Φxi−1,Σ), i = 2, . . . , n (33)

where Xi = (Xi,1, . . . , Xi,P)′ and

Φ =

φ1 . . . 0
...

. . .
...

0 . . . φP

 (34)

Σ =

1 . . . ρ
...

. . .
...

ρ . . . 1

 (35)

Σinit =

1

1−φ21
. . . ρ√

1−φ21
√

1−φ2P
...

. . .
...

ρ√
1−φ21
√

1−φ2P
. . . 1

1−φ2P

 (36)

Note that Σinit is the covariance of the stationary distribution for this process.

For model 1, the observations are given by

Yi,j|xi,j ∼ Poisson(exp(cj + σjxi,j)), i = 1, . . . , n, j = 1, . . . , P (37)

For model 2, the observations are given by

Yi,j|xi,j ∼ Poisson(σj|xi,j|), i = 1, . . . , n, j = 1, . . . , P (38)

For model 1, we use a 10-dimensional latent state and a sequence length of n = 250, setting
parameter values to ρ = 0.7, and cj = −0.4, φj = 0.9, σj = 0.6 for j = 1, . . . , P , with P = 10.

For model 2, we increase the dimensionality of the latent space to 15 and the sequence length
to 500. We set ρ = 0.7 and φj = 0.9, σj = 0.8 for j = 1, . . . , P , with P = 15.

We generated one random sequence from each model to test our samplers on. These observa-
tions from model 1 and model 2 are shown in Figure 1. Note that we are testing only sampling
of the latent variables, with the parameters set to their true values.

13

0 50 100 150 200 250
0

5

10

15

20

25

30

35

40

(a) Model 1

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

4

5

6

7

8

9

(b) Model 2

Figure 1: Observations from Model 1 and Model 2 along dimension j = 1.

6.2 Single-state Metropolis Sampler

A simple scheme for sampling the latent state sequence is to use Metropolis-Hastings updates
that sample each xi in sequence, conditional on x−i = (x1, . . . , xi−1, xi+1, . . . , xi) and the data,
starting at time 1 and going to time n. We sample all dimensions of xi at once using autoregressive
updates (see section 4.3).

The conditional densities of the Xi are

p(x1|x−1, y) ∝ p(x1|x2)p(y1|x1) ∝ p(x1)p(x2|x1)p(y1|x1)
p(xi|x−i, y) ∝ p(xi|xi−1, xi+1)p(yi|xi) ∝ p(xi|xi−1)p(xi+1|xi)p(yi|xi), 2 ≤ i ≤ n− 1

p(xn|x−n, y) ∝ p(xn|xn−1)p(yn|xn)

The densities p(x1|x2), p(xi|xi−1, xi+1), and p(xn|xn−1) are all Gaussian. The means and co-
variances for these densities can be derived by viewing p(x1) or p(xi|xi−1) as a Gaussian prior for
xi and p(xi+1|xi) as a Gaussian likelihood for xi. In particular, we have

X1|x2 ∼ N(µ1,Σ1)

Xi|xi, xi+1 ∼ N(µi,Σi)

Xn|xn−1 ∼ N(µn,Σn)

14

where

µ1 = [(Φ−1ΣΦ−1)−1 + Σ−1init]
−1[(Φ−1ΣΦ−1)−1Φ−1x2]

= [(Φ−1ΣΦ−1)−1 + Σ−1init]
−1[Σ−1(Φx2)]

= [Φ2 + Σ−1initΣ]−1Φx2

Σ1 = [(Φ−1ΣΦ−1)−1 + Σ−1init]
−1

= [Φ(Σ−1Φ) + Σ−1init]
−1

µi = [(Φ−1ΣΦ−1)−1 + Σ−1]−1[Σ−1Φxi−1 + (Φ−1ΣΦ−1)−1Φ−1xi+1]

= (Φ−1ΣΦ−1)−1 + Σ−1]−1[Σ−1(Φ(xi−1 + xi+1))]

= [Φ2 + I]−1Φ(xi−1 + xi+1)

Σi = [(Φ−1ΣΦ−1)−1 + Σ−1]−1

= [Φ(Σ−1Φ) + Σ−1]−1

µn = Φxn−1

Σn = Σ

To speed up the Metropolis updates, we precompute and store the matrices [Φ2 + Σ−1initΣ]−1Φ,
[Φ2 + I]−1Φ as well as the Cholesky decompositions of the posterior covariances.

In both of our test models, the posterior standard deviation of the latent variables xi,j varies
depending on the value of the observed yi,j. To address this, we alternately use a larger or a
smaller proposal scaling, ε, in the autoregressive update when performing an iteration of the
Metropolis sampler.

6.3 Particle Gibbs with Backward Sampling with Metropolis

We implement the PGBS method as described in Section 3, using the initial density p(x) and
the transition densities p(xi|xi−1) as importance densities to generate particles. We combine
PGBS updates with single-state Metropolis updates from Section 6.2. This way, we combine
the strengths of the two samplers in targeting different parts of the posterior distribution. In
particular, we expect the Metropolis updates to do better for the xi with highly informative yi,
and the PGBS updates to do better for the xi where yi is not as informative.

6.4 Tuning the Baseline Samplers

For model 1, we compared the embedded HMM sampler to the simple single-state Metropolis
sampler, to the PGBS sampler, and to the combination of PGBS with Metropolis. For model 2, we
compared the embedded HMM sampler to the PGBS with Metropolis sampler. For both models
and all samplers, we ran the sampler five times using five different random number generator seeds.
We implemented the samplers in Matlab on a Linux system with a 2.60 GHz Intel i7-3720QM
CPU.

15

6.4.1 Model 1

For the single-state Metropolis sampler, we initialized all xi,j to 0. Every iteration alternately
used a scaling factor, ε, of either 0.2 or 0.8, which resulted in an average acceptance rate of
between 30% and 90% for the different xi over the sampler run. We ran the sampler for 1000000
iterations, and prior to analysis, the resulting sample was thinned by a factor of 10, to 100000.
The thinning was done due to the difficulty of working with all samples at once, and after thinning
the samples still possessed autocorrelation times significantly greater than 1. Each of the 100000
samples took about 0.17 seconds to draw.

For the PGBS sampler and the sampler combining PGBS and Metropolis updates, we also
initialized all xi,j to 0. We used 250 particles for the PGBS updates. For the Metropolis updates,
we alternated between scaling factors of 0.2 and 0.8, which also gave acceptance rates between
30% and 90%. For the standalone PGBS sampler, we performed a total of 70000 iterations. Each
iteration produced two samples for a total of 140000 samples and consisted of a PGBS update
using the forward sequence and a PGBS update using the reversed sequence. Each sample took
about 0.12 seconds to draw. For the PGBS with Metropolis sampler, we performed a total of
30000 iterations of the sampler. Each iteration was used to produce four samples, for a total
of 120000 samples, and consisted of a PGBS update using the forward sequence, ten Metropolis
updates (of which only the value after the tenth update was retained), a PGBS update using the
reversed sequence, and another ten Metropolis updates, again only keeping the value after the
tenth update. The average time to draw each of the 120000 samples was about 0.14 seconds.

6.4.2 Model 2

For model 2, we were unable to make the single-state Metropolis sampler converge to anything
resembling the actual posterior in a reasonable amount of time. In particular, we found that for
xi,j sufficiently far from 0, the Metropolis sampler tended to be stuck in a single mode, never
visiting values with the opposite sign.

For the PGBS with Metropolis sampler, we set the initial values of xi,j to 1. We set the number
of particles for PGBS to 80000, which was nearly the maximum possible for the memory capacity
of the computer we used. For the Metropolis sampler, we alternated between scaling factors of 0.3
and 1, which resulted in acceptance rates ranging between 29% and 72%. We performed a total
of 250 iterations of the sampler. As for model 1, each iteration produced four samples, for a total
of 1000 samples, and consisted of a PGBS update with the forward sequence, fifty Metropolis
updates (of which we only keep the value after the last one), a PGBS update using the reversed
sequence, and another fifty Metropolis updates (again only keeping the last value). It took about
26 seconds to draw each sample.

6.5 Embedded HMM sampling

For both model 1 and model 2, we implemented the proposed embedded HMM method using the
forward pool state selection scheme, alternating between updates that use the original and the

16

reversed sequence. As for the baseline samplers, we ran the embedded HMM samplers five times
for both models, using five different random number generator seeds.

We generate pool states at time 1 using autoregressive updates to sample from κf1 . At times
i ≥ 2, we sample each pool state from λi(x, l) by combining an autoregressive and shift update.
The autoregressive update proposes to only change x, keeping the current l fixed. The shift
update samples both x and l, with a new l proposed from a Uniform{1, . . . , L} distribution. For
model 2, we also add a flip update to generate a negated version of each pool state.

Note that the chain used to produce the pool states now uses a sequence of updates. Therefore,
if our forward transition first does an autoregressive update and then a shift update, the reverse
transitions must first do a shift update and then an autoregressive update.

As for the single-state Metropolis updates, it is beneficial to use a different proposal scaling, ε,
when generating each pool state at each time i. This allows generation of sets of pool states which
are more concentrated when yi is informative and more dispersed when yi holds little information.

6.5.1 Model 1

For model 1, we initialized all xi,j to 0. We used 50 pool states for the embedded HMM updates.
For each Metropolis update to sample a pool state, we used a different scaling ε, chosen at random
from a Uniform(0.1, 0.4) distribution. The acceptance rates ranged between 55% and 95% for the
Metropolis updates and between 20% and 70% for the shift updates. We performed a total of
9000 iterations of the sampler, with each iteration consisting of an embedded HMM update using
the forward sequence and an embedded HMM update using the reversed sequence, for a total of
18000 samples. Each sample took about 0.81 seconds to draw.

6.5.2 Model 2

For model 2, we initialized the xi,j to 1. We used a total of 80 pool states for the embedded
HMM sampler (i.e. 40 positive-negative pairs due to flip updates). Each Metropolis update used
to sample a pool state used a scaling, ε, randomly drawn from the Uniform(0.05, 0.2) distribution.
The acceptance rates ranged between 75% and 90% for the Metropolis updates and between 20%
and 40% for the shift updates. We performed a total of 9000 iterations of the sampler, producing
two samples per iteration with an embedded HMM update using the forward sequence and an
embedded HMM update using the reversed sequence. Each of the 18000 samples took about 1.4
seconds to draw.

17

6.6 Comparisons

As a way of comparing the performance of the two methods, we use an estimate of autocorrelation
time1 for each of the latent variables xi,j. Autocorrelation time is a measure of how many draws
need to be made using the sampling chain to produce the equivalent of one independent sample.
The autocorrelation time is defined as τ = 1 + 2

∑∞
i=1 ρk, where ρk is the autocorrelation at lag

k. It is commonly estimated as

τ̂ = 1 + 2
K∑
i=1

ρ̂k (39)

where ρ̂k are estimates of lag-k autocorrelations and the cutoff point K is chosen so that ρ̂k is
negligibly different from 0 for k > K. Here

ρ̂k =
γ̂k
γ̂0

(40)

where γ̂k is an estimate of the lag-k autocovariance

γ̂k =
1

n

n−k∑
l=1

(xl − x̄)(xk+l − x̄) (41)

When estimating autocorrelation time, we remove the first 10% of the sample as burn-in. Then, to
estimate γ̂k, we first estimate autocovariances for each of the five runs, taking x̄ to be the overall
mean over the five runs. We then average these five autocovariance estimates to produce γ̂k. To
speed up autocovariance computations, we use the Fast Fourier Transform. The autocorrelation
estimates are then adjusted for computation time, by multiplying the estimated autocorrelation
time by the time it takes to draw a sample, to ensure that the samplers are compared fairly.

The time-adjusted autocorrelation estimates for Model 1, for all the latent variables, plotted
over time, are presented in Figure 2. We found that the combination of single-state Metropolis
and PGBS works best for the unimodal model. The other samplers work reasonably well too.
We note that the spike in autocorrelation time for the PGBS and to a lesser extent for the PGBS
with Metropolis sampler occurs at the point where the data is very informative. This in turn
makes the use of the diffuse transition distribution the particles are drawn from inefficient and
much of the sampling in that region is due to the Metropolis updates.

We now look at how the samplers perform on the more challenging Model 2. We first did a
preliminary check of whether the samplers do indeed explore the different modes of the distribution

1Technically, when we alternate updates with the forward and reversed sequence or mix PGBS and single-
state Metropolis updates, we cannot use autocorrelation times to measure how well the chain explores the space.
While the sampling scheme leaves the correct target distribution invariant, the flipping of the sequence makes the
sampling chain for a given variable non-homogeneous. However, suppose that instead of deterministically flipping
the sequence at every step, we add an auxiliary indicator variable that determines (given the current state) whether
the forward or the reversed sequence is used, and that the probability of flipping this indicator variable is nearly
one. With this auxiliary variable the sampling chain becomes homogeneous, with its behaviour nearly identical to
that of our proposed scheme. Using autocorrelation time estimates to evaluate the performance of our sampler is
therefore valid, for all practical purposes.

18

0 50 100 150 200 250
0

2

4

6

8

10

12

14

16

18

(a) Metropolis (0.17 seconds/sample)

0 50 100 150 200 250
0

2

4

6

8

10

12

14

16

18

(b) PGBS (0.12 seconds/sample)

0 50 100 150 200 250
0

2

4

6

8

10

12

14

16

18

(c) PGBS+Metropolis (0.14 seconds/sample)

0 50 100 150 200 250
0

2

4

6

8

10

12

14

16

18

(d) Embedded HMM (0.81 seconds/sample)

Figure 2: Estimated autocorrelation times for each latent variable for Model 1, adjusted for
computation time

by looking at variables far apart in the sequence, where we expect to see four modes (with all
possible combinations of signs). This is indeed the case for both the PGBS with Metropolis and
Embedded HMM samplers.

Next, we look at how efficiently the latent variables are sampled. Of particular interest are
the latent variables with well-separated modes, since sampling performance for such variables is
illustrative of how well the samplers explore the different posterior modes. Consider the variable
x1,300, which has true value −1.99. Figure 3 shows how the different samplers explore the two
modes for this variable, with equal computation times used to produced the samples for the trace
plots. We can see that the embedded HMM sampler performs significantly better. This example
of Model 2 demonstrates another advantage of the embedded HMM viewpoint, which is that it
allows us to design updates for sampling pool states to handle various properties of the density.
This is arguably easier than designing importance densities in high dimensions.

19

0 100 200 300 400 500 600 700 800 900 1000
−6

−4

−2

0

2

4

6

(a) Embedded HMM

0 100 200 300 400 500 600 700 800 900 1000
−6

−4

−2

0

2

4

6

(b) Particle Gibbs with Metropolis

Figure 3: Comparison of Samplers for Model 2

7 Conclusion

We have demonstrated that it is possible to use embedded HMM’s to efficiently sample state
sequences in models with higher dimensional state spaces. We have also shown how embedded
HMMs can improve sampling efficiency in an example model with a multimodal posterior, by
introducing a new pool state selection scheme. There are several directions in which this research
can be further developed.

The most obvious extension is to treat the model parameters as unknown and add a step to
sample parameters given a value of the latent state sequence. In the unknown parameter context,
it would also be interesting to see how the proposed sequential pool state selection schemes can
be used together with ensemble MCMC updates of Shestopaloff and Neal (2013). For example,
one approach is to have the pool state distribution depend on the average of the current and
proposed parameter values in an ensemble Metropolis update, as in Shestopaloff and Neal (2014).

One might also wonder whether it is possible to use the entire current state of x in constructing
the pool state density at a given time. It is not obvious how (or if it is possible) to overcome this
limitation. For example, for the forward scheme, using the current value of the state sequence at
some time k > i to construct pool states at time i means that the pool states at time k will end
up depending on the current value of xk, which would lead to an invalid sampler.

At each time i < n, the pool state generation procedure does not depend on the data after
time i, which may cause some difficulties in scaling this method further. On one hand, this
allows for greater dispersion in the pool states than if we were to impose a constraint from the
other direction as with the single-state Metropolis method, potentially allowing us to make larger
moves. On the other hand, the removal of this constraint also means that the pool states can
become too dispersed. In higher dimensions, one way in which this can be controlled is by using
a Markov chain that samples pool states close to the current xi — that is, a Markov chain that
is deliberately slowed down in order not to overdisperse the pool states, which could lead to a
collection of sequences with low posterior density.

20

Acknowledgements

This research was supported by the Natural Sciences and Engineering Research Council of
Canada. A. S. is in part funded by an NSERC Postgraduate Scholarship. R. N. holds a Canada
Research Chair in Statistics and Machine Learning.

References

Andrieu, C., Doucet, A. and Holenstein, R. (2010) “Particle Markov chain Monte Carlo meth-
ods”, Journal of the Royal Statistical Society B, vol. 72, pp. 269-342.

Lindsten, F.; Schon, T.B. (2012) “On the use of backward simulation in the particle Gibbs
sampler”, in Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE International
Conference on, pp. 3845-3848.

Neal, R.M. (1998) “Regression and classification using Gaussian process priors”, in J.M. Bernardo
et al (editors) Bayesian Statistics 6, Oxford University Press, pp. 475-501.

Neal, R. M. (2003) “Markov Chain Sampling for Non-linear State Space Models using Embedded
Hidden Markov Models”, Technical Report No. 0304, Department of Statistics, University
of Toronto, http://arxiv.org/abs/math/0305039.

Neal, R. M., Beal, M. J., and Roweis, S. T. (2004) “Inferring state sequences for non-linear
systems with embedded hidden Markov models”, in S. Thrun, et al (editors), Advances in
Neural Information Processing Systems 16, MIT Press.

Shestopaloff, A. Y. and Neal, R. M. (2013) “MCMC for non-linear state space models using
ensembles of latent sequences”, Technical Report, http://arxiv.org/abs/1305.0320.

Shestopaloff, A. Y. and Neal, R. M. (2014) “Efficient Bayesian inference for stochastic volatility
models with ensemble MCMC methods”, Technical Report, http://arxiv.org/abs/1412.3013.

21

