
Efficient Bayesian inference for stochastic volatility models

with ensemble MCMC methods

Alexander Y. Shestopaloff
Department of Statistical Sciences

University of Toronto
alexander@utstat.utoronto.ca

Radford M. Neal
Department of Statistical Sciences

& Department of Computer Science
University of Toronto

radford@utstat.utoronto.ca

9 December 2014

Abstract

In this paper, we introduce efficient ensemble Markov Chain Monte Carlo (MCMC)
sampling methods for Bayesian computations in the univariate stochastic volatility model.
We compare the performance of our ensemble MCMC methods with an improved version
of a recent sampler of Kastner and Fruwirth-Schnatter (2014). We show that ensemble
samplers are more efficient than this state of the art sampler by a factor of about 3.1, on a
data set simulated from the stochastic volatility model. This performance gain is achieved
without the ensemble MCMC sampler relying on the assumption that the latent process is
linear and Gaussian, unlike the sampler of Kastner and Fruwirth-Schnatter.

The stochastic volatility model is a widely-used example of a state space model with non-linear
or non-Gaussian transition or observation distributions. It models observed log-returns y =
(y1, . . . , yN) of a financial time series with time-varying volatility, as follows:

Yi|xi ∼ N(0, exp(c+ σxi)), i = 1, . . . , N (1)

X1 ∼ N(0, 1/(1− φ2)) (2)

Xi|xi−1 ∼ N(φxi−1, 1) (3)

Here, the latent process xi determines the unobserved log-volatility of yi. Because the relation
of the observations to the latent state is not linear and Gaussian, this model cannot be directly
handled by efficient methods based on the Kalman filter.

In a Bayesian approach to this problem, we estimate the unknown parameters θ = (c, φ, σ) by
sampling from their marginal posterior distribution p(θ|y). This distribution cannot be written
down in closed form. We can, however, write down the joint posterior of θ and the log-volatilities
x = (x1, . . . , xN), p(θ, x|y) and draw samples of (θ, x) from it. Discarding the x coordinates in
each draw will give us a sample from the marginal posterior distribution of θ.
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To sample from the posterior distribution of the stochastic volatility model, we develop two
new MCMC samplers within the framework of ensemble MCMC, introduced by Neal (2010).
The key idea underlying ensemble MCMC is to simultaneously look at a collection of points (an
“ensemble”) in the space we are sampling from, with the K ensemble elements chosen in such a
way that the density of interest can be simultaneously evaluated at all of the ensemble elements
in less time than it would take to evaluate the density at all K points separately.

Previously, Shestopaloff and Neal (2013) developed an ensemble MCMC sampler for non-
linear, non-Gaussian state space models, with ensembles over latent state sequences, using the
embedded HMM (Hidden Markov Model) technique of Neal (2003), Neal et al. (2004). This
ensemble MCMC sampler was used for Bayesian inference in a population dynamics model and
shown to be more efficient than methods which only look at a single sequence at a time. In this
paper we consider ensemble MCMC samplers that look not only at ensembles over latent state
sequences as in Shestopaloff and Neal (2013) but also over a subset of the parameters. We see
how well both of these methods work for the widely-used stochastic volatility model.

1 Bayesian inference for the stochastic volatility model

Bayesian inference for the stochastic volatility model has been extensively studied. In this paper,
we focus on comparisons with the method of Kastner and Fruwirth-Schnatter (2014). This state-
of-the-art method combines the method of Kim et al. (1998) with the ASIS (Ancillary Sufficiency
Interweaving Strategy) technique of Yu and Meng (2011). Kastner and Fruwirth-Schnatter’s
method consists of two parts. The first is an update of the latent variables x and the second is a
joint update of θ and the latent variables x. We improve this method here by saving and re-using
sufficient statistics to do multiple parameter updates at little additional computational cost.

1.1 A linear Gaussian approximation for sampling latent sequences

The non-linear relationship between the latent and the observation process prohibits the direct
use of Kalman filters for sampling the latent variables xi. Kim et al. (1998) introduced an
approximation to the stochastic volatility model that allows using Kalman filters to draw samples
of xi which can be later reweighed to give samples from their exact posterior distribution. This
approximation proceeds as follows. First, the observation process for the stochastic volatility
model is written in the form

log(y2i ) = c+ σxi + ζi (4)

where ζi has a log(χ2
1) distribution.

Next, the distribution of ζi is approximated by a ten-component mixture of Gaussians with
mixture weights πk, means mk and variances τ 2k , k = 1, . . . , 10. The values of these mixture
weights, means and variances can be found in Omori (2007). At each step of the sampler, at
each time i, a single component of the mixture is chosen to approximate the distribution of ζi by
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drawing a mixture component indicator ri ∈ {1, . . . , 10} with probabilities proportional to

P (ri = k|yi, xi, c, σ) ∝ πk
1

τk
exp((log(y2i )− c− σxi)2/τ 2k ) (5)

Conditional on ri, the observation process is now linear and Gaussian, as is the latent process:

log(Y 2
i )|xi, ri, c, σ ∼ N(mri + c+ σxi, τ

2
ri

), i = 1, . . . , N (6)

X1|φ ∼ N(0, 1/(1− φ2)) (7)

Xi|xi−1 ∼ N(φxi−1, 1) (8)

Kalman filtering followed by a backward sampling pass can now be used to sample a latent
sequence x. For a description of this sampling procedure, see Petris et al. (2009).

The mis-specification of the model due to the approximation can be corrected using importance
weights

w(l) =

∏N
i=1 f(yi|x(l)i , c(l), σ(l))∏N

i=1(
∑10

k=1 πkg(log(y2i )|x
(l)
i , c

(l), σ(l),mk, τk))
(9)

where f is the N(0, exp(c + σxi)) density, g is the N(mk + c + σxi, τk) density and the index l
refers to a draw. Posterior expectations of functions of θ can then be computed as

∑
w(l)f(θ(l)),

with θ(l) the draws.

We note that, when doing any other updates affecting x in combination with this approxi-
mate scheme, we need to continue to use the same mixture of Gaussians approximation to the
observation process. If an update drawing from an approximate distribution is combined with an
update drawing from an exact distribution, neither update will draw samples from their target
distribution, since neither update has a chance to reach equilibrium before the other update dis-
turbs things. We would then be unable to compute the correct importance weights to estimate
posterior expectations of functions of θ.

1.2 ASIS updates

ASIS methods (Yu and Meng (2011)) are based on the idea of interweaving two parametrizations.
For the stochastic volatility model, these are the so-called non-centered (NC) and centered (C)
parametrizations. The NC parametrization is the one in which the stochastic volatility model
was originally presented above. The C parametrization for the stochastic volatility model is

Yi|x̃1 ∼ N(0, exp(x̃i)), i = 1, . . . , N (10)

X̃1 ∼ N(c, σ2/(1− φ2)) (11)

X̃i|x̃i−1 ∼ N(c+ φ(x̃i−1 − c), σ2) (12)

The mixture of Gaussians approximation for C is the same as for NC.
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Kastner and Fruwirth-Schnatter (2014) propose two new sampling schemes, GIS-C and GIS-
NC, in which they interweave these two parametrizations, using either the NC or C parameteri-
zation as the baseline. The authors report a negiligible performance difference between using NC
or C as the baseline. For the purposes of our comparisons, we use the method with NC as the
baseline, GIS-NC, which proceeds as follows.

1. Draw x given θ, r, y using the linear Gaussian approximation update (NC)

2. Draw θ given x, r, y using a Metropolis update (NC)

3. Move to C by setting x̃ = c+ σx

4. Draw θ given x̃, r, y using a Metropolis update (C)

5. Move back to NC by setting x = x̃−c
σ

6. Redraw the mixture component indicators r given θ, x, y.

Theorem 4 of Yu and Meng (2011) establishes a link between ASIS and the PX-DA (Param-
eter Expansion-Data Augmentation) method of Liu and Wu (1999). In the case of the stochastic
volatility model, this means that we can view the ASIS scheme for updating x and θ as a combi-
nation of two updates, both done in the NC parametrization. The first of these draws new values
for θ conditional on x. The second draws new values for both x and θ, such that when we propose
to update c to c∗ and σ to σ∗, we also propose to update the sequence x to x∗ = ((c+σx)−c∗)/σ∗.
For this second update, the Metropolis acceptance probability needs to be multiplied by a Jaco-
bian factor (σ/σ∗)N to account for scaling σ. A joint translation update for c and x has been
previously considered by Liu and Sabatti (2000) and successfully applied to to stochastic volatility
model. Scale updates are considered by Liu and Sabatti (2000) as well, though they do not apply
them to the stochastic volatility model.

The view of ASIS updates as joint updates to θ and x makes it easier to see why ASIS
updates improve efficiency. At first glance, they look like they only update the parameters, but
they actually end up proposing to change both θ and x in a way that preserves dependence
between them. This means that moves proposed in ASIS updates are more likely to end up in a
region of high posterior density, and so be accepted.

Kastner and Fruwirth-Schnatter (2014) do a single Metropolis update of the parameters for
every update of the latent sequence. However, we note that given values for the mixture indices r,
y and x, low-dimensional sufficient statistics exist for all parameters in the centered parametriza-
tion. In the non-centered parametrization, given r, y and x, low-dimensional sufficient statistics
exist for φ. We propose doing multiple Metropolis updates given saved values of these sufficient
statistics (for all parameters in the case of C and for φ in the case of NC). This allows us to
reach equilibrium given a fixed latent sequence at little computational cost since additional up-
dates have small cost, not dependent on N . Also, this eliminates the need to construct complex
proposal schemes, since with these repeated samples the algorithm becomes less sensitive to the
particular choice of proposal density.
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The sufficient statistics in the case of NC are

t1 =
N∑
i=1

x2i , t2 =
N∑
i=2

xi−1xi, t3 = x21 + x2N (13)

with the log-likelihood of φ as a function of the sufficient statistics being

log(L(φ|t)) = (1/2) log(1− φ2)− (1/2)(φ2(t1 − t3)− 2φt2 + t1)

In the case of C the sufficient statistics are

t̃1 =
N∑
i=1

x̃2i , t̃2 =
N−1∑
i=2

x̃2i t̃3 =
N∑
i=2

x̃i−1x̃i t̃4 =
N−1∑
i=2

x̃i t̃5 = x̃1 + x̃N (14)

with the log-likelihood as a function of the sufficient statistics being

log(L(c, φ, σ2|t̃)) = −(N/2) log(σ2) + (1/2) log(1− φ2) (15)

−(1/2)(t̃1 + φ2t̃2 − 2φt̃3 − 2cφ2t̃4 − 2c(t̃4 + t̃5)

+4cφt̃4 + 2cφt̃5 + (N − 1)(c(φ− 1))2 + c2(1− φ2))/σ2

The details of the derivations are given in the Appendix.

2 Ensemble MCMC methods for

stochastic volatility models

The general framework underlying ensemble MCMC methods was introduced by Neal (2010).
An ensemble MCMC method using embedded HMMs for parameter inference in non-linear, non-
Gaussian state space models was introduced by Shestopaloff and Neal (2013). We briefly review
ensemble methods for non-linear, non-Gaussian state space models here.

Ensemble MCMC builds on the idea of MCMC using a temporary mapping. Suppose we
are interested in sampling from a distribution with density π(z) on Z. We can do this by
constructing a Markov chain with transition kernel T (z′|z) with invariant distribution π. The
temporary mapping strategy takes T to be a composition of three stochastic mappings. The first
mapping, T̂ , takes z to an element w of some other space W . The second, T̄ , updates w to w′.
The last, Ť , takes w′ back to some z′ ∈ Z. The idea behind this strategy is that doing updates in
an intermediate space W may allow us to make larger changes to z, as opposed to doing updates
directly in Z.

In the ensemble method, the spaceW is taken to be the K-fold Cartesian product of Z. First,
z mapped to an ensemble w = (z(1), . . . , z(K)), with the current value z assigned to z(k), with
k ∈ {1, . . . , K} chosen uniformly at random. The remaining elements z(j) for j 6= k are chosen
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from their conditional distribution under an ensemble base measure ζ, given that z(k) = z. The
marginal density of an ensemble element z(k) in the ensemble base measure ζ is denoted by ζ(z(k)).
Next, w is updated to w′ using any update that leaves invariant the ensemble density

ρ(w) = ρ((z(1), . . . , z(K))) = ζ((z(1), . . . , z(K)))
1

K

K∑
i=1

π(z(k))

ζk(z(k))
(16)

Finally, a new value z′ is chosen by selecting an element z(k) from the ensemble with probabilities
proportional to π(z(k))/ζk(z

(k)). The benefit of doing, say Metropolis, updates in the space of
ensembles is that a proposed move is more likely to be accepted, since for the ensemble density
to be large it is enough that the proposed ensemble contains at least some elements with high
density under π.

In Shestopaloff and Neal (2013), we consider an ensemble over latent state sequences x. Specif-
ically, the current state, (x, θ), consisting of the latent states x and the parameters θ is mapped
to an ensemble y = ((x(1), θ), . . . , (x(K), θ)) where the ensemble contains all distinct sequences x(k)

passing through a collection of pool states chosen at each time i. The ensemble is then updated
to y′ = ((x(1), θ′), . . . , (x(K), θ′) using a Metropolis update that leaves ρ invariant. At this step,
only θ is changed. We then map back to a new x′ = (x′, θ′), where x′ is now potentially different
from the original x. We show that this method considerably improves sampling efficiency in the
Ricker model of population dynamics.

As in the original Neal (2010) paper, we emphasize here that applications of ensemble methods
are worth investigating when the density at each of the K elements of an ensemble can be
computed in less time than it takes to do K separate density evaluations. For the stochastic
volatility model, this is possible for ensembles over latent state sequences, and over the parameters
c and σ2. In this paper, we will only consider joint ensembles over x and over σ. Since we will
use η = log(σ2) in the MCMC state, we will refer to ensembles over η below.

We propose two ensemble MCMC sampling schemes for the stochastic volatility model. The
first, ENS1, updates the latent sequence, x, and η by mapping to an ensemble composed of latent
sequences x and values of η, then immediately mapping back to new values of x and η. The
second, ENS2, maps to an ensemble of latent state sequences x and values of η, like ENS1, then
updates φ using an ensemble density summing over x and η, and finally maps back to new values
of x and η.

For both ENS1 and ENS2, we first create a pool of η values with Lη elements, and at each
time, i, a pool of values for the latent state xi, with Lx elements. The current value of η is
assigned to the pool element η[1] and for each time i, the current xi is assigned to the pool
element x

[1]
i . (Since the pool states are drawn independently, we don’t need to randomly assign

an index to the current η and the current xi’s in their pools.) The remaining pool elements are
drawn independently from some distribution having positive probability for all possible values of
xi and η, say κi for xi and λ for η.

The total number of ensemble elements that we can construct using the pools over xi and over
η is LηL

N
x . Naively evaluating the ensemble density presents an enormous computational burden

for Lx > 1, taking time on the order of LηL
N
x . By using the forward algorithm, together with
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a “caching” technique, we can evaluate the ensemble density much more efficiently, in time on
the order of LηL

2
xN . The forward algorithm is used to efficiently evaluate the densities for the

ensemble over the xi. The caching technique is used to efficiently evaluate the densities for the
ensemble over η, which gives us a substantial constant factor speed-up in terms of computation
time.

In detail, we do the following. Let p(x1) be the initial state distribution, p(xi|xi−1) the
transition density for the latent process and p(yi|xi, η) the observation probabilities. We begin
by computing and storing the initial latent state probabilities — which do not depend on η —
for each pool state x

[k]
1 at time 1.

P1 = (p(x
[1]
1 ), . . . , p(x

[Lx]
1 )) (17)

For each η[l] in the pool and each pool state x
[k]
1 we then compute and store the initial forward

probabilities

α
[l]
1 (x

[k]
1 |η[l]) = p(x

[k]
1 )

p(y1|x[k]1 , η
[l])

κ1(x
[k]
1 )

(18)

Then, for i > 1, we similarly compute and store the matrix of transition probabilities

Pi =

p(x
[1]
i |x

[1]
i−1) . . . p(x

[Lx]
i |x

[1]
i−1)

...
. . .

...

p(x
[1]
i |x

[Lx]
i−1 ) . . . p(x

[Lx]
i |x

[Lx]
i−1 )


where

p(x
[k1]
i |x

[k2]
i−1) ∝ exp(−(x

[k1]
i − φx[k2]i−1)

2/2) (19)

are transition probabilities between pool states x
[k2]
i−1 and x

[k1]
i for k1, k2 ∈ {1, . . . , Lx}. We then

use the stored values of the transition probabilities Pi to efficiently compute the vector of forward
probabilities for all values of η[l] in the pool

α
[l]
i (xi|η[l]) =

p(yi|xi, η[l])
κi(xi)

Lx∑
k=1

p(xi|x[k]i−1)α
[l]
i−1(x

[k]
i−1|η[l]), i = 1, . . . , N (20)

with xi ∈ {x[1]i , . . . , x
[Lx]
i }.

At each time i, we divide the forward probabilities α
[l]
i (xi) by c

[l]
i =

∑Lx
k=1 α

[l]
i (xi|η[l]), storing

the c
[l]
i values and using the normalized α

[l]
i ’s in the next step of the recursion. This is needed

to prevent underflow and for ensemble density computations. In the case of all the forward
probabilities summing to 0, we set the forward probabilities at all subsequent times to 0. Note
that we won’t get underflows for all values of η[l], since we are guaranteed to have a log-likelihood
that is not −∞ for the current value of η in the MCMC state.
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For each η[l], the ensemble density can then be computed as

ρ[l] =
N∏
i=1

c
[l]
i (21)

To avoid overflow or underflow, we work with the logarithm of ρ[l].

Even with caching, computing the forward probabilities for each η[l] in the pool is still an
order L2

x operation since we multiply the vector of forward probabilities from the previous step
by the transition matrix. However, if we do not cache and re-use the transition probabilities Pi
when computing the forward probabilities for each value of η[l] in the pool, the computation of
the ensemble densities ρ[l], for all l = 1, . . . , Lη, would be about 10 times slower. This is because
computing forward probabilities for a value of η given saved transition probabilities only involves
multiplications and additions, and not exponentiations, which are comparatively more expensive.

In ENS1, after mapping to the ensemble, we immediately sample new values of η and x from
the ensemble. We first sample a η[l] from the marginal ensemble distribution, with probabilities
proportional to ρ[l]. After we have sampled an η[l], we sample a latent sequence x conditional on
η[l], using a stochastic backwards recursion. The stochastic backwards recursion first samples a
state xN from the pool at time N with probabilities proportional to α

[l]
N(xN |η[l]). Then, given the

sampled value of xi, we sample xi−1 from the pool at time i − 1 with probabilities proportional

to p(xi|xi−1)α[l]
i−1(xi−1|η[l]), going back to time 1.

In the terminology of Shestopaloff and Neal (2013) this is a “single sequence” update combined
with an ensemble update for η (which is a “fast” variable in the terminology of Neal (2010) since
recomputation of the likelihood function after changes to this variable is fast given the saved
transition probabilities).

In ENS2, before mapping back to a new η and a new x as in ENS1, we perform a Metropolis
update for φ using the ensemble density summing over all η[l] and all latent sequences in the
ensemble,

∑Lη
l=1 ρ

[l]. This approximates updating φ using the posterior density of θ with x and
η integrated out, when the number of pool states is large. The update nevertheless leaves the
correct distribution exactly invariant, even if the number of pool states is not large.

2.1 Choosing the pool distribution

A good choice for the pool distribution is crucial for the efficient performance of the ensemble
MCMC method.

For a pool distribution for xi, a good candidate is the stationary distribution of xi in the
AR(1) latent process, which is N(0, 1/

√
1− φ2). The question here is how to choose φ. For

ENS1, which does not change φ, we can simply use the current value of φ from the MCMC state,
call it φcur and draw pool states from N ∼ (0, c/

√
1− φ2

cur) for some scaling factor c. Typically,
we would choose c > 1 in order to ensure that for different values of φ, we produce pool states
that cover the region where xi has high probability density.

We cannot use this pool selection scheme for ENS2 because the reverse transition after a change
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in φ would use different pool states, undermining the proof via reversibility that the ensemble
transitions leave the posterior distribution invariant. However, we can choose pool states that
depend on both the current and the proposed values of φ, say φ and φ∗, in a symmetric fashion.
For example, we can propose a value φ∗, and draw the pool states from N ∼ (0, c/

√
1− φ2

avg)
where φavg is the average of φ and φ∗. The validity of this scheme can be seen by considering φ∗

to be an additional variable in the model; proposing to update φ to φ∗ can then be viewed as
proposing to swap φ and φ∗ within the MCMC state.

We choose pool states for η by sampling them from the model prior. Alternative schemes are
possible, but we do not consider them here. For example, it is possible to draw local pool states
for η which stay close to the current value of η by running a Markov chain with some desired
stationary distribution J steps forwards and Lη − J − 1 steps backwards, starting at the current
value of η. For details, see Neal (2003).

In our earlier work (Shestopaloff and Neal (2013)), one recommendation we made was to
consider pool states that depend on the observed data yi at a given point, constructing a “pseudo-
posterior” for xi using data observed at time i or in a small neighbourhood around i. For the
ensemble updates ENS1 and ENS2 presented here, we cannot use this approach, as we would then
need to make the pool states also depend on the current values of c and η, the latter of which is
affected by the update. We could switch to the centered parametrization to avoid this problem,
but that would prevent us from making η a fast variable.

3 Comparisons

The goal of our computational experiments is to determine how well the introduced variants of
the ensemble method compare to our improved version of the Kastner and Fruwirth-Schnatter
(2014) method. We are also interested in understanding when using a full ensemble update is
helpful or not.

3.1 Data

We use a series simulated from the stochastic volatility model with parameters c = 0.5, φ =
0.98, σ2 = 0.15 with N = 1000. A plot of the data is presented in Figure 1.

We use the following priors for the model parameters.

c ∼ N(0, 1) (22)

φ ∼ Unif[0, 1] (23)

σ2 ∼ Inverse-Gamma(2.5, 0.075) (24)

We use the parametrization in which the Inverse-Gamma(α, β) has probability density

f(x) =
βα

Γ(α)
xα−1e−β/x, x > 0 (25)
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Figure 1: Data set used for testing.

For α = 2.5, β = 0.075 the 2.5% and 97.5% quantiles of this distribution are approximately
(0.0117, 0.180).

In the MCMC state, we transform φ and σ2 to

η = log(σ2) (26)

γ = log((1 + φ)/(1− φ)) (27)

with the priors transformed correspondingly.

3.2 Sampling schemes and tuning

We compare three sampling schemes — the Kastner and Fruwirth-Schnatter (KF) method, and
our two ensemble schemes, ENS1, in which we map to an ensemble of η and x values and imme-
diately map back, and ENS2, in which we additionally update γ with an ensemble update before
mapping back.

We combine the ensemble scheme with the computationally cheap ASIS Metropolis updates.
It is sensible to add cheap updates to a sampling scheme if they are available. Note that the ASIS
(or translation and scale) updates we use in this paper are generally applicable to location-scale
models and are not restricted by the linear and Gaussian assumption.

Pilot runs showed that 80 updates appears to be the point at which we start to get diminishing
returns from using more Metropolis updates (given the sufficient statistics) in the KF scheme.
This is the number of Metropolis updates we use with the ensemble schemes as well.

The KF scheme updates the state as follows:

1. Update x, using the Kalman filter-based update, using the current mixture indicators r.
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2. Update the parameters using the mixture approximation to the observation density. This
step consists of 80 Metropolis updates to φ given the sufficient statistics for NC, followed
by one joint update of c and η.

3. Change to the C parametrization.

4. Update all three parameters simultaneously using 80 Metropolis updates, given the sufficient
statistics for C. Note that this update does not depend on the observation density and is
therefore exact.

5. Update the mixture indicators r.

The ENS1 scheme proceeds as follows:

1. Map to an ensemble of η and x.

2. Map back to a new value of η and x.

3. Do steps 2) - 4) as for KF, but with the exact observation density.

The ENS2 scheme proceeds as follows:

1. Map to an ensemble of η and x.

2. Update γ using an ensemble Metropolis update.

3. Map back to a new value of η and x.

4. Do steps 2) - 4) as for KF, but with the exact observation density.

The Metropolis updates use a normal proposal density centered at the current parameter
values. Proposal standard deviations for the Metropolis updates in NC were set to estimated
marginal posterior standard deviations, and to half of that in C. This is because in C, we update
all three parameters at once, whereas in NC we update c and η jointly and φ separately. The
marginal posterior standard deviations were estimated using a pilot run of the ENS2 method.
The tuning settings for the Metropolis updates are presented in Table 1.

For ensemble updates of γ, we also use a normal proposal density centered at the current value
of γ, with a proposal standard deviation of 1, which is double the estimated marginal posterior
standard deviation of γ. The pool states over xi are selected from the stationary distribution
of the AR(1) latent process, with standard deviation 2/

√
1− φ2

cur for the ENS1 scheme and
2/
√

1− φ2
avg for the ENS2 scheme. We used the prior density of η to select pool states for η.

For each method, we started the samplers from 5 randomly chosen points. Parameters were
initalized to their prior means (which were 0 for c, 1.39 for γ and −3.29 for η), and each
xi, i = 1, . . . , N , was initialized independently to a value randomly drawn from the stationary
distribution of the AR(1) latent process, given γ set to the prior mean. For the KF updates, the
mixture indicators r where all initialized to 5’s, this corresponds to the mixture component whose
median matches the median of the log(χ2

1) distribution most closely. All methods were run for
approximately the same amount of computational time.
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3.3 Results

Before comparing the performance of the methods, we verified that the methods give the same
answer up to expected variation by looking at the 95% confidence intervals each produced for the
posterior means of the parameters. These confidence intervals were obtained from the standard
error of the average posterior mean estimate over the five runs. The KF estimates were ad-
justed using the importance weights that compensate for the use of the approximate observation
distribution. No significant disagreement between the answers from the different methods was
apparent. We then evaluated the performance of each method using estimates of autocorrela-
tion time, which measures how many MCMC draws are needed to obtain the equivalent of one
independent draw.

To estimate autocorrelation time, we first estimated autocovariances for each of the five runs,
discarding the first 10% of the run as burn-in, and plugging in the overall mean of the five runs
into the autocovariance estimates. (This allows us to detect if the different runs for each method
are exploring different regions of the parameter/latent variable space). We then averaged the
resulting autocovariance estimates and used this average to get autocorrelation estimates ρ̂k.
Finally, autocorrelation time was estimated as 1 + 2

∑K
k=1 ρ̂i, with K chosen to be the point

beyond which the ρk become approximately 0. All autocovariances were estimated using the Fast
Fourier Transform for computational efficiency.

The results are presented in Tables 2 and 3. The timings for each sampler represent an average
over 100 iteratons (each iteration consisting of the entire sequence of updates), with the samplers
started from a point taken after the sampler converged to equilibrium. The program was written
in MATLAB and run on a Linux system with an Intel Xeon X5680 3.33 GHz CPU. For a fair
comparison, we multiply estimated autocorrelation times by the time it takes to do one iteration
and compare these estimates.

We ran the KF method for 140, 000 iterations, with estimated autocorrelation times using the
original (unweighed) sequence for (c, γ, η) of (2.1, 37, 73), which after adjusting by computation
time of 0.16 seconds per iteration are (0.34, 5.9, 12). It follows that the ENS1 method with Lx set
to 50 and Lη set to 10 is better than the KF method by a factor of about 3.1 for the parameter
η. For ENS2, the same settings Lx = 50 and Lη = 10 appears to give the best results, with ENS2
worse by a factor of about 1.7 than ENS1 for sampling η. We also see that the ENS1 and ENS2
methods aren’t too sensitive to the particular tuning parameters, so long at there is a sufficient
number of ensemble elements both for xi and for η.

Method
Prop. Std. (NC) Acc. Rate Acc. Rate Prop. Std. (C) Acc. Rate

c γ η for γ (NC) for (c, η) (NC) c γ η for (c, γ, η)

KF

0.21 0.5 0.36 0.52

0.12

0.105 0.25 0.18 0.22ENS1
0.12

ENS2

Table 1: Metropolis proposal standard deviations with associated acceptance rates.
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Lx Lη Iterations Time/iter (s)
ACT ACT × time

c γ η c γ η

10

1 195000 0.11 2.6 99 160 0.29 11 18

10 180000 0.12 2.7 95 150 0.32 11 18

30 155000 0.14 2.6 81 130 0.36 11 18

50 140000 0.16 2.3 91 140 0.37 15 22

30

1 155000 0.14 2.4 35 71 0.34 4.9 9.9

10 135000 0.16 2.2 18 26 0.35 2.9 4.2

30 110000 0.20 2.3 19 26 0.46 3.8 5.2

50 65000 0.33 1.9 16 24 0.63 5.3 7.9

50

1 115000 0.19 1.9 34 68 0.36 6.5 13

10 95000 0.23 1.9 11 17 0.44 2.5 3.9

30 55000 0.38 2.2 8.9 12 0.84 3.4 4.6

50 55000 0.39 1.9 11 14 0.74 4.3 5.5

70

1 85000 0.25 2.2 33 67 0.55 8.3 17

10 60000 0.38 1.9 8.3 11 0.72 3.2 4.2

30 50000 0.42 1.8 8.4 11 0.76 3.5 4.6

50 45000 0.48 1.9 9.1 12 0.91 4.4 5.8

Table 2: Performance of method ENS1.

Lx Lη Acc. Rate for γ Iterations Time/iter (s)
ACT ACT × time

c φ η c γ η

10

1 0.32 110000 0.20 2.5 100 170 0.5 20 34

10 0.32 95000 0.23 2.4 91 140 0.55 21 32

30 0.32 80000 0.27 2.5 97 150 0.68 26 41

50 0.32 70000 0.30 2.7 90 140 0.81 27 42

30

1 0.33 80000 0.26 2.3 34 68 0.6 8.8 18

10 0.33 70000 0.31 2.3 18 26 0.71 5.6 8.1

30 0.33 55000 0.39 2 18 27 0.78 7 11

50 0.34 35000 0.61 2.4 12 19 1.5 7.3 12

50

1 0.34 60000 0.36 1.7 33 69 0.61 12 25

10 0.35 50000 0.44 2.1 10 15 0.92 4.4 6.6

30 0.34 30000 0.71 1.8 10 15 1.3 7.1 11

50 0.34 25000 0.81 1.8 12 17 1.5 9.7 14

70

1 0.34 45000 0.49 2.2 29 61 1.1 14 30

10 0.35 30000 0.72 1.6 7.3 11 1.2 5.3 7.9

30 0.36 25000 0.86 1.6 7.3 9.3 1.4 6.3 8

50 0.36 25000 0.96 1.8 5.9 7.8 1.7 5.7 7.5

Table 3: Performance of method ENS2.
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Method c γ η

KF 0.2300 (± 0.0004) 4.3265 (± 0.0053) -3.7015 (± 0.0054)

ENS1 0.2311 (± 0.0006) 4.3228 (± 0.0017) -3.6986 (± 0.0015)

ENS2 0.2306 (± 0.0008) 4.3303 (± 0.0025) -3.7034 (± 0.0021)

Table 4: Estimates of posterior means, with standard errors of posterior means shown in brackets.

The results show that using a small ensemble (10 or so pool states) over η is particularly
helpful. One reason for this improvement is the ability to use the caching technique to make
these updates computationally cheap. A more basic reason is that updates of η consider the
entire collection of latent sequences, which allows us to make large changes to η, compared to the
Metropolis updates.

Even though the ENS2 method in this case is outperformed by the ENS1 method, we have
only applied it to one data set and there is much room for further tuning and improvement
of the methods. A possible explanation for the lack of substantial performance gain with the
ensemble method is that conditional on a single sequence, the distribution of φ has standard
deviation comparable to its marginal standard deviation, which means that we can’t move too
much further with an ensemble update than we do with our Metropolis updates. An indication
of this comes from the acceptance rate for ensemble updates of γ in ENS2, which we can see isn’t
improved by much as more pool states are added.

Parameter estimates for the best performing KF, ENS1 and ENS2 settings are presented in
Table 4. These estimates were obtained by averaging samples from all 5 runs with 10% of the
sample discarded as burn-in. We see that the differences between the standard errors are in
approximate agreement with the differences in autocorrelation times for the different methods.

4 Conclusion

We found that noticeable performance gains can be obtained by using ensemble MCMC based
sampling methods for the stochastic volatility model. It may be possible to obtain even larger
gains on different data sets, and with even better tuning. In particular, it is possible that the
method of updating φ with an ensemble, or some variation of it, actually performs better than a
single sequence method in some other instance.

The method of Kastner and Fruwirth-Schnatter (2014) relies on the assumption that the state
process is linear and Gaussian, which enables efficient state sequence sampling using Kalman
filters. The method would not be applicable if this was not the case. However, the ensemble
method could still be applied to this case as well. It would be of interest to investigate the
performance of ensemble methods for stochastic volatility models with different noise structures
for the latent process. It would also be interesting to compare the performance of the ensemble
MCMC method with the PMCMC-based methods of Andrieu et. al (2010) and also to see whether
techniques used to improve PMCMC methods can be used to improve ensemble methods and vice
versa.
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Multivariate versions of stochastic volatility models, for example those considered in Scharth
and Kohn (2013) are another class of models for which inference is difficult, and that it would
be interesting to apply the ensemble MCMC method to. We have done preliminary experiments
applying ensemble methods to multivariate stochastic volatility models, with promising results.
For these models, even though the latent process is linear and Gaussian, due to a non-constant
covariance matrix the observation process does not have a simple and precise mixture of Gaussians
approximation.
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Appendix

Here, we derive the sufficient statistics for the stochastic volatility model in the two parametriza-
tions and the likelihoods in terms of sufficient statistics.

For NC, we derive low-dimensional sufficient statistics for φ as follows

p(x|φ) ∝
√

1− φ2 exp
(
− (1− φ2)x21/2) exp(−

N∑
i=2

(xi − φxi−1)2/2
)

∝
√

1− φ2 exp
(
− (x21 − φ2x21 +

N∑
i=2

x2i − 2φ
N∑
i=2

xixi−1 + φ2

N∑
i=2

x2i−1)/2
)

∝
√

1− φ2 exp
(
− (φ2

N−1∑
i=2

x2i − 2φ
N∑
i=2

xixi−1 +
N∑
i=1

x2i )/2
)

Letting

t1 =
N∑
i=1

x2i , t2 =
N∑
i=2

xi−1xi, t3 = x21 + x2N

we can write

p(x|φ) ∝
√

1− φ2 exp(−(φ2(t1 − t3)− 2φt2 + t1)/2)
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For C, we have

p(x|c, φ, σ2) ∝
√

1− φ2

σn/2
exp

(
− (1− φ2)(x̃1 − c)2/2σ2) exp

(
−

N∑
i=2

((x̃i − (c+ φ(x̃i−1 − c))2/2σ2
)

∝
√

1− φ2

σn/2
exp

(
− (x̃21 − φ2x̃21 − 2x̃1c+ c2 + 2cφ2x̃1 − c2φ2 +

N∑
i=2

x̃2i

−2
N∑
i=2

x̃i(c+ φ(x̃i−1 − c)) +
N∑
i=2

(c+ φ(x̃i−1 − c))2)/2σ2
)

∝
√

1− φ2

σn/2
exp

(
− (

N∑
i=1

x̃2i − φ2x̃21 − 2x̃1c+ c2 + 2cφ2x̃1 − c2φ2 − 2c
N∑
i=2

x̃i

−2φ
N∑
i=2

x̃ix̃i−1 + 2cφ
N∑
i=2

x̃i + (N − 1)c2 + 2cφ
N∑
i=2

(x̃i−1 − c) + φ2

N∑
i=2

(x̃i−1 − c)2)/2σ2
)

∝
√

1− φ2

σn/2
exp

(
− (

N∑
i=1

x̃2i − φ2x̃21 − 2x̃1c+ c2 + 2cφ2x̃1 − c2φ2 − 2c
N∑
i=2

x̃i

−2φ
N∑
i=2

x̃ix̃i−1 + 2cφ
N∑
i=2

x̃i + (N − 1)c2 + 2cφ
N∑
i=2

x̃i−1 − 2(N − 1)c2φ)

+φ2

N∑
i=2

x̃2i−1 − 2cφ2

N∑
i=2

x̃i−1 + (N − 1)c2φ2)/2σ2
)

∝
√

1− φ2

σn/2
exp

(
− (

N∑
i=1

x̃2i + φ2

N−1∑
i=2

x̃2i − 2φ
N∑
i=2

x̃i−1x̃i + 2cφ2

N−1∑
i=2

x̃i − 2c
N∑
i=1

x̃i

+4cφ
N−1∑
i=2

x̃i + 2cφ(x̃1 + x̃N) + (N − 1)(c(φ− 1))2 + c2(1− φ2))/2σ2
)

Letting

t̃1 =
N∑
i=1

x̃2i , t̃2 =
N−1∑
i=2

x̃2i t̃3 =
N∑
i=2

x̃i−1x̃i t̃4 =
N−1∑
i=2

x̃i t̃5 = x̃1 + x̃N

we can write

p(x|c, φ, σ2) =

√
1− φ2

σn/2
exp

(
− (t̃1 + φ2t̃2 − 2φt̃3 − 2cφ2t̃4 − 2c(t̃4 + t̃5)

+4cφt̃4 + 2cφt̃5 + (N − 1)(c(φ− 1))2 + c2(1− φ2))/2σ2
)
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