STA355H1F
Theory of Statistical Practice

Instructor: K. Knight (office: Sidney Smith 5016G; e-mail: keith@stat.utoronto.ca) My office is at the west end of the 5th floor.

Office hours: Thursdays 10 to noon, or by appointment. Do not hesitate to contact me by e-mail as many problems you might encounter can be easily resolved this way.

Goal: The main goal of this course is to provide students with the necessary tools of mathematical statistics necessary to be a good applied statistician. The focus of the course will be on the theory behind statistical methodology (from exploratory data analysis to formal statistical inference) and there will be a substantial data analytic component.

Textbook: The required textbook is Statistical Models by A.C. Davison (Cambridge University Press); we will not make extensive use of this book although it will serve as a valuable reference in subsequent courses. The textbook will be supplemented with a number of handouts and journal articles; most of these are already on Blackboard and more will be added as the course progresses. Some other good references are:

J. Rice: Mathematical Statistics and Data Analysis (3rd edition). (Duxbury)

(I definitely recommend buying the Nolan/Speed book.)

Other resources: There are a number of interesting blogs that deal with statistics and related topics. Some of my favourites are:

Statistical Modeling, Causal Inference, and Social Science: andreugelman.com

Big Data, Plainly Spoken: junkcharts.typepad.com/numbersruleyourworld

Simply Statistics: simplystatistics.org

Also, there is a recently published book “Past, Present, and Future of Statistical Science” that can be downloaded for free at nisla05.niss.org/copss/past-present-future-copss.pdf. This book contains (very eclectic) contributions from 50 prominent statisticians (including three from the University of Toronto) on various topics related to statistics. If you are considering a career in statistics or a related field, this book is definitely worth reading and even the more technical chapters are quite accessible.

Computing: To recognize the role of computing in mathematical statistics as well as to emphasize the connections between applied and mathematical statistics, we will use R extensively in this course both for data analysis as well as for carrying out simple Monte Carlo (simulation) experiments. R is free software and can be downloaded (for Windows, Mac, and Linux operating systems) from
cran.utstat.utoronto.ca. Documentation for R can also be found at www.r-project.org and this site also lists some books related to R. A useful book that gives a good introduction to R programming is

A First Course in Statistical Programming with R by Braun and Murdoch (Cambridge University Press)

Evaluation: The course grade will be based on four homework assignments (7.5% each for a total of 30%), a midterm exam (25%), and a final exam (45%).

- Homework assignments will involve both mathematical exercises as well as some computing (using R). Two assignments will be handed in before the midterm and two after.
- The midterm exam is scheduled for Monday November 2 from 2:10pm to 4pm (the usual lecture time) at a location to be announced later.
- The final exam will be held during the December exam period at a date and time to be announced later.
- **Students should familiarize themselves with the University’s policies on academic integrity, which can be found at www.artsci.utoronto.ca/osai/students.**

Syllabus

The following topics will be covered in the course:

Short probability review. Random variables, probability distributions and expected values, convergence in distribution and in probability, related theorems (CLT, WLLN etc), distribution theory for normal samples.

Statistical models. Sampling variation and uncertainty in estimation, order statistics, spacings, standard errors, jackknife estimates of bias and variance, density estimation, introduction to goodness-of-fit.

Point and interval estimation. Substitution principle, likelihood estimation, more on standard errors and their estimation, introduction to Bayesian estimation, confidence intervals, pivots (exact and approximate), credible intervals, bias/variance tradeoffs (in density estimation and non-parametric regression), robustness, methods for “big data”.

Hypothesis Testing. Elements of hypothesis testing, Neyman-Pearson Lemma and its consequences, p-values (and their behaviour under the null and alternative hypotheses), goodness-of-fit testing, multiple tests (“p-hacking” and false discovery rate).