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ABSTRACT

Rubin has proposed multiple imputation to replace the missing observations when the non re-
sponse is random. This requires the records of several completed data sets. Also, the multiply
imputed estimator in any replicate has a larger variance than a singly imputed estimator. In this
paper, a new multiply estimator is proposed overcoming the above shortcomings. For singly im-
puted data, Rao and Shao have provided an adjusted jackknife estimator for the variance. In this
paper, a jackknife estimator is proposed requiring no special care for adjustment. A bootstrap es-
timator for the variance and a bootstrap distribution for the pivotal quantity to obtain confidence
intervals for the population mean are given. Following the approach of Srivastava and Carter, it is
shown that all the results of this paper require only the records of the respondents. Finally, it is

shown that Fay’s counter example does not apply to the methods of this paper.
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LINTRODUCTION

When the observations are missing at random, it is a common practice to replace the missing
values by their imputed values and treat the data with imputed values as the complete data set.
Inference such as estimation and confidence intervals are obtained for the population parameters
or any function of these parameters from the completed data set. However, the usual estimating
formulae, say, for the variance of the estimator do not provide correct answer since it fails to
take into account the extra variability due to imputation and thus it provides an underestimate
of the variance. Rao and Shao (1992) provided an adjusted jackknife estimator of the variance
overcoming this shortcoming. Thus, the criticism against singly imputed data that it usually
provides underestimates of the variance of the estimator has been somewhat muted.

Rubin (1978) proposed multiple imputation in which each missing value is replaced by two
or more imputed value and argued that this will represent a distribution of likely values, Rubin
and Schenker (1986) provided an improved asymptotic distribution of the mean estimator based
on all imputations and showed that the coverage is considerably improved by multiple imputation
as opposed to single imputation. However, many surveyr analysts have argued against multiple
imputation since it is expensive and difficult to keep a record of several completed data sets. Fay
(1993) has argued against it on technical grounds.

In this paper, we follow the approach of Srivastava and Carter (1986) to impute missing values,
singly or multiply. The advantages of this method is that it neither requires the extra care as
needed in Rao-Shao jackknife method in singly imputation nor does it require the survey analysts
to keep a record of several imputed complete data sets as well as the record of the respondents as
in Rubin (1978). What is required is simply the record of the respondents. We provide jackknife as
well as bootstrap estimate of the variance of the imputed mean. We show that the variance of the
Rubin-Schenker’s type multiply imputed data mean obtained from any replicate is always larger
than the variance of the corresponding singly imputed data mean. An alternative multiply imputed
estimator is proposed overcoming the above shortcoming, We argue against using the grand mean
of all the imputed data set as an estimator of the population mean since it gives considerably less
weight to the imputed values. However, it provides an excellent coverage and may be used to obtain
confidence intervals for the population parameters.

To fix our ideas, we consider only simple random sampling in this paper. It is assumed that the



observations are missing at random. The organization of the paper is as follows. In section 2, we
describe a single imputation method, obtain the imputed mean as an estimator of the population
mean and obtain its variance. The jackknife and bootstrap estimator of the variance are given in
Sections 3 and 4 respectively. In Section 5, we give the bootstrap distribution. Rubin and Schenker
type estimator is considered in Section 6 while Section 7 gives a new multiply imputed estimator
with the same variance as the singly imputed estimator. It is shown that only the record of the
respondent’s is needed to carry out alll the procedures described in this paper, In Section 8, Iay’s
(1993) counter example is revisited and it is shown that it does not apply to the methods of this

paper. The paper concludes in Section 9.

2. Estimator Based on Single Imputation

In this section, we consider simple random samples of size n in which n; subjects responds and
ng subjects do not respond to an item y. We shall denote the ny responses by y1,. .., ¥n1, and their

sample mean and variance by
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respectively. The population mean and variance will be denoted by Y and S? respectively. In what
follows, we shall igonre the finite population correction. To impute the ng missing values, we define
the residuals

m
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from which a sample of size ng is drawn with replacement. We shall denote these values by

£f,...,&n,. Since the probability is 1/n; of drawing any of the £s,
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where E, denotes the conditional expectation given yi,...,¥n;. Similarly, we shall denote by V.




for the conditional variance. We define the ny imputed values by
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The imputed mean based on the observed and imputed values is given by
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Thus, a correct estimator of V{#7) will not be 572 /n but
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The bias is of the order O(no/n1n?) since
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On the otherhand, the jackknife estimator of Rao and Shao (1992) has a bias of the order O(ng/n?).
The jackknife estimator not only reduces the bias but can easily be applied to obtain the variance of
any nonlinear statistic. However, the jackknife estimator of Rao and Shao requires some adjustment
and thus requires special care. In the next section, we provide a jackknife estimator based on the

approach of this paper, which does not require any special care.

3.Jackknife Estimator of the Variance

Let A; denote the sample of respondents and Ag non-respondetns. Define
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‘The jackknife estimator is defined by
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Hence, the bias is of the same order as for the Rao-Shao jackknife estimator but it does not require

any special care,

4.Bootstrap Estimator of the Variance

We define the residuals as in (1). However, we draw a sample of size n with replacement from

£15.-+,€n,. We also replicate it m times. Denoting the first ny observations with its m replicates

by £, 7=1,...,m, i=1,...,m. We impute the observed observations by
y:‘j = 371+Efj,j:1,.“,n1,i:1,...,m. (?)
Let
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where E_;'km = ny1 ?;1 ;i Next, denoting the remaining ng observations with its m replicates
by &, i=1,...,m0, i=1,...,m, we define the imputed values of the missing observations as
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We now define the imputed estimator of the mean for the it* replicate by
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and the mean of all the replicates by
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Then, we define the bootstrap estimate of the variance by v} given by
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Thus, the boostrap estimate of the varaince is an unbiased estimator while the jackknife is
not an unbiased estimator. It may be argued that most agency collecting the data do not like to
maintain several set of completed data sets. But this is not what is required here in obtaining the

bootstrap estimator. The only thing required is respondent’s record.

5.Bootstrap Distribution

In this section, we wish to find the bootstrap distribution of the pivotal quantity




where %} is the mean of the completed data set with imputed values as obtained and defined

in Section 2. To obtain the bootstrap distribution, we draw a sample of n observations with

replacement from &y,...,&, and replicate it m times, We shall denote the observations so obtained
by £ for the first ny observations and by £ for the remaining ny observations, ¢ = 1,...,m and
define

Jii = y[‘*’fm] + ;Ew;fo ,i=1,...,m

Let
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Then as n — oo, the limiting distributions of
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are the same N(0,1). Thus, a confidence interval for ¥ can be obtained by replicating the first

pivotal quantity a large number of times (m large) and using its empirical distribution.

6.Rubin-Schenker Type Estimator

Rubin and Schenker (1986) proposed multiple imputation. Although, their imputation is slightly
different, the properties of their estimafor based on asymptotic Bayesian bootstrap method will be
similar to the one described below. However, this method does not require the record of all the

completed data sets, We impute the missing values as in {9), Section 4.
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where §} is the mean based on single imputation as defined in (2). Thus, the variance of the
imputed mean using multiple imputation in any replicate is larger than the variance of the mean

based on single imputation. The mean of all the m replicates is defined by
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The variance can be estimated by
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It can be shown that
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Thus, 7™ is an unbiased estimator of V{73*(5). It can be shown that as 7 — oo and m — oo.
yi(s) =Y — N0, 7).

Improvements given in Rubin and Schenker (1986) can also be used. However, in using y7*(s) as an
estimator of the population mean, we are giving very little weight to the imputed values. In effect,
it amounts to using only the observed values. ‘Thus, while 75*(s) provides an excellent coverage
for the population mean, it may not be used as an estimator. On the otherhand, the estimator
¥17(s) gives proper weight to the imputed values. However, this estimator has a larger variance
than the corresponding estimator obtained from a single imputation disucssed in Section 2. In the

next section, we propose a multiply imputed estimator which does not have this shortcoming,.

7.A New Multiply Imputed Estimator

In this section, we propose a new multiply imputed estimator which has the same varinace
as a singly imputed estimator. In addition, it does not require double imputing i.e. imputing
the observed values also. As noted earlier, none of the procedures in this paper require several
completed data sets. We begin with the residuals, £1,...,&,, defined in {1). We draw a sample of
size mp with replacement from these residuals. We also replicate it m times. These observations

will be denoted by (iri=1,..,n0,i=1,...,m We impute the missing values by

V=0 tE& . i=1. ., i=1,...,m.
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We define the imputed mean for the i** replicate by
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the same as V(§}) given in Section 2. The mean of all the m imputation is defined by
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as an estimator of V(g7 ). Following Rubin and Schenker (1986), it can be shown that
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Thus, confidence intervals or any inference about the population mean ¥ can be obtained from
the above asymptotic distribution. Improvements in distributions similar to Rubin and Schenker
(1986), can also be obtained. Since % (s) has a smaller variance than ¥7*(s), it should provide a

bettler coverage than using 77*(s).

8.Fay’s Counter Example Revisited.,

Fay (1993) considers the simple case of estimating a bionomial proportion @. Suppose n; out of
n sample cases have reported values, with missing data for the remaining cases and the proportion
of responses, r = ny/n, remains fixed as n — oo. Suppose further that the analyst attempts to
make inferences about two subdomains which has been obtained by partitioning the original sample
n= Nyt Np, M= Mg b v, R o= neT, + my7y ete. Response rates r, and 7y, the underlying
proportion @, and the relative proportions £(n,) and E(np) remain fixed as n — oo. The analysts
forms separate estimates O, and @, for the two subdomains computed using only data from each
respective subdomain. For example, ©;, would be computed only from the observed and imputed
values in subdomain a. Thus, the estimates ®;, and @, do not exploit specific assumption that
© was same in the two groups. Under this scenario, the imputed values must be obtained from

each group seperately. Clearly, then there will be no covariance between O 1o and Op under any
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sampling plan of this paper. The expressions for the variances of these estimates are given in
Sections 2,6 and 7 for various estimators and there is no contradiction. In fact, if one uses only
W+B (instead of W 4 W#B ) as Fay does, the variance will be underestima,ted:for Rubin-Schenker
type of estimator. '

We shall now consider the scenario in which © is assumed to be constant bﬁt the estimate of ©
are obtained from the two subdomains. Again, there will be no covariance bet\'ﬁeen 01, and Oy, for
the estimators obtained by the methods of Section 2 and Section 7 but now thei‘e will be covariance
between @, and @7 by the method of Section 6, only if all the imputed V;lues of the observed
values are obtained at the same time using the mean of all the n; observatidns. This cannot be
considered a valid method. )

In conclusion, Fay’s counter example does not apply to the methods of this paper.

9 Some Comments

In this paper, we have presented several imputed estimators of the popliation mean Y. They
are 4§, y;. and §5*. While the estimator g7 uses imputed values of the missing observations with
variance (1 + 1/n1)5? , the estimators g} and §;* use imputed values of the missing observations
with variance (1/m+1/n;)5? and (1/m +2/n;) respectively. Since they use average of m imputed
values, the last two estimators, for m large, in effect are using #; and 24, respectively as the imputed
values. The variance of the imputed values for the first estimator is closest to the variance of. the
observed values. 1 believe any imputed value should have this property. Thus, only 77 qualifies
as a bonafide estimator of the popula,tidn mean Y in the present situation in which the missing
observations are being imputed. The bootstrap estimate of the variance of ¥} and its bootstrap
distribution appear attractive as they require only the record of the respondents. However, it
remains to be seen which of the three methods of obtaining confidence intervals will provide a
better coverage. The three methods are bootstrap and the two asymptotic distributions given in

Section 6 and 7 respectively. A comparsion will be pursued in future communication.
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