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Abstract

We consider the relationship between extremal indices on the one hand, and geomeltric ergodicity
of Markov chains on the other hand. We point out an example of an ergodic Markov chain where the
extremal index is zero. A theoretical result is developed to assess when the extremal index is positive
under the assumption of geometric ergodicity. Its application is analyzed through some examples arising
from MCMC algorithms.
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It is well-established that maxima of stationary processes with given fixed stationary distributions, is
affected by the dependence structure of the process. This dependence is effectively captured by the extremal
index. However little is known about how the extremal index is related to more general mixing propertics

of stationary processes. The aim of this paper is to relate the extremal index to the concept of geometric
ergodicity.

The extremal index, written as , takes values in [0, 1], and can be interpreted as an indicator of extremal
dependence, with @ = 1 indicating asymptotic independence of extreme events. On the other hand 8 = 0
represents the case where we can expect strong clusterings of extreme events. In this case it is natural
to expect excursions from ‘moderate’ values to have heavy-tailed distributions. For Markov chains this
behaviour is characteristic of non-geometrically ergodic Markov chains. Thus a natural question to ask is
whether 8 = 0 is related to non-geometric ergodicity. In this paper we shall see that the answer to this
question is no in general, but that under certain conditions the two conditions are equivalent.

We begin with a brief overview of the extremal index in section 2. In section 3 an example of an ergodic
Markov chain where § = 0 is given, suggesting that such cases can be of interest in certain frameworks.
Results which imply that 8 > 0 given geometric ergodicity and additional conditions, are presented in
section 4. Section S gives examples to illustrate the application of our main result. Throughout the paper
we have a particular interest in Markov chains which are produced by MCMC algorithms, and most of our
examples come from simple MCMC problems.

2 The Extremal Index

One of the main results in classical extreme value theory is due to Fisher and Tippett in 1928 [3], and
proved rigorously in 1943 by Gnedenko [4], and is related to the asymptotic behavior of the maximum of
an independent identical distributed (i.i.d.) sequence of random variables, {X,,n > 1}. The result is as
follows:

Theorem 2.1 Let M,, = max (Xi), where X;'s are i.i.d. random variables. If
Srin

Plan(Mn — by) < 2] 23 G(z), asn — oo (2.1)

holds for some constants an, > 0, b, and some nondegenerate (7, then G must have one of the following
forms:

TypeI: G(z) = exp{—e™"), z € R

0, r <0
exp(—z™%), > 0andsome o >0,

Type Il: G(z) = {

. | exp(—(—2)*), z <0andsomea >0
Type II: G(z) = { 1, 2 > 0.



Conversely, any such distribution function G may appear as a limit in (2.1) and in fact does so when G
is itself the distribution function of each X;.

The distribution functions in Theorem 1.1 are called the standard extreme value distributions. An

important result in the study of the limit distribution of the maximum of a sample (X4, ..., X},) or, in other
words, the distribution of the random variable M,, = max {X;), is the following theorem
SiAn

Theorem 2.2 Let {un,n > 1} be a sequence of real numbers and 0 < 7 < co. If X1, Xo, ... is a sequence
of L.i.d. random variables with distribution function F, then

P[M, < up) e, (2.2)
if and only if
- n(l — Fuy)) = . (2.3

Notice that equation (2.1) is a special case of (2.2) with 7 = — log G(z), un = a;'z + by,
Let {X,,,n > 1} be a strictly stationary sequence, i.e. {X;,,...,X;,) 2(X,~1+k, vovy Xy, +k) for any

choice of indices 4 < ... < i and £ € N. For simplicity, we will use the word "stationary” to refer to a
strictly stationary sequence. The extremal index of a stationary sequence is defined as

Definition 2.1 The stationary process { Xy, n > 1} has extremal index 8, with0 < 6 < 1, if for each 7 > 0

(i) there exists a sequence un () such that n(1 — F(un{(7))) ~» 7 and
(ii) P[My < up(r)j—e ™,
as n -+ 00.

From Leadbetter in [7] we have that if there exists a sequence u,(7) such that condition (i) in the
previous definition holds for a fixed 7 > 0, then there exists such a sequence u,(7) for all 7 > 0. As an
example, Leadbetter in [7] considered the case that if u, (1) satisfies condition (i) in Definition 2.1 with
T = 1, then define uy (1) = up/7)(1).

Some dependence structure needs to be assumed to obtain an extremal types result as Theorem 1.1.

Consider any integers 4;,...,%,, and let F;, ; (u) represents F;, ; (u,...,u), where Fy, ; (21,...,%a)
denotes the joint distribution function of (X;,,. .., X;, ). Define
Op,t = max { Fiyoipydtygo () = Fip o () G (0 }2.4)
" 1€i1 <o <ip €1 <ove < e < LI PRI dyr (10) = Pl i (1) Ft 0 (t0n)
f1—ip 2l

Condition D (uy) is said to hold if o, ;, —+ 0 as n — oo for some sequence I, = o(n).

By Thearem 3.7.1 in Leadbetter et al [8], if condition (i) of Definition 2.1 holds and D({u,,) is satisfied
for each 7, and if P[M,, < uy] converges for some 7 > 0, then condition (ii} of Definition 2.1 holds with
some 8,0 < & < 1, forall > 0 and thus the process { X, } has an extremal index.




Leadbetter, Lindgren and Rootzén in [8] showed the following extremal types theorem for stationary
sequences.

Theorem 2.3 Let { X,,} be a stationary sequence such that M,, = [max (X;) has a non-degenerate limiting
i<n

distribution G as in (2.1). Suppose that D(uy) holds for each uy, 0} the form u, = a, 'z + by, for each ©
with 0 < G(x) < 1. Then G is one of the three classical extremal types.

Although condition D{wu,) might be sufficient to guarantee the existence of the extremal index, it is
not a necessary condition. This is pointed out by Leadbetter in [7] through an example that first appeared in
Davis {2). In this case, condition D{u,} does not hold, but the extremal index is 1/2.

In the context of point processes of clusters, Leadbetter in 1983 [7] introduces an equivalent way of
determining the extremal index. His main result is as follows:

Theorem 2.4 Let the stationary sequence { Xy} satisfy D{(uy) for each 7 > 0 where uy, satisfies (i) in
Definition 2.1. Let ky, be chosen to satisfy knoy, 1, — 0, as n— oo and kply, = o(n) and let {X,,} have
extremal index 8,0 < § < 1. Then the point process Ny, of cluster positions for exceedances of uy, converges
in distribution to a Poisson Process N on (0, 1] with intensity parameter 07.

The extremal index can be seen as the inverse of the mean cluster size or, in other words, it can be
interpreted as the limiting mean number of exceedances in an interval of length r, = o{n), given that at
least one exceedance occurred in that interval. Let N, be the number of exceedances of uy, in an interval
of length r,,, we have

Proposition 2.1 Choose ky, such that kyee, 1, — 0, as n— oo and kyply, = o(n), and let v, = [n/ky). If the
extremal index exists, it can be determined as

07t = lim E (N, (un)|Ny, (ua) > 1),

n— 0o

The proof of these result can be seen in Leadbetter [7].

3 An Example with Extremal Index Zero

6 = 0 occurs naturally in many contexts of interest. We have particular interest in MCMC algorithms
so we give a simple example here in that context.

In the past, interest in the case where the extremal index is equal to zero has been limited to a more
theoretical and academic discussion. However, consider the random walk Metropolis (RWM) algorithim
on a standard Cauchy density which is stationary with n(z) = ?r“(“i%:"ﬂ") for z € R Let the proposal
density ¢(z,y) be Uniform on the interval (z — 4,z + §). In other words, given X, a proposed value
Yy 41 is generated from a uniform (X, — 6, X, + 4), Le. Y41 = Xy + Upyq with U4 independent



Uniform (-4, §) random variables. Then X, 1 = ¥, 41 with probability a(Xp, Ynq1), or Xny1 = Xy
with probability 1 — (X, ¥5+1). The acceptance probability is defined as

, (Vi) _ 1+ X2
(Xn, Yoy1) = 1, BtV i (1, SR
( ny n+l) Il'lﬂ'i( 3 (Xn) 111 1 Y? )

K

Theorem 3.1 Consider { Xy, } the random walk induced by the Metropolis algorithm on a standard Cauchy
density. Then the extremal index of the chain is zero (0 = 0).

We will need some auxiliary results and definitions to prove this theorem. Consider the new sequence
{Z,} defined as follows:

_ S0 5
L e oY
; W

where {Up,n = 1,2,...} is a collection of 1.i.d. Uniform (-4, §) random variables, as defined above.

Lemma 3.1 Consider the two processes { X, } and {Z,} defined in the previous paragraphs. If Xo < Zy,
then X, < Zy foralln ¢ N

Proof: Assume that X,, < Z,. It needs to be proven that X,,,; < Z,4s. Therefore, consider the four
different possible cases:

LIFX, <0and U,y €0, then Xy < X, < 0. Since Z, > %for n € N, the inequality
X1 < Zpyq follows immediately.

2. If X;, < 0and Uy,yy > 0suchthat X, < 0, then X;,41 < Z,41 as explained in the previous
paragraph. If X,.; is non-negative, then it implies that Uy, > —X; > 0, which means that
Zpt1 = Zn +Upyy 2 Xn +Un1 2 Xpy1.

3.0 X, >0and Uy > 0, then 2y = 25+ Un1 = X + U1 =2 Xogts

4. For X, > 0and —2X,, < Up41 < O the acceptance probability a(X,,, Y,+1) = 1, which means
that X, 11 = Xy + Upsq. Therefore, X1 < 25 + Upqar € Zpy1. We need to consider two
different scenarios: X, > % and 0 < X, < g. In the first case, —2X,, < —0 and since the random
walk increments are bounded by (—§, ), we always accept X, 1 = X,, + Up+1. Consequently,
Xna1 € Zpyy. Forthe second case, 0 < X, < g, then X1 = X, € (0,6/2) with probability
1 - a(X,,Yoe1) < 1 whenever Uy € (=48, —2X,,). Since Z,, > % for all n € N, we can say that
Xn+1 € Ziny1-

Hence, the RWM process { X, } is bounded from above by the process Z,, forall n € N. |

Now, consider the following lemma:




Lemma 3.2 Consider the process {Zy} defined above and the random walk {Sp} with increments {Uy,}
iid Uniform (=8,8) and Sy = 0. If Zy > 0, then forn € N

)
Zip = MAax (Z[j + 5p, 5. — 51,.-.,8n — Sn_1,§> .
Proof: The process {Z,} has increments larger or equal to the ones of the random walk {5y}, i.e.
Zin = Zp—k = Sn — Sn—k,

fork =0,1,...,n. For k = n we obtain Z,, > Zy + S,. Since Z,,_;, > 0 forall k = 0,1,...,n, we have
Zn 2 5, — Sp_p. Hence,

anma'x (ZO'{-SH’SR"_S};"'}SR_ n—-lag)' (32)

HZy+ 5. > %forevery 1 <k <mnthen

. 5
Zn = Zy + Sp < max (ZO + Sy S — Sy 1S — Sy 5) . (3.3)

Otherwise, there willbe a Z,,, = % for some m < n. Take & = max {m P D %}, then

)
Zp = 8y — Sp—p < max (ZO + Sp, 55 — Sl:- vy Sp — Sn—11 5) . (3.4)

Thus, from (3.2), (3.3) and (3.4) we have

)
Zip == max (ZO +SnaSn_Sla---aSn"‘Sn—iai):

forn € N, |

We will need one last lemma before proving Theorem 3.1.

Lemma 3.3 Consider the process {Zn} defined in (3.1). If Zy = 0 and z > g then

. 2 .
P(lrsanja,sx?1 Zi>z)<mn P(lrélias); S; > ), (3.5)
with {Sp} a random walk with increments {U,} i.i.d. Uniform (—9,8).

Proof; If 7y = 0, then from Lemma 3.2
)
P(Z,>z)=P [max (Sn,Sn - S, 90— Sa_1, 5) > :n] .
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Ifz > g then P(Z, > z) = P{UL, (Uy + -+ + U;) > z]. Therefore,

P(lléljasxu Zi>z) = P [U;—‘:l{Zj >z} < ZP(Zj > 1)

=

J

noJ
< YN PU++Ui>a) =YY P(Sj i1 > 3)
3=1 i=1

i=1i=1
n
< ZgP(maxSJ 2+1>$)SnZP(maij bl > T)

i _ 1<i<j ; 1<i<y

< n*P(max S; > z).
1<i<n

=

Let us now prove Theorem 3.1.

Proof: (Of Theorem 3.1) Under stationarity, condition (i) in Definition 2.1 is satisfied for u, = % This

comes from the fact that 1 — F(z) = £ — L arctanz ~ ™1, where the symbol f(z) ~ g(z) means that

M=) ' ==n i - = 1 T
xil)moo o) = 1- Hence, with un, = 2, we have nignoon[l F(n/7)] = nll%moonn =T.

To verify condition (ii) from Definition 2.1, i.e. P[M, < u,]— €% as n — oo, where the random
variable M,, is defined as max(X;,...,X,), consider the sequence {Z,} defined above. Using Lemma
3.1, we can write

P[M, >nfr} < P [1121%2 > n/T] . (3.6)

Therefore, letting z = 2 and using Lemma 3.3, the equation above becomes

PiMp,>n/r] < P [max Z; > n/'r} < n? P(lr(rzlgzx Si > n/T). 3.7
<i<n

1<i<n

Using Theorem 1.1 of Gut [5} we obtain

00
Zn?P ( max |S| > ns) < oo forall € >0
3 1<i<n

Since >0, n?P (gm{x S > ne) < 30 nPP (max | Sk > ns) < 00, and taking e = 77! >
<i<n

0 we obtain that

n? P(max S; > n/7) = 0as n— oo.
1<i<n




Therefore, from (3.7) we conclude §° (Mﬂ > %) -3 0 as n — oo, which is to say that condition (ii) of
Definition 2.1 is satisfied with § = 0. The RWM algorithm on a standard Cauchy density has extremal index
equat to 0. B

The example we have given here uses random walk Metropolis on a heavy tailed target density. In
this context, the algorithms are well-known to converge slower than geometrically (see [9]). This strongly
suggests a relationship between geometric ergodicity and the extremal index. We would not expect an
absolute connection between the concepts since geometric ergodicity considers stability properties related
to stationarity whereas the extremal index measures a property of excursions from stationarity. However the
next section will show that connections between the concepts can still be made.

In future work we will try to look into the case where & = 0 and what type of rates of convergence can
be expected for the distribution of the maximum. In the next section, we restrict ourselves to & > 0 and in
particular its relationship with geometric ergodicity of a Markov chain.

4 Extremal Index and Geometric Ergodicity

We shall give here some essential background to geometric ergodicity. In fact since we wish to allow
our methodology to extend to non-Markov stationary processes, we shall work directly with so-called drift
conditions which are equivalent to geometric ergodicity in the Markov case.

A set C' is small if for some § > 0, n > 0, and some probability measure v concentrated on C, we have
P*(z,.) > dv(.), forall z € C and P"(z,.) the n-step transition probability kernel.

For the following results, let u be any real number, &, be the first time the chain hits [, 00), and 7, the
first time after o, at which the chain hits {—o0, u).

Lemma 4.1 [f PV (z) < V(z) — cfor z > u, some function V > 1, and a constant ¢ > 0, then

B(ry — o0l Fy,) < L000), @0

c

where F, is the information contained up to the stopping fime oy,

Proof: The result follows from the fact that Z,, = V{(X,,) + en is a supermartingale for X, > u, i.e.

B(Zuit| Za) = BV (Xng1) | Xn) + clnt 1) = PV (Xa) +cln+1)
< V{Xp)—c+eln+1)=V{(Xy) +en
= Z,.

Since Z,, is a supermartingale and 7, > o, we obtain E (Z,, | Fy,) < E(Z;,| Fys,)- By the definition
of Z, we can write the inequality as E (V (X, ) | Foo ) + ¢ E (10| Fo,) <V Xy, ) + cE (0u| F5, ). Equiv-
alently, we have ¢ E (7, — 0| Fy,) < V (X, ) — B(V (X5,) | Fs, ). Since the function V' is nonnegative,
the result in (4.1) follows immediately, i.e. E (1, — 0} Fy,) < LZou), H
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Lemma 4.2 If PV{(z) < AV{(z) for z € C° with C a small set such that C C (—oo,u), some non-
decreasing function V. > 1 and A € (0, 1), then

B(ry — o] Fp.) < — Kou)

S ERNE0) @2

where F is the information contained up to the stopping time o,,.

Proof: The condition PV < AV can be written as PV < V — (1 — A\)V with A € (0,1). Since V in
non-decreasing, and for z > u we have PV {(z}) < V(z) — (1 — A)V(z) < V(z) — (1 — A)V(u). Apply the
previous lemma with ¢ = (1 ~ A)V'(u) and the result (4.2) follows. |

Lemma 4.3 If PV (z) < AV (z) for z € C¢ with C a small set such that C C (—oo,w), some non-
decreasing function V- > 1 and X € (0,1), then

E[V(X,)]
E(‘Tu - Uul O'u) S m

Proof: It follows immediately from Lemma 4.2, i.e.

_ _ E{V(Xs,)]
E(ry — oy|0y) = BE(r, —auloy, X, ] < —(1 (W)

Lemma 4.4 Let {X,} be a stationary process such that PV (z) < AV (z) for x € C%, with C a small set
such that C C (—o0,u), and some non-decreasing function V. > 1. Then, for any positive constant v we

obtain BV(X,.)] \ 4
T W T1=x V)

where N,(u) is the number of exceedances of w in an interval of length v, and A = sup PV {z) < oc.
e &

E (N, (u)[Ny(u) 2 1) <

Proof: Define 7 = inf{n > o, : X, € C}, the first time after o, at which the chain hits the set C', and
)
let the > (.) = 0. Therefore,

k=1
E [N (u)| Np(u) > 1] < Elry ~ 0y 0y < 7] (4.3)
+E[# of exceedances in the interval (7, 7¢)] (4.4)
+E[# of exceedances in the interval (¢, )] (4.5)

E[V(Xs,)

From Lemma 4.3, we know that (4.3} is bounded from above by v




Consider 2 = L(X, ). Thus, the expected value in (4.4) becomes

E[# of exceedances in the interval (7, 7¢)]

= K [E[# of exceedances in the interval (7, 7¢)} X7, ]}
T —Tu
= fE ( Z 1["uc,co)(){‘ruHc)' Xr = y) w{dy)loe (X, ooy Xog—1)
k=1 :

A

f (Z Ly 00y (Xry 14} X, = )u(dy)lcc(xm..,xm_l)

= fiE(l[u,m)(Xru+k)|XTu =y) wldy)lee(Xey, oo Xog-1)
k=1

= i/P(Xfru“l—k > uf Xy, =) pldy)loe(Xns. o, Xrg-1),

= > [ PO 2w Xo = ey ice (Ko, e )

= ZfP(V(Xk) > V(u)| Xo = y)u(dy)loe(Xo, ..., Xx—1) (V is non-decreasing )

< g:}fEyg((;)(k))#(dy)lcv(ﬁ(o,...,Xk_l) {Markov’s inequality)
— [ PV (y)
= (dy)l C(X'n . :X — )
;/ V() CelAo k-1
o [ AV (y) N
< w{dy) (Drift condition and y < u)
;/ V{u)
- % (4.6)

Let v = £(X,,), where py = min{s : X, € C®fors < m < k} is the last time before % that the

10



chain visits the set C'. The expected value in (4.5) is equal to

E [# of exceedances in the interval (7¢,7]] = Z P(Xy zu,7c < k)

k=1
= Y P(X¢ >ulrc <k)Plrc < k)
k=1
= SN Pk zupp=11c <K Plrc <k)
k=1 {
r
= Y N P(Xg >ulpp=Lre <k)P(pp =l1c < k)P (¢ <k)
k=1 1
= ZZ/ (Xe 2 u| Xy, =zpr =110 Sk} Plpr =1, ¢ < k) v{dz)
k=1 1
r
= Z[P Xk >V( )lkaﬂfﬂ,ﬂk:l,TCSk)P(pkzl)y(dg;)
k=1 !
. E V(X ) X, =z,p1 =1,7¢ < k)
< =
< V:u ZZ f Ne=P=1 PV (3) P (py = 1) v{da) (Drift condition)
k=1 |
1
<
SO Z/PV(:E (dz)
< - Zfsu PV (z)v(dz)
- V(u P
A
< : 4.
- i“V(u) 4.7)
Putting the above together, we obtain
E[V(Xs, )] A A
E (W, N, < u .
) 2 1) < gl 2
|

Consider {uy} a sequence of real numbers.

Theorem 4.1 Ler {X,,} be a stationary process satisfying the drift condition PV < AV + bl¢ for a small
set C bounded from above and, for some ng € N, C C (—00,upn) Yyu>n, and a non-decreasing function
V. Suppose further that condition D{uy,) holds for some sequence l, = o{(n) and that the process has an
extremal index in the sense of Definition 2.1. Then the extremal index of the process is positive, 8 > 0, if

11




(1)  the sequence uy, satisfies condition (i) in Definition 2.1,
{i4) —Eﬂ%-(‘\—‘—’—‘iﬂ—}—] is bounded in n, and
(#i1) Tf"{%;“)“ is bounded,

for some positive sequence T,

1/2
Proof: Since condition D(u,) holds for some sequence 1, = o(n), choose k, = min 1/ 2 (11) )

Since k, < a:z{f, then kv, 1, < /0y, 1, — 0 as n — oco. On the other hand, k’;f" <, /zﬂ““l}f" = m'l -3
as n.— oc. Therefore, with this choice of &y, the conditions kpop, 1, =0, as n— oo and knl, = o(n ) rom

Theorem 3.4 in [7] are satisfied. Let r, = [E@;] and, since { X, } has an extremal index, it follows:

67! = lim B (Np, (un)| Ny, (wn) 2 1). (4.8)

Since the set C is bounded from above, let’s say by M < oo, and V is a non-decreasing function, then

sup PV (z} < A Sup V(z) +b < AV(M) + b < oc. Hence, from Lemma 4.4, we have that for all n > ng
zeC

ElV (X, )l A A

T V() 1=A " "Viay)
with g, the first time the chain hits [u,, 00), and A = AV(M) + b < co. Conditions (i), (iii) imply that

E (N, (un)| Ny, (un) = 1} < o0

E (N, (un)|Nrn (un) > 1) <

(4.9

for all n > ng.

Letting n — oo and considering (4.8), it follows that 7! < 0o, i.e. 8 > 0. :

In what follows, we are particularly interested in the dynamics between the extremal index and geo-
metric ergodic Markov chains defined on a state space X, with transition probabilities P(z, .) and stationary
distribution 7(.). A fundamenta! result by Meyn and Tweedie [10] says that the chain is geometric ergodic
if and only if it satisfies the geometric drift condition given by

PV{(z) = /V(y)P(:l:,dy) <AV(z) +blc(z), ze X, (4.10)
for a small set C' C X, a m — a.e. finite function V' : X —{1, 00], and constants A < 1 and b < oo. It also
follows from Meyn and Tweedie (1993) that we can always choose V' and C such that sup V (z) < oo.

zel

Consider some auxiliary results.

Lemma 4.5 Let { X, } be a stationary Markev chain, and consider oy, ; defined in (2.4). Then
tp,) < max IP(le < unl X, <un) — P(X;, < un)l , 4.11)

where the maximum is taken over all positive integers i, < ji such that j; — ip 2> L.

12



Proof: Consider the integers 4;,...,4p and j1,...,jp,suchthat 1 <4y < ... <ip < j1 <... <jp <1
and j; ~ 4, > 1. Let F} (un) = P(X;, < Un,.. . Xj, £ up). From the Markov property it

le-uuip:jl 1'°-’jp'
follows that

Fyipitygy () = P(Xi Sup)P(XG, Sun| X5y Swn). o PIXG, S unl Xi, < ug)

P(Xj, Sun| Xy Sun). . P(X;, Sun| X, 1) (4.12)
Similarly,
Fiypipltn) = P(Xyy Sun)P(Xiy S| Xy Sun) ..o P(Xi, < tin| Xipr < ug), (4.13)
and )
Fiy, i n) = PGy < un)P(XGy S unl Xjy S un) o PG, Sunl Xj,m1). (414

From equations (4.12)-(4.14), we can write a, ; in (2.4) as follows:

o = ma,x|P(Xi1 L ua)P{Xiy Sunl Xy <up). . P(XG, Sunl Xi, o1 < up)x
><P(.Xj1 < Uy Xip < un)P(ij < ’u,nl.le < up) ...P(ij, < un|ij,._1) -
—P(X;, Sun)P(Xy, <up| Xiy <up)... P(X,'p < g Xipﬁ1 < un) X

X P(le < un)P(ij < uninl < un) . ..P(ij, < un|ij,_1)

= ma,x‘P(Xi, S un)P(Xiy < up| Xiy Sutn). . P(XG, S| Xipo1 S up)X

XP(Xj2 < un]le < ) - ..P(ij, < U ij,_,,ﬂ X

X[P(th < g Xip < un) — P(Xj1 < un)” 1
where the maximum is taken over all integers 41,...,%5 and j1,...,Jps, suchthat 1 <4y < ... <idp < f1 <
con < Jpr Emand gy — 4, 2> L

Since the P(X;, < un)P( Xy, < p| Xy € ). P(Xy, € up] X1 € un)P(X, < upl Xy, <
Uy - ..P(ij, < up| ij,ﬁl) < 1, we obtain
Op,p < max |P(Xj1 < 'U'n,Xip < up) — P(X;h < 'U'n)| ;

where the maximum is taken over all positive integers 4, < j1 such that j; — 4, > [. |

Lemma 4.6 Let {X,} be a geometric ergodic Markov chain. Then v, ;, — 0 as n— oo for any sequence
ln = o(n) such that l,, = oo as n — oo.

Proof: If the Markov chain is geometric ergodic then there exists some p < 1 and R < oo such that, for all
neNandall AC A

|P™(z, A) — w{A)|] < RV (z)p", (4.15)
where 7 is the stationary distribution and V is any solution of the drift condition

PV <AV +0blg,
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for A < 1, b < oo and C a small set. Applying Theorem 14.3.7 of Meyn and Tweedie [10] with f(z) =
{1 - M)V{(z) and s(z) = bl (z) we obtain that

n(V) = /V(ﬂ?)’ﬂ'(dﬂ?) < % < 00, (4.16)

Under stationarity, it follows from Lemma 4.5 and equation (4.15) that, for any positive integers i, < j;
such that j, —ip > [,

Ont, < Hlfﬁ( |P(X_?1 < unl Xip < Un) - P(-le < un)l
?'P:
< J IPj]_ip($= (00, un]) — "'T((““O'O’unm W(d.‘l’:)l(_m,uu](ﬂ:)
< max
o (=00, un)
fRV(‘T)leiipﬂ(dm)l(—oou }(E)
S max st
a1 m((—00, tn))
< A g, @.17)

From the definition of a,, ., j1 — %» = {n. Therefore, equation (4.17) can be bounded from above as
follows:

RV
oy, < 2 (4.18)
7({—00, tn])
Equation (4.16) implies that %(—(R};-E)% < oo, Now, choose a sequence I, = o{n) such that [, — co.
Then, since p < 1, ay y, - 0 as n — oo for any such sequence I,,. a

Theorem 4.2 Let {X,,} be a stationary Markov chain which is geometrically ergodic. Suppose it satisfies
PV <AV 4 blg, for a small set C bounded from above and, for some ng € N, C C (=00, uy) Yon, and
where the drift function V' is non-decreasing. Suppose further that the Markov chain has extremal index @ in
the sense of Definition 2.1. Let l,, = o{n) such that l, — 0o as n — oo and consider o, ) defined in (2.4).

Then the extremal index of the chain is positive, 8 > 0, if
(1)  the sequence uy, satisfies condition (i) in Definition 2.1,

(i4) W is bounded in n, and

o
(147} Ve is bounded,

Jor some positive sequence o,

Proof: From Lemma 4.6, a;, 1, — 0 as n - oo for any sequence {,, = o(n) such that {,, = 0o as n — oco.

Therefore, condition D{uy,) holds and the remainder of the proof is identical to the proof of Theorem 4.1.
H

In what follows, we present several simplifications of the conditions in Theorem 4.1 and 4.2, but first,
consider the following definitions:

14



Definition 4.1 The process { X, } with density dP(z,y) is strongly stochastic monotone (SSM) if for z; <
dP(za,y

T2 Plary) S non-decreasing on y.

Definition 4.2 The process {X,,} with density dP(z,y) has strongly stochastic decreasing increments
{SSDI) if for xy < g, %ﬁ% is non-increasing on y.

Corollary 4.1 If { X, } is a strongly stochastic monotone Markov chain with strongly stochastic decreasing
increments and V is log-Lipschitz then condition (i) of Theorems 4.1 and 4.2 holds.

Proof: To show that (ii) from Theorem 4.1 and 4.2 holds we only need to prove that EL%{(%)&"—E < ¢ < oo,
for any real v and some constant ¢.

%ﬁ“—ﬂ Elexp{log V(X,,) — log V(u)}]
< Elexp{a{X,, —u}}] (V is log-Lipschitz)
= Elexp{a{ X, — u}}| ou = 0|P{oy, = 0) + Blexp{a(X,, —u)}ou > 0]P(c, > 0)
< Elexp{e{Xo — u)}| Xo > u]P(X, > u) + Eylexp{a(Xs, —u)}]  (by SSM)
= Elexp{a(X, — u)}] + Eulexp{a(X,, — u)}]
< Elexp{a(X, — u)}] + Ey, lexp{a(X,,, — 1) =c< oo (by SSDI),
for all v, < u. ]

Corollary 4.2 Theorems 4.1 and 4.2 still holds if we replace condition (ii) by
(#2') V is log-Lipschitz and the chain has bounded increments.

Proof: Since V is log-Lipschitz and the chain has bounded increments it follows
V('Xa'u )
V(u)
for some O < k, K < oo. Therefore, condition (iz) of the previous theorem can be bounded as follows
BIV(X,,)] _ e
(1-AWV(u) ~1-X

and the result follows. ]

log

k| Xe, —ul < K, (4.19)

< 00, (4.20)

5 Some Examples

5.1 Random walk Metropolis-Hastings algorithm on a standard exponential density

Consider the random walk Metropolis-Hastings (RWMH) algorithm on a standard exponential density,
m{z}) = e ® for z > 0. Let the proposal density dP(z,y) be Uniform on the interval {x — 1,z + 1).
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Then we will prove the following resuit.

Theorem 5.1 Consider {X,,} the random walk induced by the Metropolis-Hastings algorithm on a standard
exponential density. Then the extremal index of the chain is positive (8 > Q).

Proof: If we take V(z) = #(z)™® = &, for @,z > 0, the process is geometric ergodic. Notice that

[e 4

PV(z) =% 55—V (). Therefore, A = e 5:{0 and b > 0 will satisfy the drift condition PV < AV +bl¢
for any set C'.

Condition (i) of Theorem 4.2 is satisfy for u, = log %, i.e. n(1 — 7n{u,)) = ne™*r = 1.

For condition (ii) we will use Corollary 4.1. Let z < y, then |log V{y) — log V{(z)| = a|y — z| which
means that the function V' is log-Lipschitz. On the other hand we have for z; < 9, %’% = 1 for
o — 1 < y < z1+ 1. Therefore the process {X,} is strongly stochastic monotone. The last condition
such that (if) holds in Corollary 4.1 is that { X, } bas strongly stochastic decreasing increments. This is true

since for £; < #9 and —1 < y < 1 we obtain, g%%i—f%——lﬁf) == 1. we can now conclude that condition (i) of
Theorem 4.2 is satisfied.

For the last condition in Theorem 4.2 to be satisfied we need to have 2~ bounded. Since ry, = l_—n—j )

VE‘un) kn
111/ ?ﬂ, nl/? l},,” 2). From the proof of Lemma 4.6 we have that v, ;, < cp ir for some

¢ < ooand p < L. Taking [, = log n we obtain

1/2 tlogn . 1/2 1/2
Tn Smm{(nc p? n'/*(logn) )

we have r,, < max (na

(5.1)

V() roapy Toapa

The first term in (5.1) goes to zero for o > 1 + —;} log p and the second term also converges to zero for

o > % Therefore, for & > max (%, 1+ %logp) we have '\7%33 —+0asn—o0.

From Theorem 4.2 we have that the extremal index of the RWMH on a standard exponential density is
positive (6 > 0). ]

5.2 Gaussian AR Example

‘We shall consider the following simple Gaussian AR model.

Theorem 5.2 Ler { X} be a Markov chain defined on the one-dimensional real line by

T 3
£ X =2 =1 (£.3),

where N (ui, 0?) is a normal distribution with mean p and variance . Then the extremal index of this chain
is positive.
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Letting C' = [—+/10, 4/10), the process is geometric ergodic with the drift function defined as V(z) =

oy = 1 o(aEmestt) LI PP = i
()% A = g )V and b= e |eTms — T e (see [12]). In this example
Np—1

5 \/g Zy, with { Zx } a sequence of i.i.d. N(0, 1) random variables, it
is clear that if the distribution of Xj_, is N(0, 1), so is the distribution of X}.. In other words the stationary
distribution of this process w(.) == ®(.) the standard normal distribution. In results that follow, we will
assume these choices for the drift function and the stationary distribution.

o? is equal to 3. Writing X, =

Lemma 5.1 Under stationarity, condition (i) of Theorem 4.2 holds with i, = &1 (1 — %) for the process
defined in Theorem 5.2.

Proof: Taking 1, = &1 (1 — Z) we obtain n(l — Fluy)) =n (L - @ (@1 (1~ 1)) = . E

We will need the following auxiliary results,
Lemma 5.2 The Markov chain { X} defined in Theorem 5.2 is strongly stochastic monotone.

Proof: For £ < x5 we have

dP( ) - "2"%(‘1"4‘1:2 2 1 3.2
(3;2:'9) " e : - 65;7[2(32”1'1)3"5(31*’52}]’
dP T, Y e—m(y—xl)z
which is an increasing function with y. ]

Lemma 5.3 Consider the Markov chain { X} defined in Theorem 5.2. Then

2 af2 Tul
B (V(Xa‘un)) < 8o (2n) e’

T 1-2000% 4, (/1607 + u2 — uy)

for uy, sufficiently large and o < %
Proof: Consider E (V(X,, )) = (2n)*/?E [e%Xf’Un ] Now,

o [o4
E [eixf’un} = max B [egxlekduXk > un] .
XNp—1<un

By strongly stochastic monotonicity, we obtain that

E [e%xf’"n] <E [e%XkEqu = Up, X 2 un] -

The probability density function of the random variable { X | X1 = un, Xi > un} is given by

)

I Xpor=un, Xpoun (¥} = I“fm;“)‘l{ygun},
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with f and F, the pdf and the cdf of a N (%, ¢?} distribution with o2 = g respectively. Therefore,

/ _ly—en/2)? d
2:7i 'y
1— un—un/Z 271-0-

- Yy
_ 1 S }] 2%( a0 °”2’)dy
lw@(g—;) 21— qo? 8(1—-0{02 w,/
1-3 (— T"‘“ﬂ)

— 1 ex { u'rzb } Vi-aos?
V11— ag? p 8(1—0[(72) 1——@(5{1;)

E [e%X"| X1 = up, Xy 2 Un] <

1=2
= ! exp{ cup } 1_@)(%\/1&20' u”)
V1-ad? 8(1 — aoc?) 1-® (%) ’

forl—a02>0and1—2ao'2>0=>a<§

From Abramowitz and Stegun [1] we have that 1 — ®(z) < %:51 forz > 2.2, and 1 — ®(z) >
@cgb(m) for x > 1.4. Therefore, for sufficiently large u,, it follows

242
1 (1-2a0”) 2
EXP{ e (1—ao? )u"}

1-2aa?

oy 1 oud Vi—aa?
E‘r '5:\1\: X = X > ] < Tt ey —es
ez Xy 1 =un, Xp 2 ttn| < mexp 8(1 — ao?) | /1602 +u2—u, 1 ud
R AT
8o e

1-200%4,(\/1602 + uZ — u,)

Therefore, we have for sufficiently large u, and & < 5 2 that

2

8c2(2m)e/? eztn

120062 u, (/1602 + 12 — uy)

E(V(X,,,)) <

Lemma 5.4 Consider the Markov chain { Xy} defined in Theorem 5.2. Then, for u, any real number
sequence such that vy — 0o as n— 0o and ©w < % condition (ii) of Theorem 4.2 holds, i.e.

E (V(Xs,,))
V(un)
Proof: From the previous lemma it follows:
802 {2r)o/? T
B(V(X) _ T e
V{uy) - (2m)e/2e7 %
| /T80T T +un
- 2(1 — 2¢0?) Uy, '
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E(V(Xs,,))

Since iy — 00 as 1. — 0o, we obtain from above —E25m — L

1-20

~F a8 1 —3 00, B

Lemma 5.5 Condition (i13) of Theorem 4.2 holds for the Markov chain defined in Theorem 5.2 with u,, any
real number sequence such that 1, — 00 as n — 00 and max (%, 1+ %log p) <a< L

Proof: Identically to the previous example we have r,, < max (nc 12p3 slogn 172 (logn)Y/ 2) , with ¢ < o0
and p < 1. Hence,

"n c? an 1 7 (log TL)
< = M 5'2
[ (un) ((271) Fua (271—)0!/2 33“2 (3.2)

Recall that u, = ®7! (1 — Z) and let ¥ = e® with 2 € R. Then

Ur

1
- =Tt logn %log(él?r) — é«loglogn + o{1}.

Hence, the first term in (5.2) goes to zero if & > 1+ % log p, as can be seen below.

i 'n,pzlog" B ,npzlogn
nimo.o 62 w7 €a$(4ﬂ)_a/2eao(l)n“(log n)_a/g
Liogn
: np? . 1 @ B
o« lim ne(logn)—o/2 exp { (1 Y log .0) logn + 3 log Iogn} = 0.

In what follows, we see that the second term in (5.2) also goes to zero if o — é— > “~2‘—l & o> 0.

n1/2(10g n)£/2 B n1/2(10gn)1/2
A 00 e3uA . eam(4ﬂ)—a/28ao(1}na(1ogn)—-a/2
atl 1 a=1
1 =(1 3
x lim (—O—gﬁ)qu: lim z(logn) — = 0.
> 00 n®" 3 n—=oo (a,_%)na—f——l
Therefore we conclude that 72— — 0 as n — co if max (0,1 + Llogp) <a< 1. ]
Let’s now prove Theorem 5.2.
g . . 1 Sal gty -1
Proof: (Of Theorem 5.2) In the beginning of the example, we chose A = e e (4(1 } )
g o lSu(a—-l[
and b = 20°_|eri%s _ o Tiga |, We also proved in Lemma 5.2 that the Markov chain here de-

Vi—ao?

fined is strongly stochastic monotone. Hence, from Theorem 4.1 (i) in [9], we have || P"*(z,.} — |, <
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17,323"1"")7 {V(as) + 1{1;\-] p*, for any p > A Therefore, choosing o = 0.6, we have A = 0.2626 and

b = 1.5626. Taking p = 0.3, Lemmas 5.1, 5.4 and 5.5 hold, and we conclude that conditions (¢) — (4¢1) of
Theorem 4.2 are satisfied. Hence, the extremal index for this Markov chain is positive {6 > (). i
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