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1. Introduction.

This paper considers the use of Gibbs samplers applied to the uniform distribution
on a bounded open region B C R%. We shall show that, subject to C? smoothness of the
boundary of R, such Gibbs samplers are always uniformly ergodic. We shall also show that,
even with certain types “pointy” boundaries, the Gibbs samplers are still geometrically
ergodic.

By way of contrast, it has recently been shown by Bélisle (1997) that if the boundary
of R is sufficiently srregular, then the Gibbs sampler can converge arbitrarily slowly. Our
results thus complement those of Bélisle.

We note that our interest in Gibbs samplers arises partially from our interest iﬁ
“slice sampler” or “auxiliary variable” algorithms, whereby sampling from a complicated
(d — 1)-dimensional density f is achieved by applying the Gibbs sampler to the uniform
distribution on the d-dimensional region underneath the graph of f. Thus, Gibbs samplers
for uniform distributions promise to be a very important subject in the future. For further
details, see Higdon (1997), Damien et al. (1997), Mira and Tierney (1997), and Roberts
and Rosenthal (1997b).

We begin with some definitions. Let B C R? be a bounded open connected region

in d-dimensional Euclidean space, and let 7(-) be the uniform distribution on R (i.e.,

* Statistical Laboratory, University of Cambridge, Cambridge CB2 1SB, U.K. Internet:
G.0.Roberts@statslab.cam.ac.uk.. Supported in part by EPSRC of the U.K.

** Department of Statistics, University of Toronto, Toronto, Ontario, Canada M5S 3G3.
Internet: jeffQutstat.toronto.edu. Supported in part by NSERC of Canada.

1



T(A) = AMANR)/MR) for Borel sets A € R?, where ) is d-dimensional Lebesgue measure),
Let X{®) be some random variable taking values in R. The random-scan Gibbs sampler
proceeds as follows. Given a point X(™ € R?, it chooses Iy1 € {1,2,...,d} uniformly at

random. It then chooses X1 uniformly from the one-dimensional set
{x, X0, X X0 ye R 0 R,

i.e. from the intersection of R with a line through X(™ parallel to the i** coordinate axis.

This process is repeated for n = 0,1,2,....

Remark. Other versions of this algorithm are available. For example, instead of choosing
a single coordinate I, 11 to update, it is possible to update all d coordinates in sequence,
one at a time; this is the deterministic-scan Gibbs sampler. Also the Gibbs sampler may be
defined for non-uniform distributions, by sampling from the full conditional distributions
on the one-dimensional sets instead of sammpling uniformly. For further details, see e.g.

Gelfand and Smith, 1990; Smith and Robérts, 1993; Tierney, 1994).

The random-scan Gibbs sampler algorithm thus implicitly defines Markov chain tran-
sition probabilities L(X("+1) [ X(™). 1t is easily checked that the resulting Markov chain
is reversible with respect to x(-). Furthermore the Markov chain is easily seen to be -
irreducible and aperiodic. Thus, from the general theory of Markov chains on general state
spaces (see e.g. Nummelin, 1984; Meyﬁ and Tweedie, 1993; Tierney, 1994, Section 3}, we

will have that

LX) — ()| = sup [P(X™ € A)=n(A)] - 0, n-oo.
ACR4

(Here |[ - -- || is the total variation distance metric.)

A natural question is the rate at which this convergence takes place. It is shown by
Bélisle (1997) that, without further restrictions on R, this convergence can be arbitrarily
slow: for any sequence {b,,} converging to 0, Bélisle shows that R and X(% can be chosen
so that |[C(X(™) — x(-)]| > by for all sufficiently large n. However, it is reasonable to

expect that if regularity conditions are imposed on R, then convergence will be faster.

2




Recall {cf. Meyn and Tweedie, 1993; Tierney, 1994) that a Markov chain with state
space X' and stationary distribution 7(-) is geometrically ergodic if there is p < 1, a subset

Ao C X with 7{Xy) = 1, and M : Xy — R such that
LX) XOY = 2g) — 7()| < M(z)p", neN, zp€Xs.

The chain is uniformly ergodic if it is geometrically ergodic with M constant {(or, equiv-
alently, with M bounded above). We note that geometric or uniform ergodicity ensures
that the chain does not converge arbitrarily slowly in the sense of Bélisle.

In this paper, we shall show that for certain regions R (for example, if the boundary
of R is C?), the corresponding Gibbs sampler is uniformly ergodic (Section 2). For slightly

less regular regions R, the Gibbs sampler is still geometrically ergodic (Section 3).

2. Uniform ergodicity.

In this section we shall derive conditions on R which ensure uniform ergodicity of the
corresponding random-scan Gibbs sampler for the uniform distribution on R.

We recall (see e.g. Nummelin, 1984; Meyn and Tweedie, 1993) that, given a Markov
chain on a state space X', a subset C C X is small (or, (ny, ¢, v)-small) if for some ny € N,

a > 0, and probability distribution »(-) on X, we have
Pre(z,-} > av(), z€eC.

We note that if B C € and C is SIﬁé,H, then B is also small (with the same ng, ¢, and
v). We further recall (cf. Meyn an& Tweedie, 1993, Theorem 16.0.1) thz‘mt a Markov chain
is uniformly ergodic if and only if the entire state space X is small, i.é. if and only if the
above condition 1s satisfied with ' - X.

We begin with a simple lemma.

Lemma 1. Let R be a bounded region in R?, and let C be a d-dimensional rectan-
gle which lies entirely inside R. Then C is small for the Gibbs sampler on the uniform

distribution on R (with either random- or deterministic-scan).



Proof. If C has widths ay,a2,...,aq4, and if R is bounded by a rectangle with widths
Ay, Az,..., A, then the deterministic-scan Gibbs sampler starting inside C is clearly at
least [], %""— times the uniform measure on €. For random-scan, we just need an extra

factor of d!/d?, which is the probability that the first d directions chosen include each

direction precisely once. We thus obtain that

d

d
Pps(.’lﬁ,°) > (izl ;—Z) Z/{o(-); and PRS(:E, ) > (d'/dd) (zl;Il _Z_:) UC('),

where Ppg and Prg and the deterministic-scan and random-scan Gibbs samplers, respec-

tively, and where Ug is the uniform distribution on C. [ |

To make use of this lemma, we require a general result about small sets. (A similar

result is presented in Meyn and Tweedie, 1993, Proposition 5.5.5 (ii).)

Proposition 2. For an irreducible aperiodic Markov chain, the finite union of small sets

(each of positive stationary measure) is small.

Proof. By induction, it suflices to consider just two small sets. Suppose that Cy is
(n1, €1, v1)-small, and that C; is (nz, €2, v2 )-small.

By irreducibility, since m(Cy} > 0, there is mm € IN and 6 > 0, such that 1, P™(C;) =
fR P™(z,Cy)a{dz) > 4. Tt follows that Pri+™+n2(g ) > ¢;6eau(¢) for z € C1. Also
P73(z,) =2 eava(-) 2 e18eqvp(-) for x e C;. Thus, io: P™(z,-) 2.616621)2(') forz € C1UC,.
Hence, Cy U G} is “petite” in the sense of Meyn and Tweedic (1993, p. 121).

But then by irreducibility and aperiodicity, it follows (cf. Meyn and Tweedie, 1993,

Theorem 5.5.7) that C1 U Cz must be small. |

We now put these results together. For x € R?, we shall write B(z,¢) for the open

L! cube centered at x of radius ¢, i.e.

B(x,e) = {yeR% a;—e<y; <zite, 1=1,2,...,d}.
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We begin with the case where R is a triangle. We recall from the previous section that,
if the triangle is such that all vertices have apex which contains a coordinate direction,
then the associated Gibbs sampler is uniformly ergodic. Thus, we instead consider the

case where one of the vertices is “tilted” and does not contain a coordinate direction.

Proposition 8. Let R C R?* be the width-1 triangle with lower angle 8, and upper angle

¢, le.
R = {(z,y) €R* 0<z <1, ctan(f) <y < atan(¢)},

where 0 < 0 < ¢ < w/2. Then the Gibbs sampler (with either random- or determmnistic-

scan) for the uniform distribution on R is geometrically ergodic.

Proof. We recall from the previous section that the subset C' = {(z,y) € R;y > tan(¢)}
(say) is small for the Gibbs sampler. Thus, by standard Markov chain theory (see e.g.
Nummelin, 1984; Meyn and Tweedie, 1993, Theorem 15.0.1}, we will be done if we can
find a drift function V : R — [1,00) and A < 1 such that

PV{(z,y) = /RV(Z)P ((:c,y),dz) ‘S AV(z,y), (l:v,y) € R, < tan(¢).

To continue, we consider the drift function V(z,y) = 1/z. To compute PV(z,y), for
ease of computation we shall focus on the deterministic-scan Gibbs sampler on R which
updates first the y coordinate and then the z coordinate, rather than on the random-scan
Gibbs sampler. This is not a restriction since it is known (see e.g. Roberts and Rosenthal,
1997a, Proposition 5) that if the deterministic-scan Gibbs sampler is gedmétrically ergodic,
then so is the random-scan Gibbs slam:pler.

We compute that, for the deterministic-scan Gibbs sampler,

1 z tan(¢) 1 . , w cot(8)
PV@9) = 5a@) = o000 Josuniey wcol(®) = wcot(qs)/w@ Viz w)dz dw
= AV(z,y),
where

A= X6,¢) = [log(cot(8)/ cot(#))]* / [(tan(g) — tan(f)(cot(8) — cot(4))].
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(Note that we actually have equality here, even though we only require an inequality.)
Now, we have A(f, ¢) < 1 whenever 0 < 8 < ¢ < n/2; indeed, if we set f(e) = M6,6 + €),

then to second order in €, as ¢ — 01, we have
fle) = 1—¢*/(3sin?(260)) < 1.

The geometric ergodicity follows. ' |

It is possible to combine Proposition 8 with the results of Section 2. For example, we

have

Theorem 9. Suppose R is a region whose boundary is a (d —1)-dimensional C? manifold
except at a finite number of points. Suppose further that in a neighbourhood of each of
these exceptional points, R coincides with a triangle (as in Proposition 8). Then the

random-scan Gibbs sampler for the uniform distribution on R is geometrically ergodic.

Proof.  (Outline.) As noted at the end of Section 2, the Gibbs sampler is uniformly
ergodic except near those exceptional points whose vertices are “tilted”, i.e. have apexes
which do not ¢011tain any coordinate direction. For such tilted vertices, it is possible to
choose € > 0 small enough that R\ R, breaks up into a finite number of connected compo-
nents, one near each exceptional point, such that it is impossible to get from one of these
components to another in a single step. Once we have done that, then we define a drift
function V' to be equal to 1 on R, and equal to the appropriate drift function (as in the
proof of Proposition 8) on each of the different connected components of R \ Re. Then,
separately from each connected component, the Gibbs sampler has geometric drift back to

the small set R.. Hence, as in Proposition 8, the result follows. N

Similar results are available for higher-dimensional regions R having “vertices” on the
boundary. We illustrate this with a particular example, a “tilted cone” with base at the

origin, tilted so that it does not contain any coordinate direction.
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Proposition 10. Suppose R C R?® is the tilted cone

(az —y)? PG ay)?
14 a2 14 a2 ’

R = {(:c,y,z) eR¥0<a<l, 224
for some o > 0 and 0 < ¢ < 1. Then the Gibbs sampler (Wifh either random- or

deterministic-scan) for the uniform distribution on R is geometrically ergodic.

Proof. We use the same drift function V(z,y,2z) = 1/z as before. We consider the
deterministic-scan Gibbs sampler which updates first z, then y, and then z. (The corre-
sponding result for the random-scan Gibbs sampler then follows once again from Roberts
and Rosenthal, 1997a, Proposition 5.) Clearly updating 2 does not change the value of V,
so it suffices to consider the effect of updating = and y conditional on a fixed value of z.

Now, conditional on z = 0, the point (z,y) is restricted to the triangle
RN{z=0} = {(z,%,0) € R®; ztan(f) <y < ztan(4)} ,

for some 0 < 6 < ¢ < w/2. Furthermore, conditional on a particular value of z # 0,
the point {z,y) is restricted to a hyperbole lying inside {(and asymptotic to) the triangle
RN {z =0}, whose proximity to this triangle depends on z.

To proceed, let P, be the two-dimensional random-scan Gibbs sampler for the uniform
distribution on RN {z = 24}, i.e. which acts on the coordinates z and y while leaving the
value of z fixed at # = z;. Then P i1s the usual two-dimensional random-scan Gibbs
sampler on the triangle R N {z = 0}, and hence by Proposition 8, P, is geometrically
ergodic with PyV(z,y,2z) < AV{z,y, z) for some A < 1.

Now, we claim that for any choice of 25 € R such that RN {z = z¢} is non-empty, we

have P, V(z,y,20) < PyV(z,y,20). Indeed, for fixed zy we have

PV(e.y,2) ——— i BTN
oV (2, y,2) = —————— Vz)dzdw, (1
12(@) = 1@ Sy ey 7200) = 22(@) Lo (0

where y1(z), ya(z), z1(w), and z;(w) are defined by

RO{(z,t)t € R} = {(z,1);y1(2) <t <pa(2)};
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a,n_d

@, and 20) such that
vi{z) = z cot (@) + d(z); Yo(z) = zcot(d) — d(z);

#1(¥) = y tan(g) + D(y), %2(y) = ytan(8) - Dyy).

that is, the interval (z, (y), 2y (y)) is Symmetrically embedded i the interval (y cot( $), y cot( )
(and similarly for (va(z), yo (z)).
To show that PV < PV, we observe that, for fixed  « 4 <band0 < f « (b—a)/2,

b~k
the quantity e 5 J (1/2)dz as & function of % jg maximised at k = @ Applying this

at-k .
observation twice to (1) shows that P V(z,y, 2} < P Viz,y,2) as desired,

ACX with ¢ < m(A) < 1 such that
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