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Abstract

Algorithms are developed for constructing random variable gener-
ators for families of densities. The generators depend on the concavity
structure of a transformation of the density The resulting algorithms
are rejection algorithms and the methods of this paper are concerned
with constructing good rejection algorithms for general densities.
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1 Introduction

Good algorithms for generating from univariate distributions are a necessary
part of many applications where approximations to integrals or expectations
are required. For a wide class of commonly used distributions there exist ex-
cellent algorithms and for many non-standard distributions there are classes
of tools that can be applied to construct good algorithms; see for example,
Devroye (1986). But this is not always the case. In many situations an
algorithm can be constructed by sheer brute force inversion; i.e. tabulate
the distribution function at many points, but this is inelegant and rarely
results in a satisfactory solution. By this we mean that the time taken to
generate many independent realizations can be considerable. Further, often
we want an algorithm that can generate from a family of distributions and
the specific distribution in the family cannot be prespecified; e.g. it may
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depend on data that varies from application to application, or the distribu-
tion may be changing dynamically as the simulation progresses, as in Gibbs
sampling. In such contexts the brute force algorithm is not feasible.

In spite of the extensive amount of development in this area the authors
have still encountered numerous situations where there is no obvious algo-
rithm available beyond brute force inversion. We describe some of these in
section 5. The purpose of this paper is to describe a general black-box algo-
rithm that is capable of handling a wide variety of situations. In essence the
user is required to input a minimal amount of information about densities
belonging to a family of distributions and then the algorithm constructs an
efficient generator. This is not a universal black-box as certain information
is required to be available, or at least easily computed, and sometimes this
is not the case. Basically, the information required is at most the first three
derivatives, and the roots of the first and second derivatives, of some sim-
ple transformations of the density. This information is readily available for
many univariate densities. A strong point of the algorithm described here is
that excellent algorithms for specific distributions can be easily constructed
and this does not demand deep insight into the properties of the distrib-
utions or great amounts of development time. The computer does all the
work.

The algorithm we develop can be thought of as a generalization in several
ways of the adaptive rejection algorithm developed in Gilks and Wild (1992).
We will refer to this algorithm hereafter as the Gilks-Wild algorithm. The
Gilks-Wild algorithm is a black-box algorithm for distributions with log-
concave densities. For example, the N(0,1), Gamma(a) for o > 1 and
Beta(a,b) for a,b > 1 all have log-concave densities. Further log-concavity
is maintained under location-scale transformations and truncation. On the
other hand the Student()} and the F(a,b) densities are not log-concave.
While there are simple good algorithms for generating from the full Student
or F distributions this is not the case for truncations. The algorithm we
describe here leads to new, good algorithms for the full distributions and
also easily handles truncations. We note that in Gilks, Best and Tan (1993}
a Markov chain algorithm is developed that combines the Gilks-Wild algo-
rithm with the Metropolis algorithm to give an approximate generator for
a general univariate density. In addition to only being approximate this
algorithm also suffers from the existence of correlation between realizations.
The algorithms developed here are exact and generate independent realiza-
tions.The Gilks-Wild algorithm is an adaptive rejection algorithm and this
is particularly suitable in a number of applications of Gibbs sampling when
the full conditional densities are log-concave. The algorithms developed here



are adaptive and do not require the log-concave restriction on densities.

In section 2 we discuss T-concavity and specific examples of transforma-
tions T. In section 3 we indicate how these concepts are used to construct
generators. In section 4 we consider the design of good generators and in
section 5 we present examples. Conclusions are given in section 6.

2 T-Concavity

The Gilks-Wild algorithm is based on the log-concavity of a density f; i.e.
the function Inof is concave. In fact there is no reason to restrict just to
the logarithm transformation and there is no reason to restrict to concavity.
With appropriate restrictions on transformations T : (0,00) — R, similar
algorithms can be constructed.

Accordingly we say f : D — R is T-concave , where D is a convex subset
of R, if T'o f is concave. If T of is smooth then f is T-concave if and only
if (Tof) = (T"0 FY(f')?+ (I' o f)f" < 0. Further we say that fis T-
convez if —(T o f } is concave. We call a convex subset C of D a domain
of T-concavity of f if T'o f is concave or convex there. We will restrict our
discussion hereafter to functions f with a finite partition {D1,...,Dp} of D
by domains of T-concavity. For such an f there is a coarsest such partition,
which we call the T-partition of f, and note that this can be constructed
by finding the inflection points of T" o f. The T-partition together with
the concavity of T o f on each partition element will be referred to as the
T-concavity structure of f. It is clear that T-concavity or T-convexity is
preserved under location-scale transformations and truncations.

We recall some elementary facts about inflection points for smooth func-
tions g defined on an open interval. First z is a point of inflection for g if
and only if ¢”(z) = 0 and ¢"(z) # 0. Further, if z is a point of inflection
of g and ¢g"(z) > 0 then g changes from concave to convex as we proceed
from left to right through z. Similarly g changes from convex to concave if
¢"(z) < 0. The inflection points of T'o f , perhaps for several T transfor-
mations, is typically the information needed to construct a generator using
the methods of this paper. For many distributions and transformations this
information is readily available.

For the transformations T considered here the T-concavity structure
of a function does not change under positive multiples of f. A sufficient
condition to ensure this is that 7’ be homogeneous of degree u € R. For
T’ homogeneous of degree p implies that 7" is homogeneous of degree p —
1 and then the above expression for (T o f)” shows that the sign of this




quantity does not change under positive multiples of f. In such a case
our algorithm does not require that the density be normalized. This is
practically significant, as often determining a norming constant can be a
substantial computation. Further, it allows for great convenience in our
development as we will ignore norming constants. As such, when referring
to a density f, hereafter, we will only require that it be nonnegative and
integrable.

As might be imagined an arbitrary T" does not suffice for the construction
of good, or even feasible, generators. For convenience we list what seem to
be necessary characteristics. The necessity of these will become apparent
when we present the algorithm.

1. T: (0,00) — R is smooth, monotone and T’ is homogeneous of
some degree,

2. T and its derivatives and T~! are easy to compute,
3. the anti-derivative of ! (a + [3z) is easy to compute for x € D
and is integrable on D;i.e. T7! (o + () is a density on D

4. it is easy to generate from the distribution with density 7~ (a+
Bz) via inversion.

We now present some examples of transformations that satisfy items 1-4.

2.1 Logarithm transformation

If we take T = In then T is smooth and increasing, T’ is homogeneous
of degree -1, T-(z) = exp(z) and [T~} (a + Bz)dz = -};—exp(a + Bz).
Therefore T-! (a + Bx) is a density on (a,b) whenever a,b € R, a density
on {—oo,b) when 8 > 0 and is a density on (a,00) when S < 0. Further
the inverse cdf of any of these distributions is easily obtained using the log
function so that generating using inversion is easy.

2.2 Power transformations

We define T, for p # 0 by T5(f) = fP. Then T} is smooth, increasing when
p > 0, decreasing when p < 0 and T is homogeneous of degree p — 1.
Further T !(z) = z!/? for z > 0 and, provided that « and § are chosen so
that @+ Bz > 0 on D, then

1 _ [ 32+ B0)F if p#0,-1
/Tp (a+ﬁm)dm—{ g—ﬂ-(lo:+ﬁa:) if p=-1
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From this we see that, provided that a+ 8z > 0 on the interval in question,
T;}{a+fz) is a density on (a, b} for every p # 0 and is a density on (—o0,b)
or (a,00) whenever p € (—1,0) . In all of these cases the inverse cdf is easily
obtained and so it easy to generate from these distributions via inversion.
As we will see the requirement that a + Gz > 0 on an interval, is typically
easy to satisfy as part of the algorithm.

We note that another family of transformations given by T>(f) = (fP
1)/p for p # 0 and T (f) = In(f) includes the log and power transformations
in a continuous family. There seems to be no apparent advantage to this
family, however, and it ignores the fundamental difference in the restriction
placed on @ + Sz between the log and power transformations. Also while
Ty o f and T o f have the same concavity structure they lead to different
generators.

3 The Algorithm

We restrict ourselves initially to the situation where D = [a,b] is 2 bounded
interval and suppose that we have chosen T, satisfying 1-4, so that f is T-
concave or T-convex on D and T o f is smooth. We note, however, that
in general we can use different T tranformations on different parts of the
support of f. Further we suppose that we have chosen points a < z; <
. < T < b. In section 4 we will discuss how to choose these points.

Now let ti(z) = (T o f}{z;) + (T o f){w:}{x — x;) be the equation of
the tangent line to T o f at z;. Let z; € (x;,%;41) be a point satisfying
ti(z) = tip1{z) for ¢ = 1,...,m — 1 and put 2y = @, zm = b. Note that
the T-concavity or T-convexity ensures that z; exists and if (T o f)(z:) #
(T o f)(x:41) then it is unique. If (T o f)(z:) = (T o f)(@iy1) then To f
=t; on {x;,T;11). In this case we will see that there is no benefit to having
both z; and ;41 in the partition and so we can delete one. Henceforth we
will assume that this has been done and then

_ [T o fY(mi)mi = (T o S (@ira)wapr] = (T 0 F)(@:) — (T 0 f)(@ir1)]

' (T o fY(:) — (T o fY (@is1)] '
Further let ¢; () = (To f)() + (T 0 £)(=) — (T'0 f){z-1)) (& - z)/(z: ~ 2
i—1) be the equation of the secant from (2zi—1, (T'o f)(zi_1)) to (2, (T0 f)(z:))
fori=1,...,m.




Now define the upper envelope function by

. )
t(@) i 21 <z <z T . f conc‘ave, or Tof conv‘ex ,
u(z) = T increasing T decreasing
(z) if <z <z T o f concave, or T o f convex ,
G ml =% =% P decreasing T increasing
and the lower envelope function by
. T o f concave, T o f convex
ci(z) if 3 <z <z, ) ) or .
iz) = -~ T increasing T decreasing
- T o f concave, T o f convex,

ti{x) f zz1<z<z% . or : i
i (@) —1=%>%  p decreasing T increasing

We then have that T-'(I(z)) < f(z) < T (u(z)) for every =z € (a,b)
and on (zi1, z), T Yu(z)) = T-(a + Bz) for some o, 5. Define the
mixture density g(z) = T~Nu(z))/ [P TV u(2))dz = 7, pigi(x) where
pi = dif(dy + -+ dm), di = [ T Hu(e)) dwand gi(z) = T~ (u(z))/d:
on [2—_1, #] and is equal to 0 otherwise. We can generate from g since it
is easy to calculate the p; and easy to generate from component g; using
inversion. We use the aliasing algorithm; see Devroye (1986), to generate
from the discrete distribution (pi... pm). Thus generating from g only re-
quires the generation of 2 uniforms. Then the rejection sampling algorithm
for f proceeds by (i) generating X ~ g, (ii) generating V' ~ U(0,1), (iii)
if f(X) > VT Y{w(X)) then return X else go to (i). In contexts where
the computation of f{X) is expensive we can add a squeezer step, between
(i) and (iii), by first testing 7= ({(X)) < VT~(u(X)) and returning X if
this holds, otherwise carrying out step (ili). In the adaptive version of this
algorithm the point X is added to {x1,...,Zm} and a new [ and u computed
whenever f(X) < VT~ {u(X)).

We recall here the requirement that a + Sz > 0 whenever T is a power
transformation. Consideration of the above shows that this restriction will
autornatically be satisfied piecewise by u and [ whenever we require that
z € {z1, - Tm} if (T o f)(z) = 0.

There are several assumptions associated with the above development.
First we assumed that there exists a T  such that f is T-concave or T-convex
on D. This is clearly not necessarily the case but this problem is easily dealt
with when D = [a, b] by using the T-partition of f and constructing v amd [
piecewise on each element of the partition. More serious are the assumptions
of bounded support and of no singularities at the end-points. As we will see
in the examples, both of these problems can be dealt with in very general
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families of densities by making a judicious choice of a T transformation for a
tail interval or an interval with a singularity as an end-point. For example,
it turns out that when a tail is not log-concave then there is often a power
transformation T, such that the tail is Tp-convex and p € (—1,0) so that T
is decreasing. In particular, infinite intervals are easily handled, in the sense
that we can construct a rejection sampler g on the whole interval, whenever
f is T-concave on the interval with T increasing or whenever f is T-convex
on the interval with T decreasing. In these cases u is defined exactly as in
the case of a bounded interval while ! must be modified so that the squeezer
T-1(l(z)) takes the value 0 on infinite intervals; e.g. in the log-concave case
I(z) takes the value —oo on such intervals.

4 Selecting the Points

Given a specific density f it is natural to ask which transformation T should
be used, say from amongst those described in section 2. It turns out, how-
ever, that a single T is sometimes not sufficient as we will require different
transformations for the tails and the central region; e.g. see section 5. In
the situation where a single transformation suffices then we would like to
choose that T and the points {1, ..., zn} which maximizes the probability
of acceptance; namely

PG 2 VT 000 = T

This is not a tractable problem, however, even in very simple contexts. One
thing we can say, based on the developments in section 3, is that choosing
T so that T o f is approximately linear seems appropriate. Accordingly, we
will suppose that 7" has been chosen for a particular interval and consider
the choice of the points {xi,...,xn} in this interval.

While optimal selection of the points may be a reasonable approach for
distributions that are used very frequently, in general the following seems
like an effective way to proceed as it demands minimal input and design of
the algorithm. We start with some intial set {z;,...,%m} containing at least
all the criticial and inflection points of T o f and typically it pays to include
more than these. For example, if the largest  value is a critical point and the
distribution has an infinite right tail then we must include one more point
in the right tail else g will not be integrable. A similar consideration arises
if the smallest z value is a critical point and the distribution has an infinite
left tail. We then let the algorithm run adaptively; i.e. every time an X




function of p € (-1, ——b—_;%) and goes to oo as p — —b-%z and goes to

Loba=2( (_2(a-§-b))
T a2 +b (a—2)b
as p — —1. Simple manipulations show that ¢; > 0 for all a € (0,2), b > 0.

So if ¢ > ¢; we can find p so that the largest root of pk(z) equals c. This p
is given by

(a®b + 2a%) & + (—2a%b + 4ba) ¢ — b2a + 2b°

plo) = -2 ((2a + ba) ¢ — ba + 2b)*

and note that p(c) — —z35 as ¢ — oo and p(; )= —1. Thus ¢ = d; for any
d > 0 is appropriate.

6 Conclusions

We have presented a general black-box algorithm for the construction of
a random variable generator based on the concavity properties of simple
transformations of densities. This generalizes the Gilks-Wild algorithm in
several ways. Provided there is minimal information available about the
density then the construction of excellent rejection algorithms is easy and
automatic. A number of examples have demonstrated the utility of this
approach in contexts where finding good generators has proven difficult.
Further these examples demonstrate that it is possible to use these methods
for families of distributions with little added complexity.

It is easy to see that random variable generation from many of the most
common distributions encountered in practice can be handled by these tech-
niques. For example, the Beta{a, b) distribution is not log-concave whenever
a or b is less than 1. But it is clear from our development of a generator for
the F distribution that these cases can be handled in exactly the same way.
Similar considerations apply to the Gamma(a) distribution whenever a < 1.

The authors are currently developing general software to allow these
methods to be applied to virtually any distribution for which the information
detailed in the paper is available. Additional work can also be done on using
other classes of transformations and on the selection of the initial points.

References

Devroye, L. (1986). Non-Uniform Random Variate Generation. Springer-
Verlag. New York.

16



Evans M. and Swartz, T. (1994) Distribution theory and inference for
polynomial-normal density functions. Commun. Statist. Theor. Meth.
23(4), 1123-1148.

Evans, M. and Swartz, T. (1995) Some techniques associated with multi-
variate Student importance sampling. To appear in the Proceedings
of the 1995 Interface.

Gilks, W. and Wild, P. (1992). Adaptive rejection sampling for Gibbs
sampling. Applied Statistics, 41, 337-348.

Gilks, W., Best, N.G., and Tan, K.K.C. (1993) Adaptive rejection Metropo-
lis sampling for Gibbs sampling. Manuscript.

Kinderman, A.J. and Ramage, J.G. (1976). Computer generation of normal
random variables. JASA, Vol. 71, No. 356, 893-896.

Scollnik, D. (1996) Simulating random variates from Makeham’s distribu-
tion. To appear in the Transactions of the Society of Actuaries.

17




-10 -5 0o 10

R

Figure 1. f(z) = (z — z1)(z ~ 27}z — z2)(z — 25)¢(z) in Example 5.2.
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Figure 2. In{ f(z)) in Example 5.2.



