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Abstract. The inferential problem of associating data to mixture components is difficult when
components are nearby or overlapping. We introduce a new split-merge Markov chain Monte Carlo
technique that efficiently classifies observations by splitting and merging mixture components of
a nonconjugate Dirichlet process mixture model. Our method, which is a Metropolis-Hastings
procedure with split-merge proposals, samples clusters of observations simultaneously rather than
incrementally assigning observations to mixture components. Split-merge moves are produced by
exploiting properties of a restricted Gibbs sampling scan. A simulation study compares the new
split-merge technique to a nonconjugate version of Gibbs sampling and an incremental Metropolis-
Hastings technique. The results demonstrate the improved performance of the new sampler. We
illustrate the utility of our technique as an unsupervised clustering method using real data.
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1 Introduction

Bayesian mixture models have gained in popularity as an alternative to traditional density estima-
tion and clustering techniques (see, for example, Escobar and West 1995, Neal 2000, Richardson
and Green 1997). In particular, Bayesian mixture models in which a Dirichlet process prior defines
the mixing distribution are of interest due to their flexibility in fitting a countably infinite number
of components (Ferguson 1983). Much of the recent research related to the Dirichlet process mix-
ture model has been devoted to developing computational techniques, usually Markov chain Monte
Carlo methods, to sample from its posterior distribution (Escobar 1994, Bush and MacEachern
1996, Green and Richardson 2001, Neal 2000). Other techniques to estimate the Dirichlet process
model include sequential importance sampling (MacEachern, Clyde, and Liu 1999) and variational
methods (Blei and Jordan 2004). The practical utility of these methods is illustrated by their recent
use for complex biological and genetics problems, such as haplotype reconstruction (Xing, Sharan,
and Jordan 2004), estimation of rates of non-synonymous and synonymous nucleotide substitutions
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as evidence for natural selection in evolutionary biology problems (Huelsenbeck, Jain, Frost, and
Pond 2005), and determination of differential gene expression (Do, Miiller, and Tang 2005).

The focus of this article is on Markov chain sampling for nonconjugate Dirichlet process mixture
models, building on our previous work for conjugate models (Jain and Neal 2004). Conjugate
models are appropriate for some problems, which is convenient due to the analytical tractability
of these priors. However, in many situations, conjugate priors can be too restrictive. Forcing
conjugacy on the model can lead to undesirable or even nonsensical priors. A classic example is
a simple model for normally distributed data, where conjugacy requires an assumption that the
mean and variance are a priori dependent, which is often unrealistic in actual problems.

Computationally, Markov chain sampling procedures can operate differently depending on whether
conjugacy is assumed. In the conjugate case, we can analytically integrate away the mixing pro-
portions for the components and the parameters for each component. This leads to Markov chain
Monte Carlo procedures that update only the latent indicator variable associating mixture compo-
nents with data observations (MacEachern 1994, Neal 1992). However, in the nonconjugate case,
the parameters of the model cannot be integrated away and must be included in the Markov chain
update. Further, since we lose the advantage of analytic tractability, computational difficulties
arise, which makes it more difficult, but not impossible, to construct valid Markov chain Monte
Carlo procedures.

Nonconjugate Markov chain sampling methods based on the Gibbs sampler have been proposed
previously; see, for instance, MacEachern and Miiller (1998) and Neal (2000). When the mixture
components are nearby or overlapping, these incremental samplers (as well as those for conjugate
models) suffer from computational difficulties, such as remaining stuck in isolated modes and poor
mixing between components.

Alternative nonincremental Markov chain samplers for the Dirichlet process mixture model based
on split-merge moves have been proposed by Green and Richardson (2001) and by ourselves (Jain
and Neal 2004). In a single iteration, these methods can split a mixture component moving all
observations to an appropriate new component, or merge two distinct components together. The
Green and Richardson (2001) method is based on the reversible-jump procedure, in which numerous
ways to propose a split move are possible. Since specific moment conditions must be preserved,
the split-merge proposals are model-dependent. Jain and Neal (2004) introduce a Metropolis-
Hastings technique with split-merge proposals for conjugate Dirichlet process mixture models. The
innovation in this work is exploiting properties of a Gibbs sampling scan to construct split-merge
moves, such that their Metropolis-Hastings proposals are model-independent. In this article, we
extend the conjugate split-merge technique to a class of nonconjugate Dirichlet process mixture
models.

This article is organized as follows. Section 2 defines the nonconjugate Dirichlet process mix-
ture model under consideration. Section 3 briefly describes the Metropolis-Hastings split-merge
technique based on Gibbs sampling proposals. Our new split-merge technique for a class of non-
conjugate models is proposed in Section 4. Next, in Section 5, we illustrate the utility of our method
in high-dimensional problems by comparing it to an auxiliary Gibbs sampling method (Neal 2000,
Algorithm 8). In Section 6, we apply the new algorithm to a real data set and demonstrate its
performance as an unsupervised clustering method. Section 7 is a general discussion and concluding
remarks.



2 The model

The Dirichlet process mixture model takes the following hierarchical model form for observed data
y = (y1,-...,Yn) that is considered exchangeable:

yi | ;i ~ F(6;)
b; |G ~ G (1)
G ~ DP(G(),(I)

Here, F(6;) is a component density from a parametric distribution parameterized by 6;, whose
density will be written as F'(y;#). G is the mixing distribution. Gy defines a base distribution for
the Dirichlet process (DP) prior. Finally, « is a concentration parameter that takes values greater
than zero. The usual conditional independence assumptions for a hierarchical model apply, so that
the only dependencies are those that are explicitly shown.

Realizations of the Dirichlet process are discrete with probability one. A consequence of this
is that the mixture model in equation (1) can be viewed as a countably infinite mixture model
(Ferguson 1983). This is evident when we simplify the model in equation (1) by integrating G over
its prior distribution. The 6; follow a generalized Polya urn scheme (Blackwell and MacQueen 1973)
and the prior distribution for the #; may be represented by the following conditional distributions:

01 ~ Go
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where §(6;) is the distribution which is a point mass at ;.

We can represent the fact that (2) results in some of the ; being identical by setting 6; = ¢,
where ¢; represents the latent class associated with observation i, and all ¢. are independently
drawn from Gy. The Polya urn scheme for sampling the 6; is equivalent to the following scheme
for sampling the latent variables, ¢;, and associated ¢.:

e
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where n; . is the number of ¢; for £ < 4 that are equal to c. The labeling of the indicator ¢; is
irrelevant in the above probabilities; all that matters is which ¢; are equal to each other.

The probabilities shown in (3) define the Dirichlet process model. This notation will be employed
in subsequent sections.

3 Jain and Neal’s conjugate split-merge procedure

We have previously introduced a split-merge Metropolis-Hastings procedure for conjugate Dirichlet
process mixture models (Jain and Neal 2004; Jain 2002). In this version of the algorithm, we



assume that F' is conjugate to Gy in equation (1), so the model parameters, ¢, in addition to the
mixing distribution, G, can be integrated away. The state of the Markov chain consists only of the
mixture component indicators, c;.

This sampler proposes nonincremental moves that can produce major changes to the configu-
ration of observations to mixture components in a single iteration. The split-merge proposals are
evaluated by a Metropolis-Hastings procedure, in which split proposals are constructed by exploit-
ing properties of a restricted Gibbs sampling scan on the component indicators, ¢;. The Gibbs
sampling scan is restricted in that it is only performed on a subset of the data (the observations as-
sociated with the merged component that is proposed to be split) and will only allocate observations
between two mixture components.

To achieve more reasonable split proposals, several intermediate restricted Gibbs sampling scans
are conducted prior to the final restricted Gibbs sampling scan, which is used to calculate the
Metropolis-Hastings acceptance probability. The result of the last intermediate Gibbs sampling
scan is denoted as the random launch state, from which the restricted Gibbs sampling transition
probability is explicitly calculated. The number of intermediate restricted Gibbs sampling scans is
considered a tuning parameter of this algorithm.

Note that for a merge proposal, there is only one way to combine items in two components to one
component. However, deciding whether to accept or reject a merge proposal requires hypothetical
consideration of the reverse split, which requires computations similar to those done for an actual
split. A description of the steps involved in this algorithm, details to compute the Metropolis-
Hastings acceptance probability, and a discussion of the validity of the conjugate version of the
split-merge Metropolis-Hastings algorithm are provided in Jain and Neal (2004).

4 The nonconjugate split-merge procedure

Jain and Neal’s conjugate split-merge Markov chain procedure described in Section 3 can be gener-
alized to accommodate models with nonconjugate priors. As mentioned earlier, because conjugate
priors are not appropriate for all modeling situations, much of the recent Bayesian mixture model-
ing literature has been dedicated to nonconjugate algorithms (for instance, MacEachern and Miiller
1998, Green and Richardson 2001, and Neal 2000). A major impediment in designing nonconju-
gate procedures is the computational difficulty that arises when the model is no longer analytically
tractable.

We say the model is nonconjugate when Gy is not conjugate to F' in the mixture model (equa-
tion 1). Aside from being unable to simplify the state of the Markov chain by integrating away the
model parameters, ¢, the main obstacle occurs when trying to sample for a new mixture component.
When a ¢; is updated, it can be set either to one of the other components currently associated with
some observation or to a new mixture component. The probability of setting ¢; to a new component
involves the integral, [F(y;; ¢) dGy(¢), which is analytically intractable in most nonconjugate sit-
uations. Allowances that some previous nonconjugate methods have made when dealing with this
integral include approximating the true posterior distribution by another stationary distribution
(which can be extremely detrimental) or creating model-specific ad hoc algorithms (which fail to
generalize well).



Neal (2000) proposed two incremental Markov chain sampling procedures: Gibbs sampling with
auxiliary parameters (Algorithm 8), and an incremental Metropolis-Hastings technique (Algorithm
5). These are exact Markov chain Monte Carlo methods that sample the correct posterior distribu-
tion and are straightforward to implement. However, in situations where the mixture components
are nearby or similar in structure, these incremental methods’ performance is analogous to the
incremental methods for conjugate models (see Jain and Neal 2004). To overcome their problems,
such as remaining stuck in isolated modes and poor mixing between mixture components, we have
developed a nonincremental split-merge alternative. In the next section, we compare empirically
the performance of the new sampler to Neal’s two incremental algorithms.

In this article, we show how such a nonincremental split-merge procedure can be applied when
the model uses a particular type of nonconjugate prior, the conditionally conjugate family of pri-
ors. In conditionally conjugate models, it is still impossible to efficiently compute the integral,
JF(yi; $) dGo($). However, the pair F' and Gy are conditionally conjugate in one model parameter
if the remaining parameters are held fixed. A well-known instance of this is the following Normal
model. Suppose the observations, y1, ... ,yn, are distributed as F(y;; i, 02) = Normal(y;; u, 02), and
the prior is Go(u,02) = Normal(y;w, B~!) - Gamma(o~2;7, R). The distributions, F(y;; u,0?)
and Go(p,o~?), are conjugate in u when o2 is fixed, and conjugate in o2 if y is fixed. But, the
joint posterior distribution is not analytically tractable. For the sake of brevity, when this non-
conjugate Normal-Gamma, prior is applied to a Normal mixture model, we will refer to it as the
Normal-Gamma mixture model. Note, however, that this model using a conjugate prior, in which
the mean and variance are a priori dependent, is sometime referred to similarly.

Section 4.1 outlines the basic differences between the nonconjugate and conjugate versions of
the split-merge procedure. A detailed description of the nonconjugate algorithm is provided in
Section 4.2, while Section 4.3 gives the Metropolis-Hastings acceptance probability for the non-
conjugate case. We suggest ways to improve the efficiency and performance of the algorithm in
Section 4.5.

4.1 Restricted Gibbs sampling split-merge proposals

The conjugate split-merge algorithm of Section 3 cannot be applied directly to the conditionally
conjugate case, but the basic mechanism of creating restricted Gibbs sampling split-merge proposals
can still be applied. Since the model parameters, ¢., cannot be integrated away, the state of the
Markov chain for the split-merge sampler consists of both the component indicators and model
parameters, denoted by v = (¢, @), where ¢ = (c1,...,¢,) and @ = (dc : ¢ € {c1,...,¢n}).

Conditional conjugacy in the model is required so that restricted Gibbs sampling scans can be
performed to allocate observations reasonably between two mixture components. During these
scans, we do not need to compute the integral, [F(y;;$)dGo(¢), since we are only allocating
observations between two known components that have at least one observation already assigned
to them. For a nonconjugate model, a restricted Gibbs sampling scan also updates the parameters
for the affected mixture components, while holding the parameters of the other components fixed.
Note that use of a restricted Gibbs sampling scan (and consequently, conditional conjugacy) is
only crucial for the final Gibbs sampling scan from the launch state, since it allows the Metropolis-
Hastings proposal density can be calculated. The intermediate scans could be replaced by some
other type of Markov chain update.




























































autocorrelation time of an indicator variable, Is 57, coding if observations 26 and 57 are in the same
component, the time is again much lower for Split-Merge (5,1,1,5) (38 vs. 417). Even though both
algorithms do mix between the two configurations and Split-Merge (5,1,0,5) is faster per iteration,
the improvement in autocorrelation time for Split-Merge (5,1,1,5) cannot be ignored. The extra
full scan of incremental sampling for minor adjustments is worth the computational effort.

5.3.4 Summary of findings

It appears that split-merge moves are necessary in nonconjugate problems of this sort. Incremental
samplers perform adequately when the components are distinct clusters in low dimensions, but as
the components become more difficult to distinguish, these samplers take much longer to reach
equilibrium. It is important to note that the incremental samplers that we considered begin to
break down even in low dimensions. The split-merge procedures are able to handle three-way splits
without any problems, although this is done by two two-way splits.

The split-merge procedure with several intermediate Gibbs sampling scans followed by an incre-
mental full scan is the best version of the split-merge procedure. The split-merge method relies
on proposing appropriate new clusters, which is accomplished by conducting several intermediate
scans to reach the split and merge launch states.

The presence of an additional tuning parameter for the number of intermediate Gibbs sampling
scans for a merge proposal does not cause any additional difficulty, in comparison to the conjugate
split-merge procedure, for which it is not needed.

The split-merge methods generally have a longer computation time per iteration. However, in
the case of the Gibbs sampling procedure with v = 3 auxiliary parameters, the best version of the
split-merge procedure, Split-Merge (5,1,1,5), is slightly faster in our implementation (see Table 4).
Therefore, there does not appear to be any advantage in using only incremental procedures for
these types of problems.

In higher dimensions, split-merge procedures continue to work well as the components are moved
closer together. Convergence to the equilibrium distribution is relatively quick. We believe that the
split-merge procedure may break down for very high dimensional problems, because appropriate
splits will be rejected, since it will become unlikely that a merge operation from the split state would
produce the same merged parameter values as the current state. However, we have not encountered
an example of this. Perhaps this issue arises only in situations where the dimensionality is in the
hundreds.

5.4 Tuning parameters

This section investigates the effect of varying the tuning parameters of the nonconjugate split-merge
procedure. As discussed at the start of Section 5.3, the split-merge method has four adjustable
tuning parameters: the number of intermediate Gibbs sampling scans to reach the split launch state,
the number of split-merge updates conducted in a single iteration, and the number of incremental
Gibbs sampling scans conducted after the split-merge updates, and the number of intermediate
Gibbs sampling scans to reach the merge launch state. The data from Example 3 is used to examine
each tuning parameter. Computation time per iteration and autocorrelation times for trace 1 and
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Figure 7: Trace plots showing the effect of the number of intermediate Gibbs sampling scans (split
proposal) tuning parameter.
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Figure 8: Trace plots showing the effect of the number of intermediate Gibbs sampling scans (merge
proposal) tuning parameter.
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Figure 9: Trace plots showing the effect of the number of Metropolis-Hastings updates in a single
iteration.
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Figure 10: Trace plots showing the effect of the number of final complete Gibbs sampling scans.
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indicator Iy 57 are performance measures considered for various settings of this algorithm shown
in Table 6. Trace plots are given in Figures 7-10. The plots show the first 5000 iterations, but the
simulations were run for 10,000 iterations in order to obtain better autocorrelation time estimates.

5.4.1 Number of intermediate Gibbs sampling scans for the split proposal

Increasing the number of intermediate Gibbs sampling scans will produce better split proposals
since the restricted equilibrium distribution will be better approximated. It is not necessary to
reach equilibrium to produce valid proposals. Therefore, the question is how many scans are
necessary to achieve a reasonable allocation of observations between two components while keeping
computation costs at a minimum.

From the trace plots in Figure 7, it is clear that as the number of scans is increased, the mixing
dramatically improves. The sampler’s performance for 100 intermediate scans is undeniably better
than one intermediate scan. In terms of autocorrelations and Metropolis-Hastings acceptance rate,
there are obvious improvements when scans are increased (Tables 6 and 7), but at the cost of
computation time per iteration. Notice that 100 scans requires over five times the amount of time
compared to ten scans.

This clear improvement by increasing the number of scans differs from the conjugate method,
since the improvements quickly taper off as the scans increase in the conjugate case. This may
be explained by the addition of the model parameters to the state of the Markov chain. Prior
to restricted Gibbs sampling, values are drawn from the prior distribution of the parameters of
the two split components. Depending on the choice of priors and size of the problem, this could
take the restricted scans longer to converge or even reach reasonable splits. Improvements in
performance could be made by selecting these values from the sample mean and variance, but this,
of course, would make the procedure model-dependent, which we wish to avoid. However, in real
data problems, for this type of Normal mixture model, choosing reasonable initial states would be
useful.

It is difficult to say what the optimum number of intermediate scans for the split proposal should
be, since this depends on the complexity of the problem and computational resources at one’s
disposal. For the comparisons considered in Section 5.3.2, it appears that for this data, five to
ten scans did well in splitting amongst the five components, and additional scans would have been
unnecessary.

5.4.2 Number of intermediate Gibbs sampling scans for the merge proposal

The intermediate Gibbs sampling scans to reach the launch state for the merge proposal differ
from the scans for the split proposal because Gibbs sampling is only performed on the parameters
for the single merged component. Indicators are not included, since the only way to merge two
components is to group all observations together. This reduces the amount of work performed
in one scan of restricted Gibbs sampling. These scans are also expected to converge faster than
intermediate Gibbs sampling to reach the split launch state.

From the trace plots in Figure 8, it appears that the benefit of additional scans levels off after three
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Table 6: Effects of the four tuning parameters.

Time per iteration  Autocorrelation Autocorrelation
Algorithm i seconds time for Trace 1  time for Indicator I 57

Split-Merge (1,1,1,5) 0.40 1725 593
Split-Merge (3,1,1,5) 0.47 359 182
Split-Merge (5,1,1,5) 0.54 126 38
Split-Merge (10,1,1,5) 0.71 66 23
Split-Merge (20,1,1,5) 1.04 45 16
Split-Merge (100,1,1,5) 3.67 28 14
Split-Merge (5,1,1,1) 0.52 354 108
Split-Merge (5,1,1,3) 0.52 87 36
Split-Merge (5,1,1,5) 0.54 126 38
Split-Merge (5,1,1,10) 0.54 80 29
Split-Merge (5,1,1,20) 0.56 85 31
Split-Merge (5,1,1,100) 0.75 91 40
Split-Merge (5,1,1,5) 0.54 126 38
Split-Merge (5,2,1,5) 0.78 60 22
Split-Merge (5,3,1,5) 1.00 49 16
Split-Merge (5,4,1,5) 1.25 38 9

Split-Merge (5,5,1,5) 1.50 52 12
Split-Merge (5,10,1,5) 2.70 31 6

Split-Merge (5,1,0,5) 0.25 718 417
Split-Merge (5,1,1,5) 0.54 126 38
Split-Merge (5,1,2,5) 0.81 70 28
Split-Merge (5,1,3,5) 1.09 75 31
Split-Merge (5,1,4,5) 1.49 74 29
Split-Merge (5,1,5,5) 1.67 85 31
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Table 7: Acceptance rate for different numbers of intermediate Gibbs sampling scans for the split
proposal.

Algorithm Acceptance rate in percent
Split-Merge (1,1,1,5) 0.1
Split-Merge (3,1,1,5) 0.4
Split-Merge (5,1,1,5) 1.2
Split-Merge (10,1,1,5) 2.3
Split-Merge (20,1,1,5) 3.4
Split-Merge (100,1,1,5) 4.4

Table 8: Acceptance rate for different numbers of intermediate Gibbs sampling scans for the merge
proposal.

Algorithm Acceptance rate in percent
Split-Merge (5,1,1,1) 1.0
Split-Merge (5,1,1,3) 1.2
Split-Merge (5,1,1,5) 1.2
Split-Merge (5,1,1,10) 1.2
Split-Merge (5,1,1,20) 1.2
Split-Merge (5,1,1,100) 1.3

to five scans. Improvements in autocorrelation times (Table 6) and acceptance rate (Table 8) are
not statistically significant. The standard error for trace 1 autocorrelation times based on dividing
the ten thousand iterations into five equal samples is approximately twelve. The computation time
per iteration is not much of a factor for these scans, since one to twenty scans take approximately
the same time. These scans are much faster than the corresponding intermediate scans for the split
proposal.

5.4.3 Number of split-merge updates per iteration

The trace plots for varying the number of split-merge updates per iteration are shown in Figure 9.
Increasing the number of such updates has the effect of putting more emphasis on split-merge
updates in comparison with incremental Gibbs sampling scans. As for the conjugate version, we
see that the improvement that the improvement in autocorrelation time gradually diminishes for
more than a few split-merge updates. In this example, no more than three per iteration seems
desirable. A final incremental Gibbs sampling scan may not be necessary after every split-merge
update. This is desirable, since such Gibbs sampling scans require more computational effort than
a single split-merge update.

5.4.4 Number of final complete Gibbs sampling scans

As shown in Section 5.3, the split-merge Metropolis-Hastings updates need to be cycled with an
incremental scan of the data. This is evident in the trace plots shown in Figure 10 and autocor-
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relations dropping from 718 to 126 after one final scan was added. The final incremental scans
make the minor configuration adjustments for single observations that the split-merge procedure
alone does not handle well (compare 0 vs. 1 scan in autocorrelation time for the indicator variable).
Although improvements in autocorrelation time continue as the number of scans increase, it does
not seem critical to perform more than one scan for most problems.

These full incremental scans are computationally expensive, so we prefer to use an incremental
sampler that is computationally cheap. We recommend either the incremental Metropolis-Hastings
or Gibbs sampling with v = 1 auxiliary parameters. Additional auxiliary parameters in our imple-
mentation are quite expensive, so no more than one will be used.

5.4.5 Suggestions for selecting tuning parameters values

The number of intermediate Gibbs sampling scans to reach the split launch state controls the
performance of the procedure, since this decides the quality of the split proposal. We have shown
empirically that a number of scans is necessary, and many should be performed if possible. It may
be helpful to consider a more judicious approach to selecting an initial state than simply drawing
from the prior to avoid performing a large number of these intermediate scans.

On the other hand, the number of intermediate scans to reach the merge launch state is less of
an issue. The scans are computationally cheap, so several could be performed if desired. However,
we observed that benefits taper off after only a few scans.

The number of Metropolis-Hastings updates per iteration and final full incremental scans of the
data in the nonconjugate case behave similarly to the conjugate method. We prefer to keep these
tuning parameters as low as possible and usually set them both to one to reduce computation time.

6 Illustration

The Dirichlet process mixture model is a useful tool in model-based, unsupervised cluster analysis.
We illustrate the practical utility of our split-merge algorithm with a six-dimensional data set from
Lubischew (1962) that has been previously used by West et al (1994). The data consists of six
measurements of physical characteristics of three species of male beetles for a total of n = 74
beetles. The three species are chactocnema concina, chactocnema heikertinger, and chactocnema
heptapotamica, in which neope = 21, npeir = 31, and npepr = 22.

The measurements for the i beetle are denoted as: vi; = (yi1,...,vis) for i = (1,...,74). The
six measurements are:

1.1 = width of the first joint p1 =177.3 o1 = 865.1
1.2 = width of the second joint uo =124.0 09 =T71.9
y.3 = maximal width of the aedeagus u3 =504 o03="7.6
y.4 = front angle of the aedeagus pa =134.8 o4 =107.1
1.5 = maximal width of the head ps =13.0 o5 =4.6
1.6 = aedeagus side-width ue =954 o = 204.6

The objective of our analysis is to recover the three latent classes corresponding to the three dif-
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Figure 11: Trace plots comparing Auxiliary Gibbs Sampling to Split-Merge (5,1,1,5) for the beetle
data using vague priors (top) and realistic priors (bottom).

ferent species of beetles without using the species information in the analysis. We apply the
Normal-Gamma Dirichlet process mixture model to this data, identical to equation 17. The
Dirichlet process parameter, «, is set to one. The values for the priors of the parameters have
been set for each dimension as follows: w; = (w,...,ws) = (100,100, 50, 100, 25, 100), B;l =
(Bl_l, ... ,B6_1) = (500, 100, 25,100, 25, 150) where B is a precision parameter, 7 = 1 across all six
dimensions, and R = 5 across all six dimensions.

We applied the nonconjugate split-merge algorithm (5,1,1,5) and Neal’s Gibbs sampling technique
(2000) with v = 3 auxiliary components to this data. Computation time per iteration is similar for
both algorithms. For each algorithm, results are provided for the case in which all observations are
initially assigned to the same mixture component, and each algorithm is run for 5000 iterations.

From the two top trace plots given in Figure 11, it is evident that Gibbs sampling is unable to
separate the data and leaves all observations in the same mixture component. It is clear that Gibbs
sampling will take longer to reach equilibrium. On the other hand, split-merge splits the data
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into three major clusters (corresponding to the correction proportion of observations to species, i.e.
42%, 30% and 28%.) within the first twenty iterations.

To generate the two bottom trace plots in Figure 11, we set the prior values of w; and B~ to
be more reflective of the data. The values used are: w; = (wy,...,ws) = (100, 100, 50, 100, 10, 100)
and B;' = (By'',...,B;") = (800,100,10,100, 10,200). While Gibbs sampling does recover the
three different species groups almost immediately, it is important to note that it becomes stuck in
a low probability two-component configuration and mixes poorly. However, split-merge continues
to mix well in a three-component configuration.

As a final check, the simulations were repeated by starting the simulation from a typical state
of the competing method’s apparent equilibrium distribution. Gibbs sampling stayed in the three-
component state that it was started from, confirming that the three-component state has high
posterior probability, and that the difference seen is not the result of some bug in the split-merge
procedure. When the simulations were repeated using an initial state in which each observation
is in a different component, the Gibbs sampler is able to reach equilibrium sooner and performs
better.

The results from the beetle data illustration show that Gibbs sampling experiences a long burn-
in time compared to the nonconjugate split-merge technique and is not always suitable for high-
dimensional analysis. While it is true that the values of the priors for the parameters may not be
ideal and that more realistic values may yield better sampling, often in real data analysis, there
is no a priori information to suggest reasonable priors. A Markov chain Monte Carlo technique
that can overcome poor choices in priors is preferred, as illustrated here, since this leads to shorter
burn-in times and full exploration of the posterior distribution.

7 Discussion

The nonincremental split-merge procedure for nonconjugate models introduced in this article avoids
the problem of being trapped in local modes, allowing the posterior distribution to be fully explored.
In general, the nonconjugate split-merge procedure can become computationally expensive, but
when Gibbs sampling or some other incremental procedure fails to reach equilibrium in a sensible
amount of time, this procedure becomes necessary.

Another related issue is burn-in time. Even if an incremental procedure reaches stationarity
within a desired time limit, one must often discard a large number of early iterations, which
can lead to poor estimates. In split-merge type situations, the computational burden of using a
nonincremental procedure is offset by its quick burn-in and dramatic improvement in performance.

A possible extension of the split-merge technique is to employ Dahl’s (2003) sequentially allocated
split-merge sampler as a method to initialize the intermediate Gibbs sampling step. This method
could potentially provide a better starting state than our present method of performing a random
split of items and selecting values for the parameters from the prior.
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