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Abstract

We present here two distinct statistical problems in human genetics.

Accurate information on the relationships among individuals is critical for valid
genetic mapping studies. Statistical methods for detecting misspecified relationships
based on genotype data have been developed mostly for data from sib-pair designs
(Chakraborty and Jin 1993a; Goring and Ott 1997; Boehnke and Cox 1997; Ehm
and Wagner 1998; Broman and Weber 1998; Olson 1999). We extend the likelihood
calculations of Goéring and Ott (1997) and Boehnke and Cox (1997) to more general
relative pairs for which the identity-by-descent (IBD) process is no longer a Markov
process, and we propose the maximized log-likelihood ratio (M LLR) test. We also
extend the identity-by-state (/BS) test of Ehm and Wagner (1998) to non-sib pairs.
The MLLR test has high power but is computationally intensive. The I BS test is
simpler, however it ignores information contained in allele frequencies and has low
power. To compromise between the two, we then propose two new test statistics, the
expected identity by descent (EIBD) and the adjusted identity by state (AIBS),
designed to retain the computational simplicity of IBS, while increasing power by
taking into account chance sharing of common alleles. To infer the relationships
suggested by the data, we propose a simple method for estimation of pairwise re-
lationships. We describe the implementation of all the methods as freely available
software. We perform simulations to compare the power of the methods, and we dis-
cuss the applications of our methods to several data sets collected for linkage studies.

The second part of the thesis considers a problem arising in the positional cloning

stage of genetic mapping, in which one seeks to identify particular genetic variants



affecting susceptibility to complex disease. We assume that a susceptibility locus has
been localized, via linkage analysis and fine mapping, to a rather small region of a
chromosome, and that many polymorphic sites have been identified and genotyped
in that region. A key question of interest is which site or combination of sites in
the region influences susceptibility to the trait. We develop here a novel statistical
approach to identify the polymorphisms whose genotypes could fully explain the
observed linkage to the region. Our approach is based on the observation that if a
particular site is the only site in the region that influences the trait, then conditional
on the genotypes at that site for the affected relatives, there should be no unexplained
over-sharing among the affecteds in the region. The information provided by this
analysis is different from that provided by tests of either linkage or association. We
focus on the affected sib-pair study design with single nucleotide polymorphism (SNP)
data, and we develop test statistics that are variations on the usual allele-sharing
methods used in linkage studies. Our method allows for a very general model for
how the site influences the trait, including epistasis with unlinked loci, correlated
environmental effects within families, and gene-environment interaction. We perform
hypothesis tests and derive a confidence set for the true causal polymorphic site,
under the assumption that there is only one site in the region influencing the trait. We
extend our method to larger sibships and apply it to an NIDDM1 data set (Horikawa
et al. 2000). Both simulation studies and data analysis show that our method can
have high power to reject non-causal SNPs, even when they are tightly linked and
in strong disequilibrium with the causal SNP. We also discuss the extensions of our
method to any set of affected relatives, to any type of causal polymorphism and to

multiple tightly-linked causal loci.

xi



Part 1

Detection of Pedigree Errors

Prior to Genetic Mapping Studies



Chapter 1

Introduction

1.1 Effects of pedigree errors on genetic mapping studies

To map genes or other genetic determinants for a trait or disease, the first step
in the process is to collect DNA data on a large number of loci (genetic markers)
throughout the genome and perform a coarse genome-wide search via linkage analysis.
Linkage analysis looks for regions of genome that are shared by affected relatives,
in excess of what is expected under the null hypothesis of no linkage. The excess
sharing is evaluated assuming a known pedigree that determines the relationships
among the affected individuals and sets the null distribution. However, a sampled
pedigree may contain errors. For example, putative full sibs could be half sibs if
there is a nonpaternity/nonmaternity, and two hypothesized unrelated individuals
could be first cousins if there is a lack of genealogical information. Other sources of
pedigree errors include switched samples, duplicated samples, unspecified adoptions
and matings between relatives, etc.

Unidentified pedigree errors can have serious consequences for linkage studies. If
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some individuals were more closely related than the pedigree indicated, then linkage
results could be exaggerated and the rate of false positives would be increased. If
some individuals were less closely related than the pedigree indicated, then evidence
for linkage could be decreased and the power to detect linkage would be reduced.
Boehnke and Cox (1997) illustrated the latter case through a sib-pair data set in
which 8 putative full-sib pairs were in fact half-sib pairs. They showed that evidence
for linkage was increased after the identification and correction of the misspecified

relationships.

1.2 From sib pairs to general pairwise relationships

Statistical methods for detecting misspecified relationships based on genotype
data have been developed mostly for data from sib-pair designs (Chakraborty and
Jin 1993a; Goring and Ott 1997; Boehnke and Cox 1997; Ehm and Wagner 1998;
Broman and Weber 1998; Olson 1999). Goéring and Ott (1997) and Boehnke and
Cox (1997) compute the likelihood of the observed genotype data for full or half-
sib pairs under the no-interference model. In the case when a sib pair has a single
typed parent, Goring and Ott (1997) also compute the likelihood conditional on
the genotype of the parent. The approach of Géring and Ott (1997) is Bayesian.
For each putative full-sib pair, they assign prior probabilities to the relationships
full-sib, half-sib and unrelated, and they compute the posterior probabilities of the
relationships given the data. (The Bayesian approach is discussed in McPeek 2001.)
The method of Boehnke and Cox (1997) is analogous to obtaining a point estimate.

They first calculate the likelihood of the observed genotype data for a putative full-sib
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pair, under each of a set of possible relationships, namely, full-sib, half-sib, unrelated
and MZ-twin. They then infer the true relationship for the pair by choosing the
one that maximizes the likelihood. Although relationship estimation is an essential
component of the problem, an additional critical component is the ability to determine
whether or not particular relationships are compatible with the observed genotype
data. In particular, the hypothesis testing approach is an important one, because the
relationship specified by the pedigree has a natural role as the null hypothesis. Ehm
and Wagner (1998) propose an approximately normally distributed statistic to test
for deviation from a reported relationship of full-sib pair. However, their test loses
power because the test statistic ignores the allele-frequency information contained in
the genotype data.

In this paper, we first extend the likelihood calculation of Géring and Ott (1997)
and Boehnke and Cox (1997), and the work of Ehm and Wagner (1998) to more
general relative pairs. We then develop new methods for both detection of pedigree
errors and estimation of pairwise relationships. Mapping studies are not restricted to
data from sib-pair designs, and families collected may have more than two generations
with various pedigree structures, e.g. those in the GAW 11 COGA data (Section 4.1).
A more extreme case is the Hutterite data (Section 4.2) in which there is only a single
family given by a 13-generation pedigree with about 1600 members in total. To detect
pedigree errors in such data, it is necessary to consider the problem of relationship
testing for more general relative pairs than sib pairs. We focus on studying pairwise
relationships in a pedigree. Compared to a joint analysis, our method may lose some
power. However, this pairwise approach results in much simpler implementations and

wider applications. In the case of the Hutterite data, it is computationally infeasible
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to directly analyze the whole pedigree. By breaking a pedigree into pairs, we can
also quickly locate the erroneous individuals in the pedigree and propose plausible
alternatives for the local structures.

In the next two sections, we introduce mathematical models for the segregation
and transmission of chromosomes. We begin with single locus inheritance and then
consider multiple loci jointly. The knowledge of how genetic material is passed down

through generations is essential to pedigree inference using genetic marker data.

1.3 Single locus inheritance

Genetic material is stored in the chromosomes of every cell. For humans, there
are 22 pairs of autosomal chromosomes and a pair of sex-linked chromosomes, with
XX for females and XY for males. The genetic material at each chromosomal locus
(a particular site on a pair of chromosomes) may be polymorphic, i.e. in different
states. The different states are called alleles. The two alleles at a given chromosomal
locus constitute a person’s genotype at that locus.

Given a locus for an individual, the Mendelian inheritance model specifies that
one allele was inherited from the father, and the other was inherited from the mother.
Each parent transmits only one of its two alleles to an offspring, each with probability
1/2. Consider each individual’s paternally- and maternally-inherited alleles as being
random variables. A set of alleles are said to be identical by state (IBS) if they are
of the same allelic type, and they are said to be identical by descent (IBD) if they
were inherited from the same ancestral allele. (Obviously, IBD implies IBS, ignoring

the possibility of mutations.) We illustrate the above description using Figure 1.1.
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mother’'s
al a3 al a3
sbl's sb?2's

Figure 1.1: Single locus Mendelian inheritance

In this example, at the given locus, the father has alleles al and a4, and the mother
has alleles a3 and a3. The arrows in the graph specify which alleles were transmitted
from the parents to the offspring. Among the four alleles of the two sibs, i.e. (al,
a3, al, a3), the two paternally-inherited al alleles are IBD (also IBS) because they
were both inherited from the same al allele of the father, while the two maternally-
inherited a3 alleles are IBS (not IBD) because they were inherited from different a3
alleles of the mother. In practice, such inheritance information (the arrows in the
graph) is often not available. There are two main types of missing information. First,
when the genotype of a single individual is collected by the usual method, it is not
possible to distinguish the paternally-inherited allele from the maternally-inherited
allele. Furthermore, not all loci will be typed for all individuals. In that case, the
IBD status may not be unambiguously determined. In the above example, if the
parents were not genotyped at the locus, then based on the genotype data for the
children, the IBD status could not be determined for either a1l allele or a3 allele.

The distribution of IBD states for a pair of individuals, p = (pg, p1,p2), Where
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po = P(0 alleles shared IBD by the pair), py = P(1 allele shared IBD by the pair),
and pg = P(2 alleles shared IBD by the pair), can be used to summarize pairwise rela-
tionships. For example p = (1/4,1/2,1/4) for a full-sib pair, while p = (1/2,1/2,0)
for a half-sib pair. Kinship coefficient ® is another possible summary of pairwise
relationships. Between two individuals 7z and j, ® is the probability that a randomly
selected allele from individual ¢ and a randomly selected allele from individual j are

IBD. Note that ® is a function of the IBD probabilities, ® = p1/4 + pa2/2.

1.4 Multiple locus inheritance

Meiosis is a division process during which an egg or a sperm cell is formed. One
important step in meiosis is the recombination or crossover between a pair of chromo-
somes. During meiosis, each pair of chromosomes first mingle together to exchange
genetic material according to a stochastic process, then they separate and transmit
only one chromosome strand in each egg or sperm to the next generation. The trans-
mitted chromosome strand is a mixture of the original two. Each child is a product
of two independent meioses corresponding to, respectively, the formation of a sperm
cell and the formation of an egg cell. Figure 1.2 illustrates the realizations of four
independent meioses, M1, M2, M3 and M4, present in a simple pedigree. (In the
pedigree graph, a square denotes a male, and a circle denotes a female. Individuals
whose parents are not in the graph are called founders, and individuals whose parents
are in the graph are called nonfounders.) The illustrated four meiosis are for the two
nonfounders, i.e. the two sibs. Figure 1.2 also shows genotype data at three different

loci for all the four individuals. Alleles at different loci along one chromosome strand



CHAPTER 1. INTRODUCTION

_alfflad . __a3

_b2 11 b3.___b2

el
b3

[op)

H - _ . haplotype

§
N
N
N
N
N
N
N
N
N
N
N
S
S
N
N
E
N
N
N
S
N
N
N
N
N
N
N
N
N
N
N
N
N
3
N
s
§

I > PR

alg Ha3.___al a3
Crossover

_--~ point
3| [ib3.___b2@ H b3

AR Hch. .4 cb_

M1 M3 M2 M4

Figure 1.2: Meioses, crossover and haplotype

2 () R I_,_
() [ ‘
hs(t) | S
ha(t) — t

crossover processes along the chromosome

J

D) (ﬁ LT r |__

t
IBD process along the chromosome

Figure 1.3: Crossover and IBD processes



CHAPTER 1. INTRODUCTION 9

constitute a haplotype, and alleles in the haplotype are said to be in phase. In prac-
tice, because it is not possible to distinguish the paternally-inherited allele from the
maternally-inherited allele based on the available genotype data at each locus, it is
difficult to determine the phase of alleles at different loci.

For a given realization of a meiosis (e.g. M4), a crossover point, as illustrated in
Figure 1.2, is defined to be the place where there is a switch between transmission
of the paternal DNA and transmission of the maternal DNA. Then we can define a
crossover process {I(t)}, where I(t) is an indicator, at location ¢ along the chromo-
some, of whether an offspring inherited a given parent’s paternal allele (I(¢) = 0) or
maternal allele (I(¢t) = 1). Note that the crossover processes for different chromo-
somes are assumed to be independent within a meiosis, and the crossover processes
for different meioses are also assumed to be independent. For chromosomes M1, M2,
M3 and M4 in Figure 1.2, Figure 1.3 depicts the corresponding crossover processes,
{1 ()}, {Im2(®)}, {Ipg(t)} and {Ip4(t)}. Consider two loci on a chromosome,
t1 and t9. Recombination between the two loci denotes the event that the alleles
at t1 and t9 were inherited from different origins (paternal or maternal alleles), i.e.
I(t1) = 0 and I(t3) = 1, or I(t;) = 1 and I(t9) = 0. For example, in Figure 1.2,
there is recombination between the two loci @ and b on chromosome M1. The recom-
bination fraction # between two loci is then defined to be the probability that there
is recombination between the two loci during a single meiosis. Under some mild as-
sumptions, it can be shown that § has an upper bound of 1/2 (see e.g. McPeek 1996).
6 = 1/2 between two loci implies that alleles at the loci segregate independently and
are unlinked. Linkage is characterized by # < 1/2. (f = 0 is called complete or

perfect linkage.)
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Various stochastic models have been proposed to describe the underlying crossover
process. The most commonly used one is called the Haldane no-interference model.
Under this model, the transition points of the crossover process {I(t)} form a Poisson
process with rate 1 per Morgan (a unit of genetic distance). Consequently, {I(¢)}
can be viewed as a continuous-time Markov chain on states 0 and 1, with ¢ corre-
sponding to genetic distance (in units of Morgans) along a chromosome. Morgan is
a measure of genetic distance, and it is defined so that the intensity of the process
is always 1. Functions that specify the relationships between genetic distance and
recombination fraction are called map functions. The Haldane no-interference model
implies a specific map function: § = (1 — e~24)/2, where d = |t] — t2|. Although the
Haldane no-interference model is commonly used in analysis, the actual data do con-
tain interference (Cobbs 1978; Stam 1979; Foss et al. 1993; McPeek and Speed 1995;
Zhao et al. 1995). It has been shown that the X2 model with parameter m provides
a reasonable fit to the real data. For humans, Lin and Speed (1996) estimated value
of m to be 4. This is discussed further in Section 2.2.4.

Consider a pedigree with f founders and n nonfounders (e.g. the simple pedigree
with 2 founders and 2 nonfounders in Figure 1.2). There are 2n meioses present in
the pedigree, two for each of the nonfounders. For the realization of the k;;, meiosis,
a corresponding crossover process {I;(t)} can be defined. The joint process {I(t)},
where I(t) = (I[1(t), I2(1), ..., Iop—1(t), T2, (1)), describes the outcomes of all meioses in
the pedigree, and it contains complete information on the inheritance pattern in that
pedigree. Under the Haldane no-interference model, {I(t)} would be a continuous-
time Markov random walk on the vertices of a 2n—dimensional hypercube (Donnelley

1983). For a particular location t*, I(t*) = (I1(t*), I2(t*), ..., lon—1(t*), L2 (t*)) is the
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inheritance vector defined by Lander and Green (1987).

To extend the idea of IBD states at a single locus for a pair of individuals, we can
define the IBD process {D(t)}, with D(t) giving the number of alleles shared IBD by
the pair at locus ¢ along a chromosome. Note that the IBD process {D(¢)} is com-
pletely determined by the joint inheritance process {I(t)}. Consider the full-sib pair
shown in Figure 1.2, with the corresponding crossover processes, {Inf1(¢)}, {Iv2(t)}s
{Ims3(t)}, {Ip4(t)} shown in Figure 1.3. Figure 1.3 (bottom part) illustrates the cor-
responding IBD process {D(t)} that is constructed from the joint inheritance process
{I(t)}, where I(t) = (Inpq(2), Ing2(t), Inig(t), Ing4(t))- In practice, neither the inheri-
tance process {I(t)} nor the IBD process {D(t)} is observed. In addition to the types
of incomplete data described in Section 1.3, the data available are generally discrete
observations, i.e. genotype data at a large number of loci for some individuals in a
pedigree. Figure 1.2 illustrates a simple case in which only three loci are genotyped
for all the individuals. In this example, based only on the genotype data for the
individuals, it cannot be discerned whether the two c4 alleles of the two sibs are IBS
or IBD, and it cannot be discerned whether the al, b2 and c4 alleles of the father are

in phase.



Chapter 2

Likelihood for a Pair of Individuals

2.1 Markov process

To determine whether a relationship is consistent with the observed genotype
data for a pair of individuals, it is useful to know the likelihood. To calculate the
likelihood, Goéring and Ott (1997) Boehnke and Cox (1997) assume that the IBD
process is Markov (with an implicit assumption of no interference) and apply a hidden
Markov method. However, except in a few simple cases, the IBD process for a pair of
individuals does not have the Markov property, even if no interference is assumed. For
such a pair, we propose a new process which we call the augmented Markov process,
that has the minimum number of states needed to both contain all the information
of the IBD process and satisfy the Markov property. In what follows, we first show
that the IBD process for a pair is generally not a Markov process, using a specific
example of an avuncular pair. We then construct minimal-state augmented Markov

processes for a number of types of relative pairs.

12
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2.1.1 1IBD process often non-Markov

For a pair of outbred relatives, call them individuals 1 and 2, the IBD process
{D¢} is a stochastic process giving the number of alleles shared IBD by the pair at

locus t along chromosomes. That is,

Dt = 1g11=g91 + 1g11=992 + 1g10=921 + Lg10=999>

where 1gli5g2j is the indicator of the event that allele ¢ of individual 1 and allele
j of individual 2 at locus t are IBD, with arbitrary labeling of the two alleles of
an individual. For outbred relative pairs, D; takes values in {0,1,2} for each t.
In order to calculate the likelihood in the cases of full-sib pairs and half-sib pairs,
Goring and Ott (1997) and Boehnke and Cox (1997) make the assumption that the
IBD process {D;} is Markov. However, as noted by Donnelly (1983) and Feingold
(1993), the Markov assumption for {D;} fails to hold in general, although it does
hold for a few special cases (MZ-twin, parent-offspring, unrelated, full-sib, half-sib
and grandparent-grandchild pairs), when no interference is assumed.

To understand why this is so, first consider an avuncular pair. Let the individuals
be labeled 1-6 as in Figure 2.1, with shaded individuals 3 and 6 forming the avuncular
pair. The Markov property requires that, conditional on the IBD value D4 for the
avuncular pair at a locus A, the IBD values at loci to the right of locus A are
independent of the IBD values at loci to the left of locus A. The violation of the
Markov property in the avuncular case arises as follows: conditional on the number
of alleles shared IBD by individuals 3 and 6 at locus A, if the A allele not transmitted
from individual 4 to individual 6 is shared IBD by individuals 3 and 4 (call this event

W4), then the chance is increased that individuals 3 and 6 share an allele IBD at
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Figure 2.1: Pedigree for an avuncular pair

any other locus linked to A. This induces a positive correlation in sharing at loci
linked to A, conditional on IBD sharing at A. By conditioning on the event W4 or
its complement, we show in Appendix A that if locus B is to the right of locus A and
locus C' is to the left of locus A, both linked to A, then for the avuncular pair 3 and

6,
P(Dc=1|Dy = j,Dp=1)> P(Dc =1|D4 = j), (2.1)

violating the Markov property. For other cases such as a first-cousin pair in Figure
2.3, the violation of the Markov property for { D;} can be shown using a generalization

of the argument for case of a avuncular pair.
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2.1.2 Augmented Markov process

In the case where the IBD process {D;} is not Markov, we propose to construct
an augmented process {A;} that is Markov under the assumption of no interference
and that contains all the information of the IBD process {D;}. For an avuncular
pair as shown in Figure 2.1, we give the state space for such an augmented Markov
process {A¢} in Table 2.1. The behavior of a Markov process is determined by its
Q-matrix, in which Q; = —v; and Q;; = v;P;j, where v; is the rate at which the
process leaves state ¢, and F;; is the probability that it then goes to state j, i.e. the
probability that, given the process is leaving state i, it makes a transition to state
j. The Q-matrix of the augmented Markov process {A;} for an avuncular pair is
given in Table 2.2, and with the transition probability matrix given in Table 2.3. In
Appendix B, we provide results for first-cousin, half-avuncular, half-first-cousin and

half-sib-plus-first-cousin pairs.

State label || IBD(3,4) ¢ | IBD(3,6) @
1 0 0
2 1 0
3 1 1
4 2 1

Table 2.1: State space of { A} for an avuncular pair

@ IBD(4, j) is the number of alleles shared IBD by individuals ¢ and j, where individ-

uals are labeled as in Figure 2.1.
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Current || Next state entered

state 1123 4
1 4122 0
2 21511 2
3 2111]-5 2
4 0212 -4

Table 2.2: Q-matrix of {A;} for an avuncular pair
Qi; = —v;, where v; is the rate (in terms of Morgans) at which the process leaves
state 7, and Q;; = v; P;;, where P;; is the probability that, given the process is leaving

state 7, it then makes a transition to state j. States are as labeled in Table 2.1.

Current State at 8 from current state
state 1 2 3 4
1 32 e e ¢*

2 o | (1—0)p2 + 092 | 092+ (1 - 0)¢? | v
3 v | 02+ (1—0)¢? | (1 —0)p + 092 | v
4 ¢? Ve b P>

Table 2.3: Transition probability matrix of {A;} for an avuncular pair

0 is the recombination fraction between two markers. § = (1 —e~2t)/2, where t is the
genetic distance (in units of Morgans) between the two markers. 1) = 6% + (1 — )2

and ¢ =1 —1 = 260(1 — 6). States are as labeled in Table 2.1.
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In general, under no interference, the augmented Markov process could be chosen
to be {A4}}, where A} is the inheritance vector at location ¢ as defined by Lander and
Green (1987) (i.e. I(t) described in Section 1.4), or {A}}, where A} is the equiva-
lence class of inheritance vectors at ¢ defined by Kruglyak et al. (1996). {A}'} can be
obtained by identifying inheritance vectors that differ only by interchanges of mater-
nal and paternal haplotypes within founders. The use of {A}} or {A}} provides an
automatic way to construct the augmented Markov process, though these processes
contain unnecessary information. (Note that the computational time for the likeli-
hood calculation using the hidden Markov model is proportional to (#states)2, SO
it is crucial to reduce the size of the state space of the Markov process used.) For
instance, for an avuncular pair, the state space of {Aé} is of size 64, and that for
{A}} is of size 8, while our augmented Markov process {4} requires only 4 states.
Similarly, for a first-cousin pair, the state space of {A}} is of size 256, that for {A”}
is of size 16, and that for {A;} is 7. In both cases, our augmented process {A;} has
the minimal number of states needed to both contain all the information of the IBD
process {D;} and satisfy the Markov property under no-interference assumption (see
McPeek 2001). Donnelly (1983) constructs similar minimal-state augmented pro-
cesses for a number of relationships, such as “my; generation descendant” and “sy,
cousin ¢ times removed.” The problem of implementing an automated method for
generating a minimal-state augmented Markov process for any pairwise relationship

is treated in McPeek (in press).
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2.2 Likelihood calculation using a hidden Markov model

The computation of the likelihood for a pair is strained by many problems such
as incomplete inheritance information for the pair, genotype data at many loci (hun-
dreds or thousands markers), possible genotyping errors in the data, etc. To make
the likelihood computation faster, we seek a hidden Markov model formulation for
the augmented Markov process. We first describe the likelihood calculation for an
outbred relative pair, under the assumption of no interference. We then discuss
the extensions of the likelihood calculation to allow inbred relationships, to incorpo-
rate genotyping errors, and to take into account interference. Finally, we consider
a Markov approximation to the IBD process to reduce the computational burden of

the likelihood.

2.2.1 Likelihood under the assumption of no interference

First consider outbred relationships. In the case of a full-sib pair, for which
the IBD process {D;} is Markov under no interference, Géring and Ott (1997) and
Boehnke and Cox (1997) use a hidden Markov model to calculate the probability
Pr(G1, G2, ...Gp,.), where ng is the number of markers on the cth chromosome, Gy,
is the genotype data for the pair at marker m, and the subscript R denotes that the
calculation of the probability is under the assumed relationship B. When the IBD
process for a pair is not Markov, the likelihood can still be calculated using the same
method, but a hidden Markov model is applied to the augmented Markov process
{A;} instead of the IBD process {D;}. The calculation, using the Baum forward

algorithm (Baum 1972), can be summarized as follows: (i) Define
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a1(j) = Pr(A1 = j), and
ar(j) = Pr(G1,Ga, ... ,Gp_1, Ay = j), for k > 1.

Note that {a1(j) = Pr(A1 = j) = m;} is just the stationary distribution of the
augmented Markov process {A;} for relationship R. The distribution can be inferred
from the transition matrix of the process. For instance, the stationary distribution
of {A;} for an avuncular pair is 7 = m9 = w3 = m4 = 1/4, and the stationary
distribution of { At} for a first-cousin pair is m = mg = 74 = 75 = 76 = W7 = %, T3 =

21{' (ii) Let the recursion formula be

p41(7) = D (@) Pr(Ap41 = i A = §) P(Gi|Af, = i),

)

where Pr(Agy1 = j|Ar = i) is the two-locus transition probability of the augmented
Markov process. In the cases of avuncular, first-cousin, half-avuncular and half-first-
cousin pairs, the probabilities are given, respectively, in Table 2.3, Table 2.6, Table 2.9
and Table 2.13 in Appendix A. Since the augmented Markov process { A;} contains all
the information of the IBD process {D;}, and the IBD status is sufficient to calculate
the conditional probability of genotype data, we obtain P(Gy|Ay = i) = P(G|Dy, =
the IBD status associated with state 7 of A). (In fact, given the IBD status at a
marker for a pair, the probability of genotype data does not depend on the assumed
relationship for the pair.) Thus, in the case of a outbred pair, the calculation of
P(GE| A = i) can be reduced to the calculation of P(G|Dy, = j) that is given in
Thompson (1975). (iii) The following summation gives the probability of genotype

data on the cth chromosome:

PR(G]_,G2, ,Gnc Zanc GnC|DnC —j)
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(iv) Because meioses on different chromosomes are independent, a multiplication over
all chromosomes gives the likelihood for genotype data throughout the genome under

relationship R,

Pp(genome-screen data) = II.Pr(G1,G2, ... ,Gn,.).

2.2.2 Inbred relative pairs

We now consider inbred relationships. In the case of an inbred relative pair, in-
stead of 3 IBD states (0, 1 or 2 alleles shared IBD), there are now 9 condensed identity
states (Jacquard 1970). Let the (unordered) genotype of individual 1 be (G, G2) and
let the (unordered) genotype of individual 2 be (G3,G4). Jacquard (1970) depicts
each of the condensed identity states by a graph with four nodes, each representing
one of G1,Ga, G3, Gy, with an edge present between G; and G if and only if G; and
G are IBD. See Figure 2.2. States S7, Sg, and Sg correspond to outbred states of 2,
1, and 0 alleles shared IBD, respectively. The other 6 identity states involve inbreed-
ing in one or both individuals. In principle, an augmented Markov process could be
derived, e.g. the process {A}} as described in Section 2.1.2, and a hidden Markov
method could be applied to {Ag’ } to calculate the likelihood. To perform this calcu-
lation, we need the distribution, given in Jacquard (1970), of genotype conditional
on the condensed identity state. For inbred pairs, the computational burden of the
likelihood calculation is generally high. The reason is that the algorithm used in our
likelihood calculation scales quadratically in the number of states of the Markov chain
and linearly in the number of markers. The size of the state space of {A4}} for a pair

of individuals is 227~/ , where n is the number of nonfounders and f is the number
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Figure 2.2: Nine condensed identity states
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of founders in the pedigree graph that connects the two individuals. (2n — f) tends
to be large for an inbred relative pair because they tend to have a larger number of
internal edges in their pedigree graph than do a outbred relative pair. For instance,
(2n— f) = 10 for siblings who are offspring from a second-cousin mating. For pairs in

the Hutterite pedigree, the likelihood calculation becomes computationally infeasible.

2.2.3 Likelihood in the presence of genotyping errors

Genotype data may be contaminated during various stages in the process of data
collection. As a result, some observed genotype data may not represent the true
underlying genetic information and may contain errors. For a MZ-twin pair or a
parent-offspring pair, a single genotyping error may result in 0 alleles shared IBS
at a particular marker, which leads to zero likelihood under the models for these
relationships. To make the likelihood calculation more robust to the presence of
genotyping errors for these two models, one can adjust the conditional distribution
of genotype data given the IBD status at the ky, marker, ¢; = P(Gp|Dy = 1),i €
{0,1,2}, so that ¢; and ¢ will always be non-zero (Broman and Weber 1998) .
Consider the random-genotype-error model in which we assume that genotype errors
occur independently with the same probability € across different alleles and different

markers. Then, in the likelihood calculation, we could replace ¢;, i € {0,1,2} with

*
Co - CO s

a* = (1-e%+(1—(1-e?e,

of = (1-6c+(1-(1-é¢?)0.
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In practice, the random-genotype-error model assumption may not hold, and the
true error rate is often unknown. Based on the results of Epstein et al. (2000),
it appears that the random-genotype-error model works adequately for detection of
pedigree errors from genome-screen data, and the likelihood approach is robust to
moderate misspecification of the genotype-error rate, as long as the assumed error

rate is not zero for MZ-twin and parent-offspring pairs.

2.2.4 Likelihood taking into account interference

The likelihood calculation under the no-interference assumption can be extended
to certain models allowing for interference, e.g. the x2 model. Under the x? interfer-
ence model, crossover points occur following a stationary renewal process with inter-
arrivals distributed as a mixture of x2 random variables. The y2 model can be viewed
as a hidden Markov model. By applying the Baum algorithm, the likelihood can be
obtained. To see this, note that for the y2 model with parameter m, the crossover
process on four strands can be obtained by first constructing a Poisson process with
rate 2(m + 1) in terms of genetic distance. Start at one end of the chromosome
and label the first point of the Poisson process X1, where X7 is chosen uniformly at
random from integers {0, 1,...,m}. For all 7 > 1, label the ith point of the process
(counting in order from the end of the chromosome) X; = X7 +¢ (mod m+1). Then
every point with label 0 is a crossover point for the four-strand process. To obtain
the single-strand crossover process, independently thin each point of the four-strand
crossover process with chance 1/2. Consider a single strand inherited by an offspring

from its parent. For a given chromosomal location t, define Z(t) = (X(¢),Y(t)),
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where X (t) = X; for C; <t < Cj41, C; being the position of the i, point of the
original Poisson(2(m + 1)) process, and Y (¢) = 1 if the offspring inherited the given
parent’s paternal DNA and 0 if the offspring inherited the given parent’s maternal
DNA at location t. Then Z(t) = (X (¢),Y(¢)) is a Markov chain with P(Next state
is (22,y2)| Current state is (z1,y1)) = P1 1) (52,42), Where P 5y 415 = 1 for
i €{0,1,...,m—1}, j € {0,1}, Py, j) 0,k = 1/2 for j,k € {0,1}, and all other
entries are 0. The leaving rate for each state is 2(m + 1). The observed data give
partial information on Y'(¢) only. Thus, the Markov chain Z(t) = (X (¢),Y(¢)) is
hidden. Now consider a pair of individuals in a pedigree. Define such a hidden
Markov chain for each meiosis in the pedigree, and consider the product Markov
chain (Z1(t), ..., Zn(t)) = (X1(t), Y1(?), ., Xn(t), Yn(t)), where Z;(t) = (X;(t), Yi(t))
is the Markov chain for the sth meiosis in the pedigree, and there are n meioses
in total. Since the meioses are independent, the transition probability matrix is the
n-fold Kronecker product of the transition probability matrix for a single meiosis.
If genotype data for the pair of individuals is observed, then in principle the Baum
algorithm can be applied to the product Markov chain to calculate the likelihood.
As in Kruglyak et al. (1996), a reduction in dimensionality could be achieved by
identifying states that differ by one or more interchanges of founders’ paternally and

maternally inherited haplotypes.

2.2.5 Likelihood approximation

To reduce the computational burden of the likelihood, one strategy is to ap-

proximate the IBD process {D;} by a Markov process {Bt}, with the probability
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PRr(Dmo = j|Dmy = i) used as the transition probability for {B;}, where m; and
mg label adjacent markers. That is, { B¢} is a Markov chain on a set of markers, with
Pp(Bm; = i) = Pgp(Dmy = 1) for all markers m1, and Pp(Bmy = j|Bmy = i) =
PRp(Dmg = j|Dmy = i) for all adjacent markers mj and mg. This would eliminate
the need to construct augmented Markov processes for general pairwise relationships.
The likelihood would then be calculated using {B;} as the hidden Markov chain. Al-
gorithms for calculating Pr(Dmy = j|Dmy = i) for some outbred relationships are
discussed in Denniston (1975), Thompson (1988) and Tiwari and Elston (1999). More
generally, the probabilities can be determined from {A4}} or {A4}'}. Explicit formulae
are derived by Bishop and Williamson (1990) for full-sib, half-sib, parent-offspring,
grandparent-grandchild, avuncular and first-cousin pairs. We give the probabilities in
Appendix A for half-avuncular, half-first-cousin and half-sib-plus-first-cousin pairs.
Note that MZ-twin, parent-offspring and unrelated pairs have degenerate IBD pro-
cesses, i.e. these processes are constant everywhere: P(Dp, = 2|Dpy, = 2) = 1,
P(Dpmy = 1|Dpy = 1) = 1 and P(Dpy = 0[Dpy = 0) = 1 for the three cases
respectively.

For avuncular, first-cousin, half-avuncular, half-first-cousin and half-sib-plus-first-
cousin pairs, we perform simulation to compare the likelihood calculated using the
augmented Markov process (correct likelihood) with the incorrect likelihood obtained
using the Markov approximation to the IBD process as describe above. Our simu-
lation consists of 10° replicates for each of the five relationships considered, using a
realistic set of 300 microsatellite markers from the Marshfield map (Broman et al.
1998). These markers are unevenly spaced along the genome (excluding sex chro-

mosomes), and they have different allele frequency distributions. Out of the 10°
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replicates, the maximum relative errors of the likelihood using the Markov approxi-
mation are, respectively, 1.2 x 1074, 1.7x 1074, 6.1x 1074, 8.1x 10™% and 6.9 x 10~4
for the five relationships. This suggests that, at least for the cases considered, the
Markov approximation to the likelihood is adequate. The theoretical basis of this

result for general pairwise relationships needs to be examined.

2.3 Appendix A

To see that the avuncular, first-cousin, half-sib, half-first-cousin, half-sib-plus-
first-cousin IBD processes are not Markov, it would suffice to provide a counterexam-
ple in each case. However, in order to understand the augmented Markov processes
we introduce, it is necessary to understand the nature of the violation of the Markov
property, which we now describe in more detail.

First consider the avuncular case. Suppose the genotypes at locus A are as given
in Figure 2.1, where the maternally inherited allele of individual 4, a;, is either
as or a4. Here, the avuncular pair of individuals 3 and 6 share 0 alleles IBD at
locus A. Consider a nearby locus B to the right of locus A, linked to A. We are
interested the distribution of the number of alleles shared IBD by individuals 3 and 6
at locus B conditional on the genotype information at locus A. We make the relatively
weak assumption that the crossover process is a regular stationary point process,
with chiasma interference permitted but with no chromatid interference, that is, the
choices of chromatid strands for different crossovers are independent and uniform. In
the example shown in Figure 2.1, if a; is ag, i.e. if the allele not transmitted from 4

to 6 is shared IBD by individuals 3 and 4, then the event of 1 allele shared IBD by
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the avuncular pair at locus B may be achieved by a single crossover in any one of
3 meioses: the meioses involving transmission of genetic material from individual 1
to individual 3, 1 to 4, or 4 to 6. If a; is a4, i.e. if the allele not transmitted from 4
to 6 is not shared IBD between individuals 3 and 4, then the same event of 1 allele
shared IBD by the avuncular pair at locus B may be achieved by a single crossover
in either of 2 meioses: 1 to 3, or 1 to 4. Thus, the instantaneous rate of transition
at A from 0 IBD to 1 IBD for the avuncular pair is 3 if a; = a3 and 2 if a; = aq4.
This suggests that in the example shown in Figure 2.1, if we condition on all the
allele information at locus A, then the distribution of the number of alleles shared
IBD by the avuncular pair at B depends on a;, that is, it depends on whether the
A allele not transmitted from individual 4 to individual 6 is shared IBD between
individuals 3 and 4. In fact, letting D 4 and Dpg be the number of alleles shared IBD
by individuals 3 and 6 at loci A and B, letting WW4 denote the event that the A allele
not transmitted from individual 4 to individual 6 is shared IBD between individuals
3 and 4, and letting W9 denote the complementary event to Wy, we have that
P(Dp =1|Dy = j,W4) > P(Dp = 1|D4 = j, W) when A and B are linked. This
inequality can be deduced from the transition probabilities given in Table 2.3, along
with the fact that 20(1 —6) < 62 + (1 — )2 for 0 < # < 1/2. Immediate consequences
of this inequality are

(i) P(Dp =1|D4 = j,Wa4) > P(Dp =1|Dy = j),

(ii) P(Dp =0|D4 = j,W4) < P(Dp =0|D4 = j, W}),

(iii) P(Dp = 0|Dy = j) > P(Dp = 0[D4 = j, Wa).
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Using (i) and (iii), we have that

P(Wy|Dy=j,Dp=1)
= P(Wy,Dp=1|Dy=j)/P(Dp=1|Dy =j)
= P(Dp=1|Dg=j,Wa)PWa|Dg =j)/P(Dp=1|Dyg =)
> P(Dp=0[Dg=j,Wa)PWy|Dyg=j)/P(Dp=0|Dg =)

= PWy|lDp =0,D4 = j).

This implies (iv) P(Wy|Dy4 = j,Dp = 1) > P(Wy4|Dy4 = j). Thus, conditional on
the number of alleles shared IBD by the avuncular pair at locus A, the probability
that Wy occurs is increased if the IBD sharing by the avuncular pair is 1 at a nearby
locus B. Suppose B is to the right of A, and let C' be another nearby locus to the
left of A. Then using (iv) and the fact that (W, D) is Markov, we have that

P(Dg=1|Dy =j,Dp =1)

= P(D¢=1|Dg=j,Wa,Dp=1)PWy|Dy =j,Dp=1)
+P(Dc =1|Dy = j,W4, D = 1)P(W4|D4 = j, D = 1)

= P(Dg =1|Dg=jWa)P(Wa|lDs=j,Dp=1)
+P(Dg =1|Dy = jW3)[L — POW4|D4 = j, Dp = 1)]

= P(Dc=1|Dyg=j,W3) +[P(Dc =1|Dg = j,Wa4)
—P(Dg = 1|D 4 = j, W3)IPWa|D4 = j,Dp = 1)

> P(Dg=1Dg=3j,W3) +[P(Dc=1/Da=j,Wa)
—P(Dg = 1Dy = j,W3)[P(W4|D4 = j)

= P(Dc =1|Dyg =j).
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This shows inequality (2.1) in Section , in violation of the Markov property. The
proof for other cases such as a first-cousin pair follows, using a generalization of this

argument.

2.4 Appendix B

In this appendix, we derive the minimal-state augmented Markov processes { A;}
for first-cousin, half-avuncular, half-first-cousin and half-sib-plus-first-cousin pairs.
For each relative pair, we first illustrate the relevant pedigree structure using a graph
in which the shaded two individuals have the relationship of interest. For the first
three relative pairs, we then give the state space, Q-matrix and transition probability
matrix of the augmented Markov process {A;} for that pair. We also calculate the
transition probabilities of the IBD processes {D;} for these pairs. These probabili-
ties are used in Section 2.2.5 and are need for Section 3.1. Note that the augmented
Markov process for a half-sib-plus-first-cousin pair can be viewed as a combination
of two independent processes: the Markov IBD process for a half-sib pair and the
augmented Markov process for a first-cousin pair. Thus, we do not show the state
space, Q-matrix and transition probability matrix of the augmented Markov process
for this relationship. We define the notation used in this appendix: {A;} is the
minimal-state augmented Markov process, { D;} is the IBD process, 6 is the recombi-
nation fraction between two loci, ¢ is genetic distance (in units of Morgans) between
the loci, # = (1 —e™2))/2, v = 02 + (1 —0)2, ¢ = 1 — ¢, Qi = —vj, where v; is
the rate (in terms of Morgans) at which the process leaves state 7, and Q;; = v; F;;,

where P;; is the probability that the process then makes a transition to state j.
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Figure 2.3: Pedigree for a first-cousin pair

State label || IBD(3,4) @ | IBD(5,6) @ | G(5,6) °
1 0 0 0
2 0 0 1
3 1 0 0
4 1 0 1
5 1 1 1
6 2 0 0
7 2 1 1

Table 2.4: State space of {A;}for a first-cousin pair

@ IBD(4, j) is the number of alleles shared IBD by individuals 7 and j.

b G(5,6) is the indicator of the event that the allele inherited by individual 5 from

individual 3 and the allele inherited by individual 6 from individual 4 are both de-

scended from individual 1 or both descended from individual 2, i.e. that they are

both from the same grandparent. Individuals are labeled as in Figure 2.3.
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Current Next state entered
state 1121314567
1 6,12(4]0[010]0
2 216022010
3 210161 (1]2]0
4 0122 ]-6[0|0]?2
5 0(2(2]0]-6|0]2
6 0/0[4]0|0|-6]2
7 00|02 |2|2]-6

Table 2.5: Q-matrix of {A;} for a first-cousin pair
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[ ]
3

Figure 2.4: Pedigree for a half-avuncular pair

State label | IBD(4,5) @ | G(7) ® | IBD(4,7) @
1 0 0 0
2 0 1 0
3 1 0 0
4 1 1 1

Table 2.7: State space of { A }for a half-avuncular pair

@ IBD(4, j) is the number of alleles shared IBD by individuals 7 and j.

33

b G(7) is the indicator of the event that the allele inherited by individual 7 from

individual 5 is descended from individual 1. Individuals are labeled as in Figure 2.4.
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Current || Next state entered
state 1123 4
1 B30 12 0
2 11-3]0 2
3 2101-3 1
4 01211 -3

Table 2.8: Q-matrix of {A;} for a half-avuncular pair

Current State at 0 from current state
state 1 2 3 4
1 [a-0g| 6 |(1-0s 0
2 0y | (1=0w | 06 | (1—0)¢
3 |a-0s| 66 |[(-0w| o
4 06 | (10| v |(L-0)w

Table 2.9: Transition probability matrix of {A;} for a half-avuncular pair

Current IBD state at @ from current IBD state
IBD state 0 1
0 2+1p 11— Pp)

Table 2.10: Transition probability matrix of {D;} for a half-avuncular pair

P1=01- 9)3 + 92(1 —6).

34
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[O—1

2 1 3

Figure 2.5: Pedigree for a half-first-cousin pair

State label || IBD(4,5) ¢ | G(8,9) ? | IBD(8,9) @
1 0 0 0
2 0 1 0
3 0 2 0
4 1 0 0
5 1 1 0
6 1 2 1

Table 2.11: State space of { A }for a half-first-cousin pair

@ IBD(4, j) is the number of alleles shared IBD by individuals 7 and j.

b G(8,9) is the sum of two indicator functions: the indicator of the event that the
allele inherited by individual 8 from individual 4 is descended from individual 1 and
the indicator of the event that the allele inherited by individual 9 from individual 5
is descended from individual 1. That is, if they are both from individual 1, G(8,9) =
2, if none are from individual 1, G(8,9) = 0, otherwise G(8,9) = 1. Individuals are

labeled as in Figure 2.5.



Current Next state entered
state 1121314156
1 4121012 ]0]0
2 11411020
3 0121|4002
4 2101041210
) 0(2(0]1]4]1
6 0(0(2]0]2]|-4

CHAPTER 2. LIKELIHOOD FOR A PAIR OF INDIVIDUALS

Table 2.12: Q-matrix of {A} for a half-first-cousin pair

Current State at 8 from current state

state 1 2 3 4 5 6

1 (=02 [y | 6% | (1-0)2%|¢*| 6%
2 | 0(1=0)¢ | ¥ |01 —0)y | 01 —0)¢ | po | 0(1—0)¢
3 02 Yo | 1=0)2 | 0% | ¢* | (1-0)%
4 || (=02 | ¢* | 0% |(1-0% vo| 6%
5 | 0(1—0)6 | o | 0(1—0)p | 0(1—0)p | v | O(1—0)
6 0% | ¢* | (1-0)20 | 6% |yo| (1-0)%

Table 2.13: Transition probability matrix of {A;} for a half-first-cousin pair

36
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Current IBD state at @ from current IBD state
IBD state 0 1
0 S§+1ipy 11— Pn)
1 1-P1q Py

Table 2.14: Transition probability matrix of {D;} for a half-first-cousin pair

P1=01- 9)4 + 92(1 - 0)2.

O

O

Figure 2.6: Pedigree for a half-sib-plus-first-cousin pair
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Chapter 3

Error Detection and Relationship

Estimation

3.1 Tests for detection of misspecified relationships

We first consider a likelihood approach and define a test statistic that is the max-
imized log-likelihood ratio (M LLR). Although the M LLR test has high power, it
is computationally intensive. As alternatives, we propose new tests based on the
identity by state (IBS), expected identity by descent (EIBD) and adjusted identity
by state (AIBS) statistics. The test statistic IBS is a modification of that of Ehm
and Wagner (1998). Compared to the M LLR test, the IBS test is easy to perform,
but it loses power by ignoring the information contained in allele frequencies. EIBD
and AIBS are designed to correct for chance sharing of common alleles, while re-
taining the computational simplicity of /BS. We develop these tests in the context
of outbred relationships. In Appendix C, we discuss their extensions to the case of

an inbred relative pair.
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3.1.1 The MLLR test

Let L be the likelihood of genotype data for a pair of individuals with an assumed

relationship R, that is,
Lp = P(genotype data for a pair | relationship R).

Given the Markov or augmented Markov process for a relationship, the likelihood
can be calculated as described in the previous chapter. For a pair of individuals with
null relationship Ry, in order to test R, against a specific alternative relationship Ry
(e.g. Hy: the full-sib relationship; Hy: the half-sib relationship), we can calculate the
likelihoods Lg, and Lg, and consider the likelihood ratio test. The test statistic

could be the log-likelihood ratio (LLR)
LLR = log(Lg,) —log(Lg,)-

However, in practice, we often do not have a specific alternative relationship in mind.
For instance, putative full sibs could be half sibs due to nonpaternity /nonmaternity,
unrelated individuals due to adoption or MZ twins (monozygotic twins). In that case,
we can consider a set of relationships A and test R, against A\ R,. The test statistic

could be the maximized log-likelihood ratio (M LLR),
MLLR =log(L4) —log(Lg,),

L_A = maxReA\ROLR.
The statistic M LLR has a rather skewed distribution, and it requires simulation to

assess significance. The empirical p-value of the M LLR test can be calculated by

simulating genotype data under the null relationship.
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The test statistic M LLR depends on the particular set A considered. In order for
the test to have high power, it is desirable that the true relationship for the pair to be
tested is included in A. However, for each relationship R € A, we need to augment
a Markov process and apply a hidden Markov model to calculate the likelihood. For
data in which thousands of pairs are to be examined, considering all possible pairwise
relationships may not be computationally feasible. To implement the M LLR test for
outbred pedigrees, We take A to include 11 relationships: MZ-twin, parent-offspring,
full-sib, half-sib-plus-first-cousin (Figure 2.6), half-sib, grandparent-grandchild, avun-
cular (Figure 2.1), first-cousin (Figure 2.3), half-avuncular (Figure 2.4), half-first-
cousin (Figure 2.5) and unrelated. Based on our experience with data analysis, the
majority of pairs in a typical pedigree collected for linkage studies fit into these 11
relationships (Chapter 4). Other relationships may be approximated by those in .A.
For instance, the first-cousin-once-removed relationship is well-approximated by the
half-first-cousin relationship. Note that one may detect a misspecified relationship

using the M LLR test, even when the true relationship is not in A.

3.1.2 The IBS test

Ehm and Wagner (1998) propose a simple test statistic, which we call IBS’, based
the number of alleles shared IBS: IBS’ = ¥, X5, /2, where X, is the number of alleles
shared IBS by a pair at marker m. IBS’ is approximately normally distributed if
it is applied to a large number of markers. In the case of a full-sib pair, Ehm and
Wagner (1998) describe the calculation of the null mean and variance of IBS’ by

conditioning on the mating type of the parents. For more general outbred pairs, we
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consider the statistic
1 n
IBS = — D X,
m=1

where n is the total number of markers, and X, is as defined above. We verify
by simulations that the normal approximation works well for assessing significance
of IBS, when genotype data are from a genome-screen. To calculate the null mean
ER,[IBS] and the null variance Varg, (IBS), we develop a method that is applicable
to non-sib pairs. Let (f1, f2,-- ., f7) be the frequency distribution of [ alleles at marker
m. In addition to the null IBD probabilities p; = Pg,(Dm = i), i € {0,1,2}, the
calculation of Ep [IBS] and Varg,(IBS) requires the following probabilities, valid

for any outbred pair:

where my # mao, il,i2 € {0,1,2}. The null two-locus IBD transition probabilities
PR,(Dmy = i2|Dpy = il), il,i2 € {0,1,2} are also needed. The calculation of
PR(Dmeg|Dmy) for general relationships is discussed in Section 2.2.5. In particular,
the probabilities for full-sib, half-sib, parent-offspring, grandparent-grandchild, avun-
cular and first-cousin pairs are given in Table 1 of Bishop and Williamson (1990).

We have derived the probabilities for for half-avuncular, half-first-cousin and half-
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sib-plus-first-cousin pairs. The results are shown, respectively, in Table 2.10, Table
2.14 and Table 2.15. (Note that P(Dp, = 2|Dpy = 2) = 1 for MZ-twin pairs,
P(Dpg = 1|Dppy = 1) = 1 for parent-offspring pairs, and P(Dpy = 0[Dppy =0) = 1

for unrelated pairs.) Given the above probabilities, we have

ER,[IBS] = ZZZM (Xm = j|Dm = 1),

mleJO

n n 2 2 2 2
Varg,(IBS) = % Y3333 > j142pin x PRy (D = 2| Diny = i1)x
=1mg= i2=0j1=04j2=0

m1=1m9=1i1=04
P(Xmy = j1| Dy = i1) X (P(Xmgy = j2| Dy = 7;2))I(m1¢m2)] — Eg,|IBS)?,

where I{m1 # ma} is the indicator of the event {my # ma}.

3.1.3 The EIBD and AIBS tests

While the M LLR test has high power, its drawbacks include the need to construct
Markov processes for all relationships considered in A and implement a separate
hidden Markov calculation for each, and the need for simulation to assess significance.
Thus, the M LLR test may be very cumbersome to use as a diagnostic tool. The IBS
test is much simpler computationally, but it loses power by ignoring chance sharing of
common alleles. Consider a marker with 2 alleles, a1 with frequency f;1 =1 — € and
a2 with frequency f,2 = € for € small, and consider two possible pairs of genotypes
(al al al al) and (a2 a2 a2 a2) for a pair of individuals. (In each case, the first
two alleles are genotype for one individual and the second two alleles are genotype

for the other individual.) Because al is a very common allele and a2 is an extremely
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rare allele, it is likely that two unrelated individuals have genotypes (al al al al)
and unlikely that they have genotypes (a2 a2 a2 a2). Thus, (a2 a2 a2 a2) suggests a
closer relationship than (al al al al) does. However, test statistic I BS = 2 for both
cases. Not surprisingly, the power of the test based on IBS is low.

To compromise between M LLR and I BS, we propose two new statistics designed
to retain the computational simplicity of IBS but to increase power by taking into
account chance sharing. The first test statistic, denoted EIBD, is the average of
the conditional expected number of alleles shared IBD by a pair of individuals at
each marker, conditional on the observed genotype data at that marker and the null

relationship for the pair,

1 n
EIBD = — % | ERy[Dm|Gnm,
m=1

where D, is the number of alleles shared IBD at marker m, G, is the genotype data
for the pair at marker m, n is the total number of markers, and the subscript R,
indicates that the expectation is calculated under the null relationship. In the case

of an outbred pair,

P(Gm|Dm, = 1)p1 + 2P (G| D, = 2)p2
>2i=0,1,2 P(Gm|Dm = i)p; ’

where p; = P (Dm = i), i € {0,1,2} are the null IBD probabilities for the

ERO [Dm‘Gm] =

pair. The probabilities P(Gpm|Dm = i), ¢ € {0,1,2} are given in Thompson (1975).
Now consider the previous example in which there are two different pairs of geno-
types, (al al al al) and (a2 a2 a2 a2) with fg1 = 1 — € and fa9 = € for e

small. Note that P((ai ai ai ai)|D = 0) = f%, P((ai ai ai ai)|D = 1) = f3., and

ai’ ai’
P((ai ai ai ai)|D = 2) = f%, i € {1,2}. Thus, ER,[Dm|(al al al al)] approaches

ai’

its null expected value of p; + 2p9 as € — 0, which is appropriate because observa-
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tion (al al al al) provides almost no information on the IBD sharing of the alleles.
In contrast, Eg,[Dm|(a2 a2 a2 a2)] — 2 as € — 0, because observation (a2 a2 a2
a2) provides almost complete information on the IBD sharing of the alleles. Our
simulations indicate that the normal distribution gives a close approximation to the
sampling distribution of EIBD when applied to genome-screen data. Thus, to assess
significance, one needs only to compute the null mean and variance of the statistic.

The null mean Ep [EIBD] has a simple close form,

where @ is the kinship coefficient defined in Section 1.3. The calculation of the
null variance Varg [EIBD] is very similar to that for /BS. We can think of
ER,(Dm|Gm) as a function of Gp,. Then we need the probabilities Pg,(Dm, =
i2| Dy = 11), 11,42 € {0, 1,2} as in the I BS case and the probabilities P(Gm|Dm =
i), 1 € {0,1,2}.

One possible drawback of EIBD is that, if the null relationship has ps = 0, then
ER,(Dmn|Gm) is restricted to lie between 0 and 1. This may give less than optimal
power if the true relationship has moderate ps. To avoid this problem, we also propose
an adjusted IBS statistic (AIBS), which is an average of Yy, over all markers m,

1 n
AIBS = - Z Y, where

m=1

_ ®R, . PP _
Ym = Sp,+A-Cp )i’ if Gm=10© j i k),j#k,

= 2Ry ®R, : e
Yin = §p 3(-6p,05 T g ra-dpyy; | Gm =07 i),

where f; is the frequency of allele 7, and ®p  is the kinship coefficient for the pair
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under the null relationship. If an allele are drawn at random from each individual’s
genotype at a given locus, the quantity ®p /(®g, + (1 — ®g,)f;) would represent
the probability that the two alleles are shared IBD given that they are shared IBS
for allele 7, conditional on the null relationship. Our simulations show that that the
normal approximation is quite satisfactory for assessing significance of AIBS. The
calculations of the null mean and variance of AIBS are very similar to those of IBS

and EFIBD, because Yy, can be thought of as a function of Gy,.

3.2 Power and robustness studies

We perform simulations to compare power of the MLLR, EIBD, AIBS and
IBS tests for detection of misspecified pairwise relationships. We also include in
the comparison the LLR test using the correct alternative relationship, which sets a
benchmark of close to optimal power that is not realistically achievable in prac-
tice when the correct alternative relationship is unknown. (Power of LLR used
here is slightly suboptimal because of the presence of interference, but we expect
the effect to be almost negligible. See Section 2.2.4 for the extension of the likeli-
hood calculation to the case of interference.) In our initial simulation, we consider
the following eleven relationships: MZ-twin, parent-offspring, full-sib, half-sib-plus-
first-cousin, half-sib, grandparent-grandchild, avuncular, first-cousin, half-avuncular,
half-first-cousin and unrelated. We simulate marker data from an autosomal genome-
screen for which we vary the allele frequencies and marker resolution. Our simulate
scenarios include panels of microsatellite markers equally spaced at recombination

fractions of 0.07, 0.15 and 0.25, with sex-averaged chromosome length taken from
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Broman et al. (1998), and with all markers having the allele frequency distribution,
(0.40, 0.20, 0.20, 0.05, 0.05, 0.05, 0.05). We also simulate single nucleotide polymor-
phisms (SNPs) equally spaced at recombination fractions of 0.01 and 0.07, with the
same allele frequency distribution, (0.7,0.3). The allele frequencies for these simu-
lated SNP and microsatellite panels are chosen so that the markers would be some-
what less informative than the ideal, but within the range of what might be typical.
Our results show that the conclusions about power comparisons across the statistics
depend very little on the assumptions about the allele frequency distributions. Our
final simulated marker panel is based on the markers actually typed in the GAW 11
COGA data (Section 4.1). This panel is more realistic because marker spacings are
unequal with an average intermarker recombination fraction of 0.13, allele frequency
distributions differ across markers, and some marker data are missing. We consider
the power of the hypothesis tests at significance levels of 0.05, 0.01, 0.005 and 0.001.
The significance level of 0.05 or 0.01 would be appropriate for a single hypothesis
test. However, in practice, we often need to check for pedigree errors in a moderate
number of pedigrees with a large number of pairs. This creates a problem of multiple
comparisons. To reduce the large number of false positives that would be expected, a
lower significance level is recommended. In that case, the significance level of 0.005 or
0.001 could be used to “flag” pairs that are problematic (discussed further in Chapter
4).

All simulations are performed using the x? interference model for crossovers with
interference with parameter m=4 for humans, corresponding to a gamma shape pa-
rameter of 5, as suggested by the results of Lin and Speed (1996). Although it is

convenient to assume no interference in the development and implementation of the
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testing methods, the actual data do contain interference. Thus, in order to give as
close an indication as possible of the performance of the methods on real data, we
simulate the data with interference. The number of replications used to assess the
power is 1 million. The five testing methods are analyzed on the same 1 million
data sets in each case, minimizing any effects of sampling variability. For the EIBD,
AIBS and IBS tests, the normal approximation is adequate to asses significance.
This does not hold for the M LLR test, for which simulation is required to assess the
empirical p-value. In that case, 10° realizations are generated. For the EIBD, AIBS
and IBS tests, we compare the p-values calculated from the normal approximation
to those calculated from the empirical null distributions and found them to be very
close (results not shown). We also found that the distributions of these test statistics
are approximately normal even when the null relationship is not the true relationship.

Figure 3.1 and Tables 3.1, 3.2 and 3.3 give some of the results of the power studies.
Figure 3.1 to show the power of the tests (at significance level 0.001) for one case, in
which the genotype data are simulated from the first-cousin relationship and the null
hypothesis is assumed to be the half-sib relationship, for three idealized maps and for
the COGA map. The idealized maps consist of microsatellite markers evenly spaced
at recombination fractions of 0.07, 0.15 and 0.25, with all markers having the allele
frequency distribution, (0.40,0.20,0.20,0.05,0.05,0.05,0.05). From Figure 3.1, it is
clear that the LLR and M LLR tests have the highest power, followed by the EIBD
and AIBS tests, with the I BS test having lower power than the others. Note that
the power achieved by the M LLR test is close to the optimal power set by the LLR
test. This ordering of power is true for most of the cases simulated. We point out

that although the I BS test has the lowest power among the tests considered, it can
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Figure 3.1: Power versus genome-screen resolution

be useful for quickly identifying MZ twins or duplicated samples. In those two cases,
the value of observed statistic I BS will be either exactly two, or just slightly below
two if genotyping errors occurred. The results are similar to those in Figure 3.1 if
the null of the first-cousin relationship is tested against the alternative of the half-sib
or avuncular relationship (see Table 3.1), or the null of the avuncular relationship
is tested against the alternative of the first-cousin relationship (results not shown).
Table 3.1 also gives power for testing the null of the first-cousin relationship against
the alternative of the grandparent-grandchild relationship for significance level 0.001.

The ordering of the five statistics in terms of their power is the same as above.
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Marker type Test Alternative (true) relationship

() statistic || half-sib grandparent-grandchild avuncular

SNP LLR .99 .99 .98

(.01) MLLR | .98 99 98

EIBD .95 91 .95

AIBS .89 .85 .89

IBS .88 .85 .89

microsatellite | LLR .96 .99 .95

(.07) MLLR || .96 98 95

EIBD 91 87 .92

AIBS .86 .82 87

IBS .79 .76 .79

COGA map LLR .82 .90 .81

(avg. .13) | MLLR | .82 88 80

EIBD .75 73 .76

AIBS .65 .63 .65

IBS .54 .54 .54

microsatellite | LLR 77 .86 .75

(.15) MLLR || .76 84 74

EIBD 71 .69 .72

AIBS .59 .58 .59

IBS 45 .46 45

microsatellite | LLR .49 .07 .48

(.25) MLLR || .48 56 47

EIBD A7 A7 A7

AIBS .35 .35 .34

IBS .23 .24 .23

SNP LLR .40 A48 .39

(.07) MLLR | .39 47 37

EIBD .36 37 .36

AIBS .19 .20 .18

IBS .18 .19 .18

Table 3.1: Power of tests based on LLR, MLLR, EIBD, AIBS and IBS

The null hypothesis of the tests is the full-cousin relationship. The number of replica-
tions used to assess the power is 1 million. The number of replications used to assess
the empirical p-values of LLR and MLLR is 10°. Significance level is 0.001. Mi-
crosatellite markers have allele frequency distribution (.40, .20, .20,.05,.05,.05,.05),
and SNPs have allele frequency distribution (.7,.3), and markers are equally spaced
with given recombination fraction # between adjacent pairs. GAW 11 COGA map
has an average marker spacing of about 0.13.
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The half-sib, avuncular and grandparent-grandchild relationships are similar in
that they have the same IBD probabilities, p = (pg, p1, p2) = (1/2,1/2,0). However,
the transition rate of the grandparent-grandchild IBD process is only 1/2 that of
half-sibs and 2/5 that of avuncular. (In each case, we define the transition rate to be
the rate of transition to IBD value 1 — 4 conditional on current IBD value i for the
stationary IBD process.) The LLR and M LLR tests are the only ones among the five
tests considered that take into account the information in the data on the transition
rate of the process. For each of the statistics EIBD, AIBS and I BS, its mean value
does not vary among the three relationships, although its variance does vary. Thus,
the tests based on these statistics have almost no power to distinguish among these
three relationships. The LLR and M LLR tests have some power to distinguish among
them based mainly on the different transition rates of the IBD processes. However,
as shown in Table 3.2, Even the most powerful LLR test has very low power in these
cases. Note that the power is higher when one in the pair of relationships (null or
alternative) is grandparent-grandchild than when neither relationship is grandparent-
grandchild. This is explained by the fact that the transition rate for the grandparent-
grandchild IBD process is very different from those for the avuncular and half-sib IBD
processes.

We find that the full-sib relationship is relatively easy to distinguish from the
other relationships, either as a null or as an alternative. Tables 3.3 show power
when the full-sib relationship is either the null or the alternative, for significance
level 0.001, for microsatellites with recombination fraction between adjacent markers
of 0.25 and for SNP’s with recombination fraction between adjacent markers of 0.07.

For lower significance levels or increased marker density, power is nearly perfect for
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all methods when the full-sib relationship is either the null or the alternative, so the
results are not shown. Note that when the alternative relationship is full-sib while the
null relationship has po = 0, EIBD performs worse than the other statistics. This
is because the conditional expected number of alleles shared IBD can never exceed 1
in that case. Even so, the power of FIBD in this case is very high, at least 88% for
all cases simulated.

The type of map used, SNP map, microsatellite map or the COGA map, does not
have a substantial impact on the power comparisons among the statistics. The power
results using SNPs with allele frequency distribution (0.7,0.3) are similar to those
using microsatellites at a lower density. Using SNPs at recombination fraction 0.01
generally gives a test with slightly more power than that using microsatellites at re-
combination fraction 0.07, while using SNPs at recombination fraction 0.07 generally
gives a test with slightly less power than that using microsatellites at recombination
fraction 0.25. When SNPs with allele frequency distribution (0.5, 0.5) are used, power
is slightly higher, but the increase is fairly small (results not shown). The results for
the COGA map, which has average intermarker recombination fraction of 0.13 and
different allele frequency distributions across markers, are quite similar to those for
the idealized microsatellite map with intermarker recombination fraction of 0.15.

In most of our simulations, we assume that allele frequencies and marker map
positions are known, whereas in practice, one would generally need to estimate these
from available genotype data. We perform simulations to study how robust each test
is to the misspecification of allele frequencies or genetic distances between markers.
Our preliminary results suggest that the M LLR test is more robust to the misspeci-
fied allele frequencies than are the FIBD, AIBS and I BS tests, but the latter three
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tests are more robust to the misspecified marker map positions than is the MLLR

test.

3.3 Relationship estimation

If the null relationship for a pair is rejected in a hypothesis test, it is of interest
to know what relationships are suggested by the observed genotype data for the pair.
One strategy is to create augmented Markov chains for a variety of relationships,
calculate the likelihood under each, and consider the relationships with the largest
likelihoods. However, one would need to first guess the correct relationship in order
to construct an augmented Markov for it. Furthermore, the need to specify and
implement a separate Markov process for each relationship considered would involve
a substantial investment of computational time. We propose a simpler strategy,
involving estimation of the probability distribution of the IBD states, i.e. estimate

p = (po,p1,p2). We estimate p by maximizing

Z log(L(Gm; p)),

where L(Gp,; p) is the likelihood of the genotype data at marker m in terms of p,
L(Gm;p) = poP(Gm|Dm = 0) + p1 P(Gm|Dm = 1) + pa P(Gm|Dm, = 2).

If the markers are unlinked, this estimate of p would be the maximum likelihood es-
timate (MLE) derived in Thompson (1975). Here we apply this procedure to linked
markers. The quantity Y " _; log(L(Gm; p)) can be quickly maximized by an applica-

tion of the EM algorithm. Where the current estimate of p is p(¥) = (pék), pgk), pgk)),
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p(()k) + pgk) + pgk) =1, we obtain the updated estimate by the following formula:

(k) n
pFtY) = p; 3" P(G| D =) /L(Gmi; p™).
m=1

As shown in Thompson (1986), under the assumption of no inbreeding, the constraint
p% > 4pop2 must be satisfied. The quantity Y " _; log(L(Gm; p)) could be maximized
subject to this constraint by first finding the maximizing p in the unconstrained case.
If the constraint is violated, then the condition p% = 4pgp2 is imposed and a one-
dimensional search algorithm is used. However, because the true relationship is not
known, one may want to use the unconstrained estimate to allow for the possibility
of inbreeding. We perform simulations to investigate the properties of this estimator
when applied to genome-screen data. Some of the results are given in Table 3.4. For
the relationships with po = 0, there is a slight bias in the estimates, amounting to
no more than about 5%. This bias is expected because one can estimate py only at
or above its actual value, never below, in those cases. For microsatellite markers at
recombination fraction 0.07, the bias is quite small. The standard deviations of the
estimates tend to be rather large at the marker resolutions considered. Thus, the
procedure may give only a rough idea of the true relationship. However, in some
cases, the estimate of p = (pg, p1,p2) can be very useful for proposing some likely
relationships for a pair. The proposed relationships can then be tested for fit to data.
For example, consider a case where the estimate of p for a putative full-sib pair is
(.463,.512,.025). The true value of p is (.25,.5,.25) for a full-sib pair and (.5, .5,0)
for a half-sib, avuncular or grandparent-grandchild pair, so it might be reasonable to

test whether these relationships are compatible with the observed genotype data for
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this putative full-sib pair. Note that, by inverting the hypothesis test, a confidence
set, of relationships compatible with the data for the given pair can be constructed

by including in the set all relationships not rejected.

3.4 Implementation

We have implemented all of the methods described in Sections 3.1 and 3.3 as
software consisted of a pair of C programs, PREST and ALTERTEST. This software
was developed in the hope that it will be useful for researchers who want to detect
pedigree errors quickly and effectively before carrying out their genetic mapping stud-
ies. The documentation of the software and the two programs are all freely available
on the web at http://galton.uchicago.edu/~mcpeek/software/prest. We de-
scribe the main functions of the two programs in Appendix D. Both programs have
been successfully applied to several data sets including the GAW 11 COGA data set
(Section 4.1), and the GAW 12 CSGA data set and GER data set (Sun, Abney and
McPeek, in press). The software is applicable to most of the data collected for linkage
studies, but it is not directly applicable to extreme data such as the Hutterites, in
which there are no pairs which fit into the relationships that have been implemented.
In that case, we used a graphical method based on the extended test statistic EIBD

(see Appendix C) to detect errors in the Hutterite pedigree (Section 4.2).
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Marker type Relationship Mean (standard deviation) of estimates
(6) PO p1 P2

SNP full-sib 251 (.045) 499 (.050)  .250 (.042)
(.01) half-sib 504 (.057) 488 (.060)  .008 (.011)
grandparent-grandchild || .505 (.068) .488 (.070)  .008 (.011)
avuncular 505 (.055) 488 (.057)  .007 (.011)
first-cousin 755 (.051) 238 (.054)  .007 (.010)
microsatellite full-sib 249 (.047) .500 (.052)  .251 (.044)
(.07) half-sib 502 (.060) 490 (.061)  .007 (.011)
grandparent-grandchild || .502 (.070) .491 (.071)  .007 (.011)
avuncular 503 (.057) .490 (.058)  .007 (.011)
first-cousin 752 (.054) .242 (.056)  .006 (.009)
COGA map full-sib 249 (.053) 501 (.062)  .250 (.048)
(avg. .13) half-sib 503 (.068) 487 (.071)  .009 (.014)
grandparent-grandchild || .504 (.077) .487 (.079)  .009 (.014)
avuncular 503 (.066) .487 (.069)  .009 (.014)
first-cousin 754 (.065) .238 (.067)  .008 (.012)
microsatellite full-sib 250 (.055) .500 (.064)  .250 (.048)
(.15) half-sib 503 (.070) .486 (.073)  .010 (.016)
grandparent-grandchild || .503 (.079) .486 (.081)  .010 (.016)
avuncular 504 (.068) .485 (.071)  .011 (.016)
first-cousin 756 (.069) .235 (.071)  .009 (.014)
microsatellite full-sib 250 (.065) .500 (.080)  .251 (.055)
(.25) half-sib 503 (.084) .483 (.088)  .013 (.021)
grandparent-grandchild || .504 (.090) .482 (.094) .014 (.021)
avuncular 505 (.083) .481 (.087)  .014 (.021)
first-cousin 758 (.082) .231 (.086)  .012 (.018)
SNP Full-sib 250 (.074) 500 (.097)  .250 (.059)
(.07) half-sib 510 (.093) 470 (.102)  .019 (.029)
grandparent-grandchild || .513 (.101) .468 (.110)  .020 (.029)
avuncular 513 (.093) .468 (.102)  .019 (.028)
first-cousin 766 (.094) .215 (.103)  .019 (.027)

Table 3.4: Relationship estimation results

Each mean of estimated IBD sharing probability is based on 10* simulated realiza-
tions, with the standard deviation of the estimate in parentheses. p; is the probability
of ¢ alleles shared IBD, ¢ = 0,1,2. Note: for details on marker type, see legend of
Table 3.1.
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3.5 Appendix C

In principle, all the methods described in Sections 3.1 and 3.3 can be extended
to the case of inbred relationships. The likelihood calculation for an outbred relative
pair described in Section 2.2.2 would allow construction of a likelihood ratio test
for outbred relationships. However, the likelihood approach is difficult for inbred
pedigrees, and it becomes computationally infeasible for the Hutterite pedigree.

In order to extend the definition of EIBD to inbreds, there is more than
one reasonable approach. Omne could define the of number of alleles shared IBD
for an inbred relative pair by defining states (S, ..., Sg) (see Figure 2.2) to have
(4,0,2,0,2,0,2,1,0) alleles shared IBD. Alternatively, one might prefer to define
states (S, ..., Sg) to have (2,0,1,0,1,0,2,1,0) alleles shared IBD. Then, one could
define EIBD to be

1 n
EIBD = — > ER,[Dm|Gm), where
m=1
_ 31 SiP(Gm|Din = Si)A

ER [Dm|Gm] = :
o S P(G|Dim = Si)A

where (Aq,...,Ag) are the null probabilities of the nine identity states (St,...,Sg)
for the pair. The probabilities P(Gp|Dm = S;), S; € {S1,...,S9} are given in
Jacquard (1970). In application, we choose to assign states (Si,...,S9) to have
(4,0,2,0,2,0,2,1,0) alleles shared IBD. This definition ensures that the equation

ER,[EIBD] = 4® holds as in the outbred case,

ER,[EIBD] = 4A1 + 2(A3 + A5 + A7) + Ag = 49,
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To extend the definition of IBS to inbreds, one could think of 9 IBS states analogous
to the 9 IBD states. Again, to apply the I BS score statistic to inbreds, one could
define the number of alleles shared IBS for inbred relative pairs by defining IBS states
(S1, ..., S9) to have (4,0,2,0,2,0,2,1,0) alleles shared IBS. However, if the level of
inbreeding is low, one may have more power by defining IBS states (51, ..., S9) to
have (2,0,1,0,1,0,2,1,0) alleles shared IBS. The definition of AIBS statistic for an
inbred relative pair is the same as that for the outbred case, with kinship coefficient
® replaced by Ay + (A3 + Az + A7)/2 + Ag/4. We note that, for a pair of inbred
individuals, the calculations of the null variances of test statistics /BS, FIBD and
AIBS are generally computationally intensive, and they becomes computationally
infeasible for pairs in the Hutterite pedigree.

To perform pairwise relationship estimation for inbred relative pairs, in principle,
we could estimate A = (Aq,...,Ag). However, the level of inbreeding is generally
low in human pedigrees, and genotype data may not provide enough information to
distinguish, for example between Ay and Ag. Thus, for inbred pairs, we estimate
combined parameters (also denoted as p; for simplicity): pg = Ag + Ayq + Ag + Ay,
p1 = Ag, and po = A1+ Az + Az + A7y, pg, p1 and pg can be estimated using the

same method described in Section 3.3.

3.6 Appendix D

We have implemented all of the methods described in Sections 3.1 and 3.3 as
software consisting of a pair of C programs, PREST and ALTERTEST. The software

is freely available at http://galton.uchicago.edu/~mcpeek/software/prest.
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The PREST program detects possible misspecified relationships in general out-
bred pedigrees. (“PREST” stands for Pedigree Relationship Statistical Test). First,
based on the information provided by the given pedigree(s), PREST identifies all
instances of parent-offspring, full-sib, half-sib-plus-first-cousin, half-sib, grandparent-
grandchild, avuncular, first-cousin, half-avuncular, half-first-cousin and unrelated
pairs within each pedigree. (The standard input format for pedigree data usually
does not specify MZ twins.) Then, PREST gives the user two options. As discussed
before, although the M LLR test has good power, one of its drawbacks is the need for
simulation to assess significance. In data such as the GAW 11 COGA data (Section
4.1), there may be thousands of pairs to be tested, and the M LLR test in that case
can be time-consuming and insufficient. For instance, for each pair in the COGA
data, the M LLR test using 10° simulated realizations takes approximately 5 minutes
on a Sun Ultra-2. In contrast, for each pair, the EIBD, AIBS and I BS tests using
the normal approximation take less than 80 milliseconds on the same machine. For
a more practical approach, one could use the FEIBD, AIBS and IBS tests as pre-
liminary screening tools to determine a subset of pairs, R, for which it is worthwhile
to perform the more time-consuming but powerful M LLR test, or do multiple stages
of MLLR simulations, with more replicates for more significant results. We have
implemented the first approach as a two-stage screening procedure, which can be
summarized as follows: In stage one, a putative parent-offspring pair is placed in R
if p1 < 0.9. A putatively unrelated pair is placed in R if the p-value of the IBS test
is < 0.2. (The EIBD and AIBS tests are not applicable to an unrelated pair.) Any
other type of relative pair is placed in R if at least one of the following holds: (i) the

p-value of the EIBD test is < 0.2; (ii) the p-value of the AIBS test is < 0.2; (iii)
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p1 > 0.75. In stage two, the M LLR test is applied to each pair in R. Thus, if option
one is chosen, P REST will perform stage one of the two-stage screening procedure as
described above. (In stage one, for each pair identified, the EIBD, AIBS and IBS
tests are performed, p = (pg, p1, p2) is estimated, and a selection of pairs based on the
combined testing and estimation results is applied.) If option two is chosen, PREST
will perform both stage one and stage two. (In stage two, for each pair that passed
the screening criteria in stage one, the M LLR test is performed.) Stage one can be
performed very quickly and can give excellent preliminary results. Stage two takes
longer but yields better power. The results of stage one can be used to estimate the
running time of stage two. PREST also identifies Mendelian errors through examina-
tion of every father-mother-offspring trio. However, the presence of Mendelian errors
is not directly taken into account in the hypothesis tests for detection of pedigree
errors. More discussions on Mendelian errors are in Section 4.3.

Currently, the relationships in the set A for the M LLR test are MZ-twin, parent-
offspring, full-sib, half-sib-plus-first-cousin, half-sib, grandparent-grandchild, avun-
cular, first-cousin, half-avuncular, half-first-cousin and unrelated. (The test statistic
MLLR would be the maximum of the log-likelihood over all relationships from this
set, excluding the null relationship, minus the null log-likelihood.) PREST uses a de-
fault value of 10° replicates for the calculation of the empirical p-value of the MLLR
test. For the cases of parent-offspring and MZ-twin pairs, PREST uses a default
value of € = .01 for the genotyping error rate to calculate the likelihood as described
in Section 2.2.3. These default values can be changed by the user.

If the null relationship for a pair, according to the pedigree, is rejected, it is

of interest to know what relationship(s) is compatible with the observed genotype
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data for the pair. To determine this, we have developed a program, ALTERTEST
(“ALTERTEST” stands for Alternative Test). For any pair of individuals chosen by
the user, ALTERTEST will perform the EIBD, AIBS, IBS and MLLR tests with
user-specified null hypothesis that is different from the one specified by the pedigree.
(In contrast, PREST automatically chooses the relationship specified by the pedigree
as the null hypothesis for the tests.) Moreover, ALTERTEST allows more than one
null hypothesis to be specified for each pair. The purpose of ALTERTEST is to allow
the user to convert the tests and construct a confidence set of relationships that
are consistent with the observed genotype data. Although ALTERTEST was first
constructed as a complement to PREST, it can be used independently of PREST.
If one has a null hypothesis in mind for some specific relative pair, one can run
ALTERTEST alone. In other cases, it is helpful to run PREST first, so that one can
identify questionable pairs, propose some likely relationships for the pairs based on the
estimate of p, and then one can apply ALTERTEST with the proposed relationships
as the null hypotheses for the pairs. ALTERTEST allows the 11 relationships listed
in the previous paragraph as the null hypotheses for all the tests and as the elements

in A for the MLLR test.



Chapter 4

Application and Discussion

4.1 The GAW 11 COGA data

The GAW 11 COGA data are collected for the purpose of mapping genes for sus-
ceptibility to alcohol dependence and related phenotypes (Begleiter et al. 1999). The
data consist of 105 pedigrees, generally 3- or 4-generation, with 1214 individuals in
total. The genome-screen includes 296 markers, of which 285 are autosomal markers
that are used in our analysis. Among the 1214 individuals, 992 are genotyped but
with missing data at some markers. Most of the individuals have > 250 markers
typed, but some individuals have as few as 37 markers typed. The average inter-
marker recombination fraction is about 0.13. Allele frequencies, estimated with the
USER M13 program (Boehnke 1991), are distributed with the data, as are marker
order and distances estimated with the CRIMAP program (Lander and Green 1987).

We analyze this data set using methods described in Chapter 3. Among the
5500 typed pairs (no restriction on the types of relationships), we identify and test

5381 pairs that fit into the relationships considered in A. These pairs are divided
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into 1037 parent-offspring, 1283 full-sib, 79 half-sib, 171 grandparent-grandchild, 942
avuncular, 350 first-cousin, 71 half-avuncular, 40 half-first-cousin and 1407 unrelated
pairs. The majority of these pairs have > 200 markers typed in common. The
minimum number of shared typed markers is 25. Among the pairs with at least 100
markers typed, there are 78 significant pairs at level 1079, which corresponds to a
level of 0.05 after Bonferroni correction. These 78 pairs occur in 11 pedigrees. Here
we discuss only two examples.

The first example illustrates a quite common case of pedigree errors. The pedigree
considered is shown in Figure 4.1. This is a family with a sibship of size 3. The starred
individuals (the parents) are not genotyped. Among the three sibs, a particular
individual 5, is detected to have relationship misfit with each of his two putative full
sibs, individuals 3 and 4. The estimates of p suggested that 5 could be half sibs with
3 and 4. The proposed half-sib relationships, for pair 3 and 4 and pair 4 and 5, are
not rejected. The corresponding test results are given in Table 4.1.

The second example is perhaps more interesting, from the point of view of the
methods developed here. In this example, the apparently misspecified relationships
could not have been detected by methods that check only full-sib or half-sib pairs.
Consider the family shown in Figure 4.2. Here we have removed extraneous individ-
uals from the pedigree and changed the sexes of some individuals to provide an extra
level of confidentiality for the family. The starred individuals are not typed, while all
other individuals have genotype data at > 250 markers. In this pedigree, significant
relationship misfit is detected for the reported first-cousin pair, individuals 15 and
16. The empirical p-value of the M LRT test is 0 assessed based on simulation with

109 replicates. The estimate of p = (po, p1,p2) is (.281,.555,.164), which is between
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Figure 4.1: Pedigree for the first example of pedigree errors in the COGA data

The starred individuals are untyped, and all others are genotyped at > 200 markers.

Pair @ || Ny 2 | Ry ¢ | p-value ¢ | p = (Po,p1,P2) || Rp © | p-value f
34 230 | f.sib .56 (.238 .525 .237)
35 | 234 | fsib 0 (.542 449 .009) | hsib | .42
45 237 | f.sib 0 (.463 .513 .025) || h.sib .69

Table 4.1: Testing results for the first example

@ Individuals are labeled as in Figure 4.1. b The number of markers typed in both

individuals. ¢ The null relationship specified by the pedigree. d The empirical p-value

(106 or 107 replicates) of the MLLR test of H, : Ro. ¢ The proposed relationship

suggested by p. / The empirical p-value (105 replicates) of the M LLR test of Hy : Rp.
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Figure 4.2: Pedigree for the second example of pedigree errors in the COGA data

The starred individuals are untyped, and all others are genotyped at > 250 markers.

half and full sibs. There is no relationship misfit between individuals 7 and 10, who
are the mothers of the cousins. Furthermore, there is no relationship misfit detected
between 7 and 15, between 10 and 16, between 16 and 17, between 8 and 16, etc.
One possible explanation consistent with the data is that individuals 6 and 9, who
are fathers of the cousins, are the same person, or, perhaps MZ twins. In that case,
individuals 15 and 16 would have the half-sib-plus-first-cousin relationship shown in
Figure 2.6, while all other relationships in the pedigree would be preserved. Note
that the null IBD probability distribution, (pg, p1,p2), for a half-sib-plus-first-cousin
pair is (.375,.5,.125). When then test the half-sib-plus-first-cousin relationship for
individuals 15 and 16, the empirical p-value of the M LRT test is 0.266. Since neither
6 nor 9 is typed, we are unable to directly test whether 6 and 9 are the same person

(or MZ twins).
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4.2 The Hutterite data

The Hutterite data are collected by Dr. Carole Ober and colleagues at the Univer-
sity of Chicago. The data consist of a single pedigree that has 13 generations and 1623
individuals. These individuals are descendants of 64 ancestors who migrated to what
is now South Dakota from Europe during the 1870s. They live on communal farms
and individuals are typically related through multiple lines of descent. The genome-
screen (excluding sex chromosomes) includes 365 markers, with average intermarker
recombination fraction of about 0.1. 806 individuals are genotyped, among which
most are typed at > 300 markers, but a few individuals are typed at < 5 markers.

This is an extremely complex and highly inbred pedigree. All individuals are
related to each other in complicated ways, and no pairs fit into the 11 outbred re-
lationships that we have implemented for the MLLR test. In fact, it is compu-
tationally infeasible to calculate the likelihood for pairs in the Hutterite pedigree,
therefore to perform the M LLR test. Instead, we propose a graphical method that
can be summarized as follows: the first step is to calculate, for each pair of individ-
uals, the probability distribution, (Aq, ..., Ag), of the nine condensed identity states,
(S1,52,...,59) illustrated in Figure 2.2. The kinship coefficient ® of the pair would
be A1 + (A3 + As + A7)/2 + Ag/4. The second step is to calculate the statistic
EIBD as described in Appendix C. Note that states (51,52, ...,.59) are assigned to
have (4,0,2,0,2,0,2,1,0) alleles shared IBD to ensure Er [EIBD] = 4®. We do not
calculate the variance of EIBD because of the computational difficulties due to the
complexity of the relationships in the Hutterites. The last step is to plot the observed

statistic EIBD for each pair vs. the kinship coefficient ® for that pair and look for
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apparent outliers in the graph. One could also calculate statistics AIBS and IBS,
and their null means as described in Appendix C. Then, one could plot the observed
statistics vs. the null means and look for apparent outliers. However, the computa-
tion of the null means of AIBS and IBS is intensive for pairs in the Hutterites. One
could plot ATBS or IBS vs. the kinship coefficient to look for outliers. Our analysis
in the Hutterites suggests that this approach works well. (The plot based on AIBS
is very close to that based on EIBD. The plot based on I BS is similar to that based
on FIBD, but the points on the former are much more dispersing than those on
the latter. This is expected, because the I BS statistic has substantially higher null
variance than the EIBD and ABS tests.)

To calculate (Aq,...,Ag) for an inbred pair, Karigl (1981) proposes a recursive
algorithm. Although this algorithm works well for moderate-size inbred pedigrees, it
is computationally difficult in the complex Hutterite pedigree. Abney, McPeek and
Ober (2000) modify the Karigl algorithm using a new computational strategy, so that
the calculation of (Aq, ..., Ag) for pairs in the Hutterites becomes feasible. Based on
the results of Abney, McPeek and Ober (2000), we obtain 236,597 pairs with > 50
markers typed in common, along with their probability distributions, (Aq,..., Ag).
We then calculate the statistic FIBD and the kinship coefficient ® for each pair,
and plot EIBD vs. ®. in Figure 4.3.

We find four obvious MZ-twin pairs or duplicated samples (marked with diamonds
in Figure 4.3), with all or nearly all the markers identical. We also observe that one
individual, denoted as 9 in Figure 4.4, has a number of relationship misfits (marked
with x’s in Figure 4.3). Figure 4.4 is a partial pedigree showing the position of 9

relative to some intermediate family members in the Hutterites. The starred indi-
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Figure 4.3: EIBD vs. kinship coefficient for pairs in the Hutterite data
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Figure 4.4: A partial pedigree for individual 9 in the Hutterite data

The starred individuals are untyped, and all others are genotyped at > 300 markers.

viduals are not typed, and all other individuals are typed at > 300 markers. Based
on the data, 9 shows a large amount of oversharing with individuals 12, 13 and 14,
compared to what would be expected based on the pedigree, i.e. kinship coefficient
®. The estimates of p = (pg, p1, p2) between 9 and each of the three individuals 12,
13 and 14 are all about (.008,.992,.000). In fact, at almost every marker, 9 shares
at least 1 allele IBS with 12, 13 and 14. This could be explained by the possibilities
that 9 and 11 are either the same person or MZ twins. There is also one inbred sib
pair (marked with a triangle in Figure 4.3) that shows a large amount of oversharing.
This pair is from an inbred sibship of size 5, and none of the other 9 pairwise inbred
sib pairs (also marked with triangles) show oversharing. The observed oversharing

could be due to chance.
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4.3 Discussion

Genome-screen data collected for linkage studies can provide considerable power to
detect pedigree errors. We have developed a variety of statistical tools for both error
detection and relationship estimation. Our methods can be applied to a wide range of
pedigree types, from general outbred pedigrees to complex inbred pedigrees. We have
implemented all the methods as freely available software, and we have successfully
detected a number of misspecified pairs in several data sets collected for linkage
studies.

In order to extend the likelihood calculations of Géring and Ott (1997) and
Boehnke and Cox (1997) to more general pairwise relationships for which the IBD
processes are not Markov, we derive augmented processes that contain the informa-
tion needed beyond IBD status in order to make the process Markov. Using these
augmented Markov processes as the basis of our likelihood calculation, we propose
the MLLR test, for which significance is assessed by simulation. Extensions of the
likelihood calculation that take into account interference, inbreeding and genotyping
errors are also discussed. We then extend the IBS test of Ehm and Wagner (1998)
to more general relative pairs. The implementation of the IBS test is much simpler
computationally than that of the M LLR test, but the IBS test loses power by not
taking into account chance sharing. As a compromise between the two, we propose
two new tests based on EIBD and AIBS. The power of the EIBD and AIBS tests
is not too much lower than that of the M LLR test, while they maintain the desirable
features of the IBS test.

Among the four tests considered, the M LLR test has the highest power to detect
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misspecified relationships. However, it requires one to specify a set of alternative
relationships and augment separate Markov process for each as well as for the null
relationship, while the EFIBD, AIBS and IBS tests do not need specification of
any alternative. Furthermore, assessment of significance for M LLR requires com-
putationally intensive simulation, while the normal approximation can be used for
EIBD, AIBS and IBS. For data in which there is a large number of pairs to
be tested, e.g. the GAW 11 COGA data, we propose two screening procedures, as
described in Appendix, of which one has been implemented in our software.

One way to make the application of M LLR feasible for a wider class of rela-
tionships is to use the Markov approximation to the likelihood proposed in Section
2.2.5. In that case, rather than construct an augmented Markov process for each null
and alternative relationship considered, one need only calculate the one-step condi-
tional IBD probabilities Pr(D,,,2 = j|Dy,1 = i), where Dy, is the number of alleles
shared IBD by a given pair at locus m. Our results indicated that at least for the
avuncular, first-cousin, half-avuncular, half-first-cousin and half-sib-plus-first-cousin
relationships, this approximation is adequate for relationship testing.

Although the current implementation of M LLR does not include likelihood cal-
culation for inbred relationships, it is still possible to detect instances of relative
marriage by use of our methods. If putatively unrelated parents are in fact related,
and if they are both typed, our methods have some power to detect their relation-
ship, with greater power for closer relationships (Sun, Abney and McPeek, in press).
Note that in this case, offspring genotypes provide no additional information on the
relatedness of the parents, conditional on the parental genotypes and the correct

paternity /maternity classification for the offspring. However, if both parents are un-
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typed, there can be low power to detect slight inbreeding in a sib pair. Power could
potentially be increased by the development of specially designed methods to detect
inbreeding in a sibship with one or both parents untyped.

For the test statistics EIBD, AIBS and IBS, one could consider trying to in-
crease power by weighting markers differently depending on their location in the
genome, giving isolated markers more weight than those in densely mapped regions,
because correlation between markers is a decreasing function of distance. Our pre-
liminary work on optimal weights shows that, at least in the complete data case, the
increase in power tends to be small (results not shown).

Currently, our methods do not use data from the sex chromosomes. Epstein et al.
(2000) show that X-linked data can provide some information to discriminate among
certain sex-specific types of second-degree relationships.

For a single hypothesis test, it is conventional to use a significance level of 0.05 or
0.01. For data such as the COGA data, there are a large number of pairs to be tested.
This creates a problem of multiple comparisons, e.g. even if the null hypothesis is true
in all cases, some fraction of the pairs would be expected to have p-values below 0.05.
To control the false positive rate to be, say 0.05, one could apply the Bonferroni
correction and use 0.05/N as the threshold, where N is the number of hypothesis
tests performed. In our study, pairs in a pedigree are not independent. Thus, this
correction is rather conservative. In the case where Mendelian errors have been
cleaned, one may be able to reduce the size of N by not counting the parent-offspring
pairs as discussed in Sun, Abney and McPeek (in press).

When a particular pair is observed to have significant deviation from its null

relationship, the pattern among other relatives can often confirm and point to a
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likely explanation for the finding. For instance, consider a family with a sibship
of size 3 (ID 1, ID 2 and ID 3) with parents untyped. If ID 1 are half-sib to the
other two, then one would expect to detect an error in two different pairs (ID 1,
ID 2) and (ID 1, ID 3), and not expect to see a relationship misfit in pair (ID 2,
ID 3). Example one from the COGA data discussed in Section 4.1 fits exactly this
case. Thus, when an apparent error is detected, by considering the pattern of results
among multiple pairs from the same pedigree, one many be able to distinguish a true
relationship error from chance rejection of the null. Ideally, the methods presented in
this paper should be extended to simultaneous inference on a number of relatives, e.g.,
an entire sibship could be considered simultaneously in a single likelihood analysis,
rather than separate consideration of pairwise relationships. However, as discussed
before, to quickly identify the problematic individuals in a pedigree and effectively
propose possible alternatives, a pairwise approach is useful. In some cases such as
the Hutterites, joint analysis may not be computationally feasible.

Errors that are incompatible with Mendelian inheritance are called Mendelian
errors, e.g. a father has genotype (al a2) and a mother has genotype (a2 a2), while
one of their offspring has genotype (a2 a3). The presence of Mendelian errors can be
the result of genotyping errors, but it may also be an indication of pedigree errors,
especially if the level of Mendelian errors is high. Mendelian errors can be detected
by existing software such as PedCheck (O’Connell and Weeks 1998). PREST is
developed specifically for the purpose of detecting those misspecified relationships
that are not already detected through routine checks for Mendelian errors. Thus, the
program does not do an exhaustive search for Mendelian errors. It does, however,

check for Mendelian errors through examination of every mother-father-child trio.



CHAPTER 4. APPLICATION AND DISCUSSION 76

Currently, Mendelian errors in a pedigree are not directly taken into account in the
hypothesis tests for pairs from that pedigree. However, their presence or absence and
overall level can provide important clues to pedigree errors and to the understanding
of their likely causes. Thus, to detect likely pedigree errors, it is useful to combine

the information on Mendelian errors with the hypothesis test results.
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Chapter 5

Introduction

5.1 Genetic mapping studies

To identify genetic variation affecting susceptibility to complex disease, there are
generally sequential stages involved, from coarse, genome-wide linkage analysis, to
fine mapping, and then to positional cloning. Linkage analysis typically looks for
genetic markers, among a large number of markers typed throughout the genome, at
which there is a significant deviation of the IBD allele-sharing by affected relatives
from what expected under the null hypothesis. (For the definitions of linkage and
IBD, and for further genetics background, see Sections 1.3 and 1.4.) The initial
detection of linkage takes the form of a hypothesis test, in which the null hypothesis
is that there is no linkage between the marker site to be tested and a susceptibility
locus for the trait. Although this approach is successful in performing a genome-wide
search, i.e. knowing approximately the location of the gene, it rarely provides map
resolution finer than 1 centiMorgan (cM) which corresponds to roughly 1 million

DNA base pairs (bp).
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Fine mapping utilizing linkage disequilibrium (LD) is often used to further narrow
down the region. LD refers to the lack of independence of alleles at loci on a hap-
lotype randomly sampled from a population. Imagine the disease originated, say 50
generations ago, from a single mutation at a locus in a halplotype with a unique set
of marker alleles. These marker alleles are likely to be co-inherited with the disease
allele by the affected individuals. Because recombination may occur among these
loci during each meiosis, as the haplotype is transmitted into the following genera-
tions, the chance that any given characteristic allele remains in the same haplotype
decreases with increasing genetic distance from the disease allele and with increasing
number of generations. When one collects data after 50 generations, alleles at many
of these marker loci may be independent of alleles at the disease locus, at the popu-
lation level, and only a very small region around the disease locus is likely to retain
the characteristic haplotype and remain in LD with the disease locus. Therefore, for
loci that are linked, unless the chance of recombination among them is extremely
small, they will not necessarily be in LD. This distinction between linkage and LD is
important in developing mapping strategies. Because linkage tends to operate over
greater chromosomal distances than LD, a sequential mapping strategy in which ini-
tial linkage analysis is followed by LD mapping, is often used. The map resolution
achieved by LD mapping is generally much higher than that obtained through linkage
analysis. Linkage disequilibrium between a pair of loci, 1 and 2, can be summarized
by D' = D/Dpag, if D > 0, or = D/Dypin, if D < 0, where D is the disequilib-
rium parameter defined as D = py — papp. (D = 0 implies linkage equilibrium.)
Dmaz = min(pa(1 — pp); (1 — pa)py); Dmin = maz(—papa, —(1 — pa)(l — pp)), Pab

is the probability of allele a at locus 1 and allele b at locus 2 occurring on the same
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chromosome strand, i.e. probability of haplotype ab, and p, and py, are the frequencies
of alleles a and b.

After a susceptibility locus has been localized to a rather small region by linkage
analysis and fine mapping, one may be able to identify one or several genes within that
region. Even if only one gene lies in the region, a large number of DNA polymorphic
sites may still exist. The goal of positional cloning is to identify the causal sites
among all the polymorphic sites in a gene. Ultimately, only biological study can
verify that certain genetic variation has the consequence of increasing susceptibility
to disease. However, statistical analysis of the available data can provide guidance
on which variants merit the next level of biological study. Many statistical methods
have been developed for the first two stages of the process, i.e. linkage analysis and
fine mapping. We focus on the third stage, and we describe here a new statistical

approach to guide positional cloning.

5.2 Positional cloning

Suppose that many polymorphic sites have been identified and genotyped in a
region showing strong linkage with a disease or trait. We assume that these sites
are all tightly linked and that they may be in linkage disequilibrium with each other
and with the susceptibility locus. We would ideally like to determine which site or
combination of sites in the region influences susceptibility to the trait. To accomplish
this, we need to distinguish the actual causal site from other sites that are merely
tightly linked or in linkage disequilibrium with the causal site.

Previous work on statistical methods for positional cloning of quantitative traits
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include Fulker et al. (1999), Cardon and Abecasis (2000), Soria et al. (2000), Sieg-
mund et al. (in press) and Blangero et al. (in press). The approach of Fulker et al.
(1999) is developed in the context of a variance components approach to combined
linkage and association analysis of quantitative traits in sib pairs. Fulker et al. (1999)
point out that testing linkage while simultaneously modeling association would pro-
vide a test of whether the putative quantitative trait locus (QTL) is a candidate or is
merely in disequilibrium with a trait locus. This idea is further developed by Cardon
and Abecasis (2000), who also consider the implications for the possible range of allele
frequencies for the candidate locus. In a similar context of quantitative trait analysis,
Soria et al. (2000) note that if there is only one causal variant in a region, then link-
age analysis that is performed conditional on the measured genotypes should yield
no evidence for linkage. They use this idea to argue that the prothrombin G20210A
mutation affects the function of the prothrombin gene. A similar approach is used
in simulation studies by Siegmund et al. (in press). Blangero et al. (2000) propose
a Bayesian model selection/averaging method for positional cloning of quantitative
traits. They extend the classical variance component model and utilize Bayesian
methods to estimate the posterior probability that each polymorphic site is the vari-
ant that is responsible for the variation present in the phenotype. They consider only
additive effects at the hypothesized causal site because of the computational diffi-
culties. They apply their quantitative nucleotide analysis to the GAW12 simulated
data, in which a single SNP in a gene influences the quantitative trait of interest.
The true SNP is correctly inferred as it has the highest posterior probability among
all the 18 SNPs considered.

For qualitative traits, a statistical method for positional cloning is proposed by
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Horikawa et al. (2000). They suggest a modified association study in which they
examine not only the differences in allele frequencies between controls and cases, but
also how the evidence for linkage is partitioned in pairs defined by the genotype at
the SNP to be tested. They observe that, under the null hypothesis of no association
between a particular SNP and the trait, if affected sib pairs are classified according
to the genotype at the SNP, the observed lod score should be divided into each
group proportional to what is expected for each genotype category under the null
hypothesis. They perform simulation to assess the p-value of the observed lod score
in a group in which both sibs have the at-risk genotype(s) at the SNP to be tested,
and they identify a SNP (UCSNP-43) that shows significant association with the
evidence for linkage with type 2 diabetes.

Some methods originally developed for other purposes are conceptually similar
to those described above. For example, Greenberg (1993) suggest a partitioned
association-linkage test, further developed by Hodge (1993), in which affected sib
pairs are partitioned on the basis of the presence or absence of an associated al-
lele in the index case, and the IBD sharing is assessed separately in the affected sib
pairs where the index case does and does not have the associated allele. The test is
originally proposed as a way of distinguishing loci necessary for the development of a
disease from those that merely increase susceptibility, but is similar to the approaches
described in Horikawa et al. (2000) for identifying variants showing association with
the evidence for linkage.

Our method is designed for the problem of positional cloning studies for quali-
tative traits. Our approach to this problem is to identify the polymorphisms whose

genotypes could fully explain, in the statistical sense, the observed linkage to the
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region. We frame the question as a hypothesis test. We focus on the case in which we
assume that there is only one causal polymorphic site in the region segregating in the
study population, with allelic heterogeneity allowed. (We also discuss an extension to
multiple tightly-linked polymorphic sites influencing the trait.) Under the single-site
assumption, for a given polymorphic site in the region, the null hypothesis is that
the site considered is the sole cause of linkage to the region. We observe that, under
this null hypothesis, the conditional distribution of IBD sharing among the affected
relatives, in the region, given their genotypes at the putative causal locus, does not
depend on the genetic model for the trait. A departure from the null hypothesis
implies that the hypothesized site is not the sole cause of linkage to the region. Such
a hypothesis test can be performed on each of the polymorphic sites typed in the
region of interest. A confidence set for the true casual site can be constructed by
inverting the hypothesis test, that is, by including in the confidence set all the sites
that are not rejected by the hypothesis test (including those not tested). The results
of this approach provide information that is different from that provided by tests of
linkage or association.

To implement our approach, we focus on the sib-pair study design with single nu-
cleotide polymorphisms typed in the region of interest, and we consider test statistics
that are variations on the usual allele-sharing methods used for linkage studies. Our
approach does not require specification of mode of inheritance at the putative causal
polymorphism. Moreover, our method allows an arbitrary amount of epistasis with
other unlinked contributory loci, as well as correlated environmental effects within
families, and gene-environment interaction. We extend our method to larger sibships,

and we apply it to a data set developed in the context of a positional cloning study



CHAPTER 5. INTRODUCTION 84

(Horikawa et al 2000). Through both simulation studies and data analysis, we find
that we have power to reject sites that do not, on their own, explain the evidence for
linkage, even when these sites are both tightly linked and strongly associated with a

susceptibility locus.



Chapter 6

A Novel Approach for Positional Cloning

6.1 Conditional distribution of IBD sharing

We first consider the case of sib pairs sampled at random from a population,
without regard to their phenotypes. (For simplicity, we use sib pairs to denote full-
sib pairs.) For this case, we derive the distribution of IBD sharing by a sib pair at a
particular SNP, conditional on the sibs’ genotypes at that SNP. We then consider the
case in which affected sib pairs are sampled. We show that, under the null hypothesis
that a particular SNP is the sole cause of linkage to the region, the distribution of
IBD sharing by an affected sib pair, conditional on the sibs’ genotypes at that SNP,
is the same as in the case of random sib pairs. We argue that this is true regardless
of the mode of inheritance and even in the presence of epistasis with unlinked loci,
correlated environmental effects within families, and gene-environment interaction.
This result allows us to test for deviation from the null conditional distribution of
IBD sharing by affected sib pairs and to construct a confidence set of polymorphisms

that could explain the observed linkage to the region.
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6.1.1 For random sib pairs

Consider the case in which sib pairs are drawn at random from a population,
regardless of their phenotypes. We derive the conditional distribution of IBD sharing
by such a sib pair at a particular SNP, given the sibs’ genotypes at that SNP. Denote
by 1 and 2 the two alleles of the SNP, and let g1 = (1111),90=(1112),g93=(1
122),94=(1212),95=1(1222)and gg = (222 2) be the 6 possible genotype
configurations for the sib pair at the SNP, where the first two integers represent the
genotype of one sib, the last two integers represent the genotype of the other sib, and
where we consider two sib-pair genotype configurations to be equivalent if they are
the same up to interchange of the two sibs and/or interchange of the two alleles of
either sib. To complete the notation, let f be the frequency of allele 1, let G be the
random variable representing the sibs’ genotype configuration at the SNP and taking
values in {g1, g2, ---, g6}, and let D be the number of alleles shared IBD by the pair at
the SNP locus. Table 1 gives the conditional distribution of P(D|G). The following
equation illustrates the calculation for the case when G =g¢g; =(1111),and D = 1.
P(D=1,G=(1111))

P(G=(1111))

PG=(1111)D=1)P(D=1)
>j=012P(G=(1111)|D=j)P(D=j)
3 2f
[N R S (e

PD=1|G=(1111) =

Note that P(D) depends on the relationship of the two individuals and P(G|D)
is calculated under the assumption of Hardy-Weinberg equilibrium (HWE). HWE

means the frequency of the genotype at a locus for an individual, (a; a;), depends only



CHAPTER 6. A NOVEL APPROACH FOR POSITIONAL CLONING 87

on the frequencies of the alleles, i.e. P(a; a;) = pgi if i = j, and P(a; aj) = 2paipaj
if 7 # j, where pg; and Pa; are frequencies of a; and a; alleles. The computation of

P(G|D) for a pair of outbred individuals appears in Thompson (1975).

G D
1 2
12 2f 1
(L1 1) T 2 12
(11 12) e, o7 0
(11 22) 1 0 0
f(a-=f) 1 1
(12 12) | sy | amra—r | 207G
1—f 1
( 12 22 ) 1+(1—J2°) 1+(1—f) 0
a-f) 2(1-1) |
(22 22) | a2 | en? | Gea—1p

Table 6.1: P(D|G) for a sib pair with SNP data

The conditional distribution of P(D|G), where D is the number of alleles shared IBD
by a sib pair at a particular SNP, G is the sibs’ genotype configuration at that SNP,

and f is the frequency of allele 1 in the population.

6.1.2 For affected sib pairs

We now consider the case in which affected sib pairs are drawn at random from
a population. We show that, under the null hypothesis H, that a particular SNP is

the sole cause of linkage to the region, the conditional distribution of IBD sharing by
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an affected sib pair, given the sibs’ genotype configuration at that SNP, is the same
as in the previous case, i.e. Table 6.1. To show this, we first argue that the following

equation holds regardless of the mode of inheritance:
Pz, (both affected| D, G) = Py, (both affected|G).

That is, given the genotype data at the sole causal site in the region for an affected
sib pair, the event that both sibs are affected by the trait is a Bernoulli trial with
probability depending only on the observed genotypes, independent of the sharing
at that location, as long as the other causal loci are not linked to the region. The
above equation implies the following equation which states that the conditional dis-
tribution of IBD sharing by randomly-sampled affected sib pairs is the same as that
for randomly-sampled sib pairs regardless of their phenotypes.

Py, (both affected| D, G) Py, (D, G)

P, (both affected|G) Pg, (G)

PHO(D, G)
Pp,(G)

Py, (D|G, both affected) =

= Pp,(D|G) = P(D|G),

where P (D|G) = P(D|G) because neither expression contains phenotype informa-

tion of the sibs.

6.2 Hypothesis testing and confidence set construction

In the previous subsection, we have shown that, under the null hypothesis that a
particular SNP is the sole cause of linkage to the region, the conditional distribution
of IBD sharing by an affected sib pair, in the region, given the sibs’ genotype config-

uration at that SNP, can be derived without specification of the mode of inheritance
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and is given by Table 6.1. For any SNP typed in the region, to test the null hypothesis
H, : the SNP is the sole causal site in the region,

we could construct a test that is a variation on whatever method was used to de-
tect linkage initially. (However, note that our test is not a test for linkage. In
fact, we expect that all the polymorphisms in the region will be tightly linked to
the susceptibility locus.) For instance, suppose linkage was initially detected using
an allele-sharing method with a given sharing statistic S which measures the IBD
sharing D among a set of affected relatives, e.g. S = Spqjrs Which is the sum of the
number of alleles shared IBD over all possible pairs of the affected relatives. The null
distribution of P(D|G) derived in the previous subsection allows us to calculate the
null conditional mean and null conditional standard deviation of S, ug = Ef,[S|G]
and o = W, where (G is the sibs’ genotype configuration at the SNP,
and H, is the null hypothesis that the SNP is the sole causal site in the region. For
an affected sib pair, Table 6.2 gives ug and o, when Sy is used, for each of the
6 genotype configurations. To test our null hypothesis H,, we could use a variation
on the NPL score statistic of Kruglyak et al. (1996), the linear likelihood of Whit-
temore (1996) and Kong and Cox (1997), or the exponential likelihood of Kong and
Cox (1997). Consider the usual tests for detection of linkage by these methods, and
let H) be the null hypothesis of no linkage, let p and o be the unconditional mean
and standard deviation of S under H), u = EH(’) [S] and 0 = VarH(/)(S), and let
7' = (S — p) /o be the standardized version of S for a particular family, for the usual
test of linkage. To modify any of these linkage methods to test our null hypothesis

H,, we replace Z' = (S — p)/o by ZG = (S — ug)/oq for each family. (If o = 0,
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G |e} oG
(11 11) o7 V4
(11 12)] 5
(11 22) 0 0

3 1+10f(1-f)

(12 12) iy | 20 ra)
1 (1-1)
(12 22) = 1+(1=J)
( ) 2 V2(1-f)
1+(1=7) 1+(1—)

Table 6.2: ug and og for an affected sib pair with SNP data

The null conditional mean, pg = Ep,[Spairs|G], and the null conditional standard

deviation, og = \/ Var g, (Spairs|G), of the sharing statistic Spgrs for an affected
sib pair, given the sibs’ genotype configuration G at a particular SNP, under the null
hypothesis H, that the SNP is the sole causal site in the region. f is the frequency

of allele 1 in the population.
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then ZCG = 0.) Note that while p and o depend only on the relationship among the
affecteds, ug and og also depend on G, the genotype configuration for the affecteds
at the SNP.

Given n affected sib pairs, let D; be the number of alleles shared IBD by the
1th sib pair, let S; be the sharing statistic for the i;, pair, let G;; be the observed

genotype configuration for the ¢th pair at the SNP to be tested, and let

Z8 = (Si — ug;) /oG, = (Si — Eg,[SIGi)/\/Varn,(S|G;)

be our new, conditional, standardized version of S;. We could then consider the test
statistic 77 (which is in a form analogous to that of the NPL score statistic for testing

linkage) for our null hypothesis:

n . 72G
T = L=l V7 WiZy (6.1)

b))
\/ Z?:l w7j2

where w; is the weighting factor for the i;, family. We could also consider the test
statistic 75 (which is in a form analogous to that of the exponential log-likelihood-

ratio for testing linkage):
Ty = sign(8)y/2113) — L(0)], (6.2

where £(5)—1(0) = loglLicy(8)exp(6ui ZE)], ¢(0) = ¥, Prry (26 = 2\Gy)exp(du;z)]
is the renormalization constant, PHO(ZZ'G = z|Gj) = P, (S; = zog; + g, Gi), which
can be calculated from the information in Tables 6.1 and 6.2 for the case of Spgjrs
in an affected sib pair, and § maximizes 1(6) (i.e. it maximizes 1(§) — 1(0)). With
complete IBD data, the tests based on the statistics in equations (6.1) and (6.2)

are equivalent (assuming that exact p-values are used), with the version in equation
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(6.1) being easier to calculate. However, with incomplete IBD information or when
a small number of large families are sampled and the normal approximation is used
to assess significance, the test based on equation (6.2) is preferred (Kong and Cox
1997). The case of incomplete IBD information is discussed in more detail in Section
6.4. Another possible variation would be to use test statistic T3, which is analogous
to the linear log-likelihood-ratio and is of the same form as equation (6.2), but here
1(8) — 1(0) = log[IL;(1 + (5wiZiG)]. The test based on this statistic is not equivalent
to either of the previous two tests, except asymptotically. To assess significance, one
could use simulations to obtain the empirical distribution of the test statistic 77,75
or T3, conditional on (G1,Go,...,Gy). To do this, we simulate D; conditional on
G; for each 7, using the distribution of P(D|G) given in Table 6.1. Alternatively,
one could apply a normal approximation to the conditional distribution of 77,75
or T5. In principle, the test could be two-sided. However, we note that the SNP is
assumed to be in a region showing strong linkage with a trait. Therefore, 6> 0 is
expected if the SNP is not the sole cause of linkage to the region, whereas 6<0 may
indicate misspecification of the allele frequency f or violation of the Hardy-Weinberg
assumption, which is useful information but is not the alternative of interest. Thus,
even if we were to use a two-sided test, we would want to distinguish between these
two cases. To construct a confidence set for the true causal site, we perform the
corresponding hypothesis test on each of the SNPs typed in the region. A (1 — «)
confidence set then includes all the SNPs that are not significant at level a.

Just as for tests of linkage, there are many different possible choices of weighting
factor w; for the ith family when our standardized sharing statistic ZC is combined

across families. The optimal weight for a particular family depends on the amount of
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information contained in the observed genotype data at the SNP. For instance, the
weight for an affected sib pair with genotype configuration g3 = (1 1 2 2) should be
zero, since there is no variation in the IBD sharing given this genotype configuration.
In other words, a pair with genotype configuration (1 1 2 2) does not provide any
information under our method. For pairs with the other five genotype configurations,
one could choose equal weights, w = 1, or choose weights that depend on the null
conditional variances, such as w = /oG or w = 0.

We point out that our test is neither a test of linkage nor a test of linkage dis-
equilibrium. A SNP may be tightly linked or in significant linkage disequilibrium
with the causal polymorphism, yet still not be able to fully explain the linkage signal
observed in the region. In the NIDDM1 data set of Horikawa et al. (2000), SNPs 22,
23, 25, 26, 29 and 38 all show significant linkage and linkage disequilibrium (Horikawa
et al. 2000), but each is rejected as being the sole cause of linkage to the region (see
Section 7.2) Our simulations (see Section 7.1) also show that there are cases in which
a false putative causal SNP is both completely linked (6 = 0) and in complete linkage
disequilibrium (|D’| = 1) with the true causal SNP, and yet our test still has some
power to reject the null hypothesis. Of course, if two SNPs are in perfect linkage
disequilibrium (i.e. |D’| = 1 with the coupled alleles having identical allele frequen-
cies), then they are indistinguishable based on the data and no statistical method

can separate them.
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6.3 Extension of the method to larger sibships

For the case of more than 2 affected relatives, G would be the genotype config-
uration among the affecteds in the family, and D would be their IBD configuration
(Thompson 1974). For instance, for an affected sib trio with SNP data, there are
10 possible genotype configurations (up to interchange of the three sibs and/or in-
terchange of the two alleles of any sib) and 4 IBD configurations. To calculate the
conditional distribution of P(D|G) for an affected sib trio, one needs the conditional
distribution of P(G|D) and the marginal distribution of P(D). The conditional dis-
tribution of P(G|D) are given in Table 6.3. The marginal distribution of P(D) is
P(D = (1212 34)) = 3/16, P(D = (12 13 24)) = 6/16, P(D = (12 12 23)) = 6/16,
and P(D = (1212 12)) = 1/16. Table 6.4 gives the conditional distribution of
P(D|G), and Table 6.5 gives the null conditional mean and null conditional standard
deviation of S, when Sj4;r5 is used, for each of the 10 genotype configurations. We
have derived similar results for sibships with 4-6 affected sibs (results not shown).
We have implemented our method for affected sibships of sizes 2-6 and have applied

it to the NIDDM1 data set of Horikawa et al. (2000) (see Section 7.2).

6.4 Extension to incomplete IBD data

The extension of our tests to the case of incomplete IBD information is similar
to that for the usual allele-sharing tests of linkage. For the usual test of linkage,
when the NPL score statistic or the linear likelihood is used with incomplete IBD

data, S is replaced by EHA [S|Gfuu], the null expected value of S conditional on
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G 2%} e
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2(2+3f) 2v3
(11 11 12) = 14
(11 11 22) 2 0
342 142
(11 12 12) A2/ L
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(11 22 22) 2 0
33+4f(1—f) | 14/3+84f(1-F)
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Table 6.5: ug and og for an affected sib trio with SNP data
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The null conditional mean, pg = Ep,y[Spairs|G], and the null conditional standard

deviation, og = \/ Var g, (Spairs|G), of the sharing statistic Spgrs for an affected

sib trio, given the trio’s genotype configuration G' at a particular SNP, under the

null hypothesis H, that the SNP is the sole causal site in the region, where f is the

frequency of allele 1 in the population.
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Gful]’ the genotype data for all members of the family at all loci at which they are
typed. For the usual test of linkage, when the exponential likelihood is used with
incomplete IBD data, exp(dw;Z;) is replaced by EH{) (exp(&wiZz{)|Gqu). In the case
of the NPL statistic, the above incomplete-data formulation is conservative when the
normal approximation is applied, because the variance used to normalize the statistic
is too large (Kruglyak et al. 1996; Kong and Cox 1997). However, for the linear
and exponential likelihoods, these incomplete-data formulations provide an exact
likelihood calculation (Kong and Cox 1997). For our test, when G is observed but
the IBD information D at this locus is incomplete, the analogous result is that when
using Ty or T3, S is replaced by Ep [S ighull) = Egr [S|GTU), where the equality
holds because there is no phenotype information on either side of the equation. The

analogous result for 75 is that exp(&wiZz-G ) is replaced by EHO(exp(dwiZiG )|Gfull)

E ! (exp(éwz-ZiG )‘Gfull) Existing software such as GENEHUNTER (Kruglyak et al.
1996), GENEHUNTER-PLUS (Kong and Cox 1997), or ALLEGRO (Gudbjartsson

et al. 2000) can be easily modified to make these calculations.

6.5 Assessment of significance conditional on a linkage result

In a linkage study for a complex trait, power to detect linkage to a given causal
variant may not be high; some luck may often be involved in obtaining, say, a sugges-
tive linkage result. (“Suggestive linkage: statistical evidence that would be expected
to occur one time at random in a genome scan. Significant linkage: statistical evi-

»

dence that would be expected to occur 0.05 times in a genome wide scan.” Lander

and Kruglyak 1995). Suppose a particular polymorphism is the sole causal variant in
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the region, and suppose that the genetic model and study design are such that the
power to detect linkage is low. Then in order to detect at least suggestive evidence
for linkage, it may be necessary to have excess sharing even beyond what would ordi-
narily be expected under the genetic model for the causal variant. Suppose one later
collects SNP data from the same individuals who were part of the linkage study, in a
region showing linkage, and then applies our test. Then conditional on detection of at
least suggestive linkage, there may be excess sharing that cannot be fully explained
by the genotype data at the causal variant. Therefore, if one applies our test to only
the data sets that have shown at least suggestive evidence for linkage, the test is no
longer calibrated. For such cases, the significance of our test may need to be assessed
conditional on the fact that suggestive evidence for linkage was exceeded.

Suppose there are n families in such a data set. Let G = (G, Go, ..., Gy, ), where
G is the genotype configuration for the affected individuals in the ith family. Let T’
be our test statistic (77, 7> or T3), and let W be the event that suggestive evidence

for linkage was exceeded. The adjusted p-value of our test is then
Pr (T > tops|G, W), (6.3)

where H, is the null hypothesis that the SNP is the sole cause in the region. One
can assess (6.3) by simulation from Pg (T|G,W). For each replicate, conditional on
the observed genotypes G = (G1, G2, ..., Gy), IBD sharing D; by the 4, pair can be
simulated based on Pp, (D;|G;, both affected) = P(D;|G;) given in Table 6.1. From
this, linkage data for the rest of the region can be simulated. The linkage result and
the test statistic 7" can be calculated, and the replicate is kept only if the linkage

result exceeds suggestive evidence for linkage. The replicates that are not discarded



CHAPTER 6. A NOVEL APPROACH FOR POSITIONAL CLONING 100

are independent, identically-distributed draws from Pp (T'|G, W), and the p-value

given by (6.3) can then be estimated from this empirical distribution.



Chapter 7

Results and Discussion

7.1 Simulation studies

We perform simulation studies to assess the power of our method to detect that
a given SNP is not the sole cause of linkage to the region. Each simulation involves
10° replicates of a data set of 150 affected sib pairs with complete IBD information.
Simulations are performed under various genetic models, each of which involves epis-
tasis among unlinked loci. In each case, we examine power to reject a non-causal
locus that is completely linked (6 = 0) to a causal locus, assuming various degrees
of linkage disequilibrium (D’ = 0, .5, or 1) and various allele frequencies. In each
case, we use test statistic 77 of equation (6.1), with S = Sp4irs, w = /0, and
with significance assessed by a normal approximation. We also perform simulations
to assess the adequacy (Type I error) of the normal approximation and find that it
performs extremely well in these cases (results not shown). Specific details of the
models follow.

To test the null hypothesis that a particular SNP is the sole cause in the region,

101
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we consider the exponential likelihood of Kong and Cox (1997). We consider three
different disease models as described below. All the models allow epistasis.

Model T consists of two unlinked causal SNPs, both acting dominantly, with epis-
tasis between them. In addition to the two allele frequencies, there are two penetrance
parameters, p; and ps (p1 > p2), with penetrance py for individuals who have both
at least one copy of allele 1 at locus 1 and at least one copy of allele 1 at locus 2,
and penetrance py for all other individuals. (Penetrance is the probability that an
individual is affected by the disease, given the observed genotype for that individ-
ual.) Model IT consists of two unlinked causal SNPs, one (locus 1) acting recessively
and the other (locus 2) following a general two-allele model, with epistasis between
them. In addition to two allele frequencies, there are four penetrance parameters
(p1 > p2 > p3 > p4), with penetrance py for individuals who have genotype 1/1 at
both locus 1 and locus 2, penetrance ps for those with both genotype 1/1 at locus 1
and genotype 1/2 at locus 2, penetrance p3 for those with both genotype 1/1 at locus
1 and genotype 2/2 at locus 2, and penetrance py4 for all other individuals. Model ITI
consists of three unlinked causal SNPs, each acting dominantly, with epistasis among
them. In addition to the three allele frequencies, there are two penetrance parameters
(p1 > p2), with penetrance p; for individuals with both at least one copy of allele
1 at locus 1 and at least one copy of allele 1 at either locus 2 or locus 3, and with
penetrance po for all other individuals.

For any one of the three models above, with values chosen for the allele frequencies
and penetrance parameters, we focus on causal locus 1, as defined above. We can
obtain the joint distribution of P((G€, D) | both affected), where G€ is the genotype

configuration at causal locus 1, L., for an affected sib pair, and D¢ is the number
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of alleles shared IBD by the pair at L.. We first simulate 10° replicates of a data
set of 150 affected sibs pairs from this distribution. Consider a non-causal SNP at
locus Ly with genotype configuration G" and IBD sharing D". We assume that Ly,
is completely linked (f = 0) with the causal locus L, so D™ = D¢. We then generate
data G™ for the non-causal SNP at Ly, for the cases of linkage equilibrium (D’ = 0),
partial linkage disequilibrium (D’ = 0.5) and complete linkage disequilibrium (D' =
1) with L, and for various choices of allele frequency. For each set of simulations, we
test that the non-causal SNP at locus Ly, is the sole cause of linkage to the region.
The results are given in Table 7.1. It can be seen that in some cases, our method
has substantial power to reject the null hypothesis for non-causal loci completely
linked to a true causal locus, even when the non-causal locus is in complete linkage
disequilibrium (D’ = 1) with the causal locus. Note that if the non-causal locus is
in perfect linkage disequilibrium with the causal locus (i.e. |[D’| = 1 with the coupled
alleles having identical allele frequencies), then the two loci cannot be distinguished
based on the available data, and the probability of rejecting the null hypothesis for

the non-causal loci is the same as the chosen Type I error.

7.2 Application to the NIDDM1 data set

Type 2 diabetes or non-insulin-dependent diabetes mellitus (NIDDM) is a com-
plex disease affecting approximately 4% of the adult population worldwide. Linkage
analysis and further fine mapping have localized a major susceptibility locus, de-
noted as NIDDMT1, to a small region of chromosome 2. The NIDDM1 data set

(Horikawa et al. 2000) is collected for the purpose of positional cloning of NIDDM]1.
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Model || f¢ f* | D' | Haplotype frequency | Power at level
h11  hia hoy hog .05 ‘ .01

I .2 3 0 06 .14 24 56 | .9710 | .8783
b 13 .07 17 .63 | .8793 | .6691

D03 17 27 B3 | .9669 | .8683

1 .2 0 1 e .2679 | .0900

1 0 2 3 . .9456 | .8099

2 0 .04 16 .16 .64 | .9765 | .8948

b o[.12 .08 .08 .72 |.7738 | .5127

b o.02 18 .18 .62 | 9808 | .9107

1 .2 0 0 .8 .0495 | .0101

1 0 2 2 .6 9810 | .9146

II D15 | .3 0 .15 .36 .15 .34 9811 | .9165
D o122 .29 075 41 9718 | .8859

b | .075 440 .225 .260 | .9381 | .8019

1 3 215 0 485 | .8450 | .6257

1 0 .b15 .3 185 | .6365 | .3622

BH51510 [.266 .25 .25 .235 | .9788 | .9084

D139 125 125 .36 | .8604 | .6421

D | .148 367 367 118 | .8874 | .6939

1 515 0 0 485 .0477 | .0080

1 .03 485 485 0 1142 | .0257

111 271 | 4 0 11 A6 .29 44 | 8836 | .6747
D .19 081 .21 .19 | .7575 | .4904

b | .055 216 .345 .384 | .8366 | .5993

1 271 0 129 .6 2576 | .0893

1 0 271 4 329 | .6491 | .3713

27110 073 198 198 .31 | .8921 | .6947

D172 099 099 .63 | .6360 | .3576

D | .037 234 234 495 | .8967 | .7035

1 1.271 0 0 729 | .0493 | .0096

1 0 271 271 458 | .8671 | .6552

Table 7.1: Power to detect a non-causal SNP
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Power to detect that a SNP is not the sole cause of linkage to region, where the
models are as described in the text with the causal SNP being locus 1 of the model
in each case. f€¢ is the frequency of allele 1 at the causal SNP, f" is the frequency
of allele 1 at the completely-linked non-causal SNP, D’ is disequilibrium between the
two SNPs, and h;;,7,7 = 1,2 is the population haplotype frequency, where i is the
allele at the causal SNP and j is the allele at the non-causal SNP.
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We analyze an NIDDM1 data set that differs slightly from the data set of Horikawa
et al. (2000) in that some additional markers are typed and some genotyping errors,
apparent when markers are typed in all members of all families, are removed. The
NIDDMT1 data set includes 170 sibships: 121 affected sib pairs, 34 affected sib trios,
12 affected sib quartets, 2 affected sib quintets, and 1 affected sib sextet. We con-
sider 22 SNPs typed in a region of about 300,000 DNA base pairs. Based on these 22
SNPs and 16 flanking microsatellites, the information on IBD sharing in the region
is complete for most of the sibships.

When performing our test for a given SNP, we must cope with the fact that
genotype data for some individuals may be missing at that SNP — that is, G may be
incompletely observed even when complete information is available on D. In the case
of an affected sib pair for which G is not completely observed for a particular SNP,
we omit that pair from the analysis of that SNP. For sibships with > 3 affected sibs,
when G is not completely observed for a particular SNP, in most cases, we are able
to reconstruct G' from the observed genotype data at that SNP combined with the
sharing information D in the region. For the remaining cases with > 3 affected sibs,
we impute the missing information on GG in such a way that our test is guaranteed to
be conservative (i.e. we impute the G that implies the highest level of IBD sharing,
among those G consistent with the observed genotype data and D). Note, however,
that conservativeness of this procedure is no longer guaranteed when the significance
level is adjusted for detection of suggestive evidence for linkage.

For each of the 22 SNPs, to test the null hypothesis that the SNP considered is
the sole cause of linkage to the region, we use test statistic 75 of equation (6.2) with

weights w = /0G. The p-value is assessed by simulation, using 107 replicates and
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assuming complete information on D and G, as described in Section 6.2. Using all the
families, the p-value of the test for detection of linkage to the region is 1.78 x 1072,
where linkage is detected using the exponential likelihood with weights w = /0.
However, when we consider each individual SNP, some families may be discarded
because of missing genotype data, as described above, so the p-value for detection
of linkage varies across the SNPs. To adjust the p-value of our test for detection of
suggestive evidence for linkage, for each SNP, we first simulate 107 replicates of the
non-missing families to determine the threshold value of the log-likelihood-ratio for
suggestive evidence for linkage. The significance level for suggestive linkage is set to
7.4x10™4 (Lander and Kruglyak 1995). To obtain the conditional p-value of our test,
we simulate until we obtain at least 10 realizations in which suggestive evidence for
linkage is exceeded, and we calculate the conditional p-value as described in Section
6.4.

The results of the analysis are given in Table 7.2. The reported p-values for the
test that a SNP is the sole cause of linkage to the region (last two columns of Table
7.2) are all one-sided, and § > 0 is observed in all cases. Aside from two SNPs
(SNP 66 and SNP 62), for which the sample size is small (< 125) because many
individuals are untyped for those SNPs, all of the SNPs are rejected as being the sole
cause of linkage, even after adjustment for suggestive evidence for linkage. SNPs 66
and 62 are rejected before adjustment but not after. Note that all of the SNPs are
tightly linked to NIDDM1, and SNPs 22, 23, 25, 26, 29, and 38 all show significant
linkage disequilibrium with NIDDM1 (Horikawa et al.,2000). Thus, the information
provided by our method is different from that provided by tests of linkage and linkage

disequilibrium. Furthermore, this example illustrates that our test can reject a SNP
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as being the sole cause of linkage. Our analysis suggests that there may be more
than one causal polymorphism in the region, or, alternatively, that the single causal
polymorphism is not included in the set of SNPs typed.

In Horikawa et al. (2000), quite a number of the polymorphisms (16) examined
show association with the disease. A smaller number of polymorphisms (6) show
significant association with the evidence for linkage, as determined by the ability
of genotypes at the polymorphism to partition the evidence for linkage. Functional
studies subsequently confirm that at least one of these polymorphisms (UCSNP-43)
encodes variation that affects expression of the CAPN10 protein (Baier et al. 2000;
Yang et al. 2001). Our results here show that none of the individual polymorphisms
studied are sufficient to account for the evidence for linkage. Thus, the information
provided by our test here is different from that provided by the original tests proposed
in Horikawa et al. (2000) which are essentially testing whether the observed variation
is associated with evidence for linkage. For example, despite the fact that the evidence
for linkage is entirely confined to UCSNP-43, we can conclusively reject the hypothesis
that the segregation of the variation at UCSNP-43 can account, by itself, for the
observed evidence for linkage. As noted above, our findings are not inconsistent with
the hypothesis put forward in Horikawa et al. (2000), that combinations of variants at
CAPNI10 affect susceptibility to type 2 diabetes and generate the original evidence for
linkage, but are also consistent with the possibility that untested variation elsewhere
in the NIDDM1 region might fully account with the evidence for linkage. In that

case, the causal variation is presumably in linkage disequilibrium with the region.
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Map | Locus || f% | n Linkage p-value of our test
Order p-value unadjusted | adjusted
1 | sNP20| .85 153 ]3.57%x107°] .0001337 .0394
2 | SNP66 || .88 | 124 | 5.95 x 10~ | .0009932 .1048
3 | SNP45 || .94 | 163 | 1.58 x 1079 | .0001234 .0285
4 | SNP44 || .94 | 164 | 2.32 x 10~° | .0001009 .0376
5 | SNP43 || .73 | 160 | 2.01 x 10~> | .0000001 .0004
6 | SNP79 || .97 | 161 | 2.66 x 10~° | .0000244 0247
7 | SNP78 || .94 | 162 | 2.03 x 1072 | .0000558 .0291
8 | SNP77 | .92 | 161 | 1.58 x 10~° | .0000522 0228
9 | SNP56 || .57 | 149 | 4.40 x 10~° | .0001638 0157
10 | SNP19 || .56 | 161 | 1.47 x 1072 | .0000347 .0042
11 | SNP48 || .55 | 154 | 1.64 x 10~° | .0000303 .0033
12 | SNP62 || .81 | 125 | 6.27 x 10~° | .0081385 1174
13 | SNP63 || .76 | 130 | 3.50 x 10™° | .0001566 .0197
14 | SNP26 || .92 | 162 | 2.04 x 10~° | .0000356 .0137
15 | SNP25 || .50 | 156 | 4.07 x 10™° | .0000322 .0054
16 | SNP24 || .98 | 162 | 1.92 x 10~° | .0000053 .0201
17 | SNP23 || .85 | 158 | 1.67 x 10~° | .0000556 .0084
18 | SNP22 || .61 | 158 | 1.56 x 107° | .0019207 .0253
19 | SNP53 || .90 | 155 | 6.80 x 10~° | .0000026 .0161
20 | SNP38 | .62 | 154 | 5.62 x 1075 | .0004898 .0196
21 | SNP29 || .77 | 151 | 1.48 x 10~° | .0001107 .0074
22 | SNP28 || .56 | 156 | 0.46 x 107° | .0003044 0057

Table 7.2: Results of the analysis of the NIDDM1 data set
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@ Frequency of the common allele. ? The number of families used in the analysis. The
linkage p-value is the p-value for the ordinary allele-sharing test of linkage applied

to the non-missing families for that SNP, the unadjusted p-value for our test is the
p-value for the test of H,: the given SNP is the sole cause of linkage, and the adjusted

p-value is conditional on detection of suggestive evidence for linkage at level 7.4 x 10~4.
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7.3 Discussion

We have developed a new statistical approach to guide positional cloning studies
of qualitative traits. Assuming that many polymorphic sites have been identified
and genotyped in a region showing strong linkage with a trait, we wish to determine
which site (or combination of sites) in the region influences susceptibility to the
trait. Our approach is to identify the polymorphisms whose genotypes could fully
explain, in the statistical sense, the observed linkage to the region. We formulate a
hypothesis test for which the null hypothesis is that a particular polymorphism is the
sole cause of linkage to the region. By inverting this test, we construct a confidence
set for the true causal site. The results of this approach provide information that is
different from that provided by tests of linkage or association. Our method allows
for a very general model for how the site influences the trait, including epistasis with
unlinked loci, correlated environmental effects within families, and gene-environment
interaction. Simulation studies show that the method can have high power to reject
non-causal SNPs, even in cases when they are tightly linked and in complete linkage
disequilibrium with the causal SNP. Application to an NIDDM1 data set (Horikawa
et al. 2000) lead to rejection of all SNPs in the set, suggesting that either there
is more than one causal polymorphism in the region or else that the single causal
polymorphism is not among those typed in the data set.

Our method of testing for a single causal SNP can be generalized, in principle, to
any type of causal polymorphism (e.g. microsatellites) and to multiple tightly-linked
causal loci. Details, for the case of affected sib pairs, can be found in Appendix E.

However, note that the power of our method depends, in large part, on the values of
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E4[S|G] — Eg,[S|G] for the families in the study, where E4[-|-] denotes the condi-
tional expectation calculated under the true genetic model. If G' provides complete
information on IBD sharing among the affecteds, then Ep [S|G] = S = E4[S|G],
and the given family does not provide any information under our method. Similarly,
when G provides close to complete information on S, power is low. This is more likely
to occur when G is the genotype information on a single highly polymorphic locus or
when G is the joint genotype information on several tightly-linked loci, than when G
is the genotype information on a single SNP. Low power in such cases is the price paid
for the lack of assumptions on the genetic model, in which we allow arbitrary mode
of inheritance, epistasis with unlinked loci, correlated environmental effects within
families, and gene-environment interaction. A method that would be powerful for
highly polymorphic sites or combinations of sites could certainly be obtained with

more assumptions on the genetic model.

7.4 Appendix E

In principle, our method can be generalized to any type of causal polymorphism
(e.g., microsatellites) and to multiple tightly-linked causal loci. First consider a single
polymorphic site with m alleles. The number of possible genotypes depends on m and
the number of the affecteds. For a pair of relatives, there are m + 4(73) + 6(7:?) + (TZ)
possible genotypes which can be divided into 7 different categories as shown in Table
7.3. The conditional distribution of P(D|G) for an affected sib pair is given in Table
7.3. Table 7.4 gives the null conditional mean and null conditional standard deviation

of S, when S5 is used, for each of the 7 genotype categories.
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G D
0 1 2
,
(ii i) - i . -
1+1;) (1+1;) (1+1;)
R fi
(id ij) ﬁzfz 1ifi 0
(i1 jJj) 1 0 0
A 2fif; fit1j 1
(ij 17) T T S I
+fi+f+20 0 | WHfi+f+00 | 1+5i+f+251;
(ii jk) 1 0 0
i ik 2f; 1 0
(i ik) 527, 927
(ij k1) 1 0 0

Table 7.3: P(D|G) for an affected sib pair with microsatellite data

The conditional distribution, P(D|G), of the number of alleles shared IBD by an

affected sib pair at a particular microsatellite, conditional on the sibs’ genotype con-

figuration G at that locus, where f; is the frequency of allele 7 in the population.
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G LG oG

o 2f;
(4 1) 1‘Efi }/4_7;
(ii ij) e H\/E
(it jJj) 0
(i ) 2+ i+ \/fi+fj+8fifj+2fifj(fz'+fj)

vty vy +fi+7+2f;7; +fi+7+27; 7}
(ii jk) 0 0

L 37,
(ij ik) =57, 1+\/2_sz
(ij ki) 0

Table 7.4: pug and og for an affected sib pair with microsatellite data

The null conditional mean, pg = Ef,[Spairs|G], and the null conditional standard

deviation, o = \/ Varg,(Spairs|G), of the sharing statistic Spgirs for an affected sib

pair, given the sibs’ genotype configuration G' at a particular microsatellite, under

the null hypothesis H, that the microsatellite is the sole causal site in the region,

where f; is the frequency of allele ¢ in the population.
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To extend our method from a single causal locus to multiple tightly-linked causal
loci in the region of interest, we assume that no crossovers occur within the sampled
families, among the causal loci in the region. Under this assumption, the hypothesized
causal loci would all have the same pattern of IBD sharing among the affecteds. To
test the null hypothesis that a particular set of polymorphisms jointly explain the
observed linkage to the region, a straightforward extension of our method would be
as follows: let D be the IBD sharing among the affecteds in the region, and let G =
(Gl, ceny GL) be the joint genotype data, where Glis the genotype data for the affecteds
at the [P putative causal locus and L is the total number of hypothesized causal loci in
the region. To obtain the conditional distribution of P(D|G), one needs the marginal
distribution of P(D) and the conditional distribution of P(G|D) = P(G1, ..., GE|D).
To obtain the latter, one requires haplotype frequency estimates from an appropriate

control population.
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