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Abstract

This article reviews a pricing model, suitable for variance-gamma jump processes, based on the method of lines. The

method accuracy is studied using European style calls as a benchmark. Implementation details for continuously and discretely

monitored barrier options, and American and Bermudan options are given.

1 Introduction

Lattice models introduced in [10] played an important role in extending the Black-Scholes model [5] to a wide class of exotic

payoff structures. The emergence of jump models for asset prices proposed in the works of Merton [23], Bates [3], [4],

Madan et al. [20] and Geman et al. [14], stimulated interest in adequate generalizations and replacements of lattice models to

accommodate fat-tailed return distributions. In [1], we introduced a model based on the method of lines, henceforth referred
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to as themodel of lines, which is simple to implement, flexible and admits an intuitive financial interpretation. In this article,

a more complete description of the methodology is supplied, and the solution techniques are elaborated on.

In this paper, the underlying price process is postulated to be a variance-gamma pure jump process, which was introduced

and studied extensively by Madan, Carr, Chang, Geman, Seneta and Yor in the series of articles, [8], [19], [20], [21]. The

method of lines was first introduced in the financial literature by Carr [6] with the intent of pricing American style options in

the standard Black-Scholes model. Carr recognized that this method prices random maturity contracts exactly, with maturities

obeying the Erlang distribution for then-th arrival of a Poisson process. The variance-gamma pure jump process can be

obtained from the geometric Brownian motion by means of a stochastic time change driven by a gamma distribution, which is

a generalization of the Erlang distribution where the arrival numbern is taken to be continuous. To formulate themodel of lines,

Carr’s equations for randomized maturity contracts, found in [6], will be recast in a form that yields exact pricing formulas

for particular cases of the variance-gamma process. To accommodate the general variance-gamma model, a Richardson

extrapolation scheme is proposed, and is demonstrated to work well with realistic model parameters.

While lattice models are based on recombining trees in which both calendar time and stock price are discretized, themodel

of linespostualtes only the discretization of calendar time. As such, each key date in the model corresponds to a continuous

line for stock prices. In most situations, the solution of the equations for the pricing function along each line can be represented

by simple polynomials with a finite number of terms. Following Bates [3], consider measuring time according to the ticks

of a special financial clock, which runs at a speed proportional to the number of transactions per unit real time. According

to the financial clock, transaction volume appears to be constant. Furthermore, log-returns are found to be nearly normally

distributed when measured with respect to the financial clock. Themodel of linesdeveloped here can be viewed as follows:

each line corresponds to a fixed date in calendar time, while the corresponding duration in financial time - proportional to

trading volume - is random and distributed as a Poisson exponential process. The time change overn-lines follows an Erlang

distribution corresponding to thenth arrival of a Poisson process. By formally taking the ordern of the Erlang distribution to be

a continuous variable, the arrival distribution becomes the gamma distribution. Gamma distributions provide the time change
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function for the variance-gamma pure jump process. Consequently, themodel of linesprovides a method for pricing derivative

claims in the variance gamma model when the model parameters reduce the arrival distribution to an Erlang distribution. As

will be demonstrate later on, the general case can often be recovered with high precision by interpolation or extrapolation

methods.

The differential equations that arise in themodel of linesare similar to the Black-Scholes equations, with the following

important distinction: time derivatives are replaced by finite differences, while derivatives with respect to stock price remain

intact. The pricing functions along each line are found to satisfy a system of inhomogeneous ordinary differential-difference

equations, which admit simple analytic solutions for most options. Although the situation is similar to Carr’s equations for

American style options with randomized maturity [6], there are important differences. The key difference being that calendar

time in Carr’s solution must be reinterpreted as financial time in themodel of lines. Because trading occurs in calendar time,

not in financial time, the re-interpretation breaks risk neutrality. To restore risk neutrality, the stock price must be scaled and

the option price discounted from one time-step to the next. Under this adjustment, themodel of linesreproduces theexact-

up to negligible roundoff errors - prices of European style options in which the underlying follows a variance-gamma process.

The solution scheme for European style puts and calls can easily be modified to exactly price barrier and Bermudan options

contingent on information on the lines only. Path-dependent options requiring continuous monitoring, such as American

options and barrier options can also be priced efficiently. However, in these cases, themodel of linesproduces approximate

prices, as the exercise boundaries are assumed to be piecewise constant between lines.

Themodel of linesenjoys the same calibration efficiencies and empirical explanatory power of the variance-gamma model.

Nonetheless, it is still interesting to compare it with the better known stochastic volatility models. Diffusion models where

volatility is stochastic have been considered by a number of authors, including Hull and White [17], Wiggins [29], Scott [27],

Melino and Turnbull [22], Heston [15], [16]. Stochastic volatility models based on GARCH, such as in Duan [13], have the

added advantage that the postulated process for the underlying asset is well justified by historical time series. As in jump

models, the effect of stochastic volatility can formally be interpreted as inducing a random time change. Furthermore, these
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models are capable of explaining the skew of implied volatilities of medium and long dated options; however, intrinsic model

limitations are encountered with short dated options. The observed steepness of implied volatility skews cannot be justified

by a model where paths are continuous and volatility driven by a stationary process. Models with state and time dependent

volatility, as in Rubinstein et al. [18],[25], Derman and Kani [11], [12] and Stutzer [28], are more effective with short

dated options. Unfortunately, this approach requires the introduction of a highly non-stationary process that requires frequent

readjustments. On the other hand, jump models reproduce the skew of short and medium dated options, while the predicted

smiles for longer dated claims are flatter than observed. For a comparison among these models the reader is referred to the

empirical studies [2], [26]. The present authors believe that a model which combines both jumps and stochastic volatility,

possibly of the GARCH type, will perform considerably better than either models separately. In a forthcoming paper, we

demonstrate how such a synthesis can be implemented by combining themodel of lineswith a two-level stochastic volatility

process that gives rise to a recombining stochastic volatility tree. It suffices to say that themodel of linesis not limited to pure

jump models, but rather, is an essential element of a more elaborate pricing framework.

The remainder of this paper is organized as follows: Section 2 is composed of three parts: firstly, the variance gamma model

is reiviewed; secondly, the financial interpretation of the method of lines in terms of randomized maturity options as developed

by Carr [6] and Carr and Faguet [7] is discussed; thirdly, themodel of linesis developed as a version of the method of lines

that is appropriate for variance-gamma models. Section 3 contains the explicit solutions to the pricing problems for European

options, continuously and discretely monitored barrier options, American and Bermudan options. Our implementation of the

Richardson extrapolation algorithm is provided in Section 4 and Section 5 concludes the paper.

2 The Variance Gamma Model

The variance gamma model introduced in [19], is an elegant extension of the standard geometric Brownian motion process

for stock prices. In the variance-gamma model, the log-returns on stock prices are postulated to follow a Brownian motion
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Figure 1:Diagram showing several gamma process sample paths which describe financial time. Notice that these paths are

quite different from typical diffusion process paths. Also, asν tends towards zero the path becomes more deterministic

not in calendar time, but rather infinancial time, which flows faster or slower than real time depending on market activity

(see figure1). Financial time can in some sense be thought of as following the trading volume as opposed to clock tick-time.

This has the advantage that when trading volumes rise, volatility increases and larger jumps are more likely to occur, as is

found empirically. To further model financial time, a secondary process is introduced, which performs the time change from

real-time to financial time. This secondary process is assumed to be a gamma process, which is essentially the continuous time

counterpart to the Poisson process. To be specific, letSt denote the stock price process at timet written as follows,

ln
(

St

S0

)
= ωt + XΓ(t;ν)(θ;σ) (1)

whereXτ (θ;σ) denotes a Brownian process with driftθ and volatilityσ evaluated at timeτ ; Γ(t; ν) denotes a gamma process

with a mean rate of one and variance rate ofν evaluated at timet; andω is a factor necessary to maintain risk-neutrality.

Assuming the risk free rater is constant in time,ω is fixed as follows,

lE[St] = ertS0 ⇒ ω = r +
1
ν

ln
(

1−
(

θ +
1
2
σ2

)
ν

)
(2)

The price of a European style option on that stock can be obtained by first conditioning on the financial time given by

5



the random time change, and then integrating over all financial times with the appropriate density. Suppose the pay-off of

the option at timeT is φ(ST ), and denote the conditioned price of the option at current calendar time byp(St, g), and the

unconditioned price byP (St). Then,

P (St) =
∫ ∞

0

dg
g

T−t
ν −1e−g/ν

Γ(T−t
ν )ν

T−t
ν

p(St, g) (3)

and

p(St, g) = e−r(T−t)lE[φ (ST ) | g]

= e−r(T−t)

∫ ∞

−∞

dx√
2πσ2g

e
− (x−θg)2

2σ2g φ(eω(T−t)+xSt)

= e−r(T−t)+(θ+ 1
2 σ2)gPBS

(
eω(T−t)St, g,

(
θ +

1
2
σ2

)
, σ

)
(4)

wherePBS(S, g, r, σ) denotes the Black-Scholes price of the European option maturing in timeg, S denotes the spot,r the

risk-free rate andσ the volatility. For particular pay-offs (puts and calls) it is possible to carry out the integral appearing in (3),

the result can be expressed in terms of confluent hypergeometric functions [20]. However, in order to price path-dependent

options, such as American or barrier options, it is necessary to solve a difficult integro-differential equation. It is conceivable

that an eigenvalue decomposition for the pricing kernel could yield useful results; however, analytic tractability would suffer.

In this paper, a solution to the pricing problem which leads to exact analytic expressions consisting solely of exponentials and

polynomials is presented. Our solution uses the methods of lines framework, which is briefly discussed below.

The numerical method of lines can be thought of as a dimensional reduction of a partial differential equation to an ordinary

differential equation. Consider the Black-Scholes differential equation,

{
−∂τ + rS∂S +

1
2
σ2S2∂2

S

}
PBS(S, τ) = rPBS(S, τ) (5)

(τ denotes time to maturity.) If time is discretized, the time derivative can be approximated by a difference

∂τPBS(S, τ) ≈ 1
τ

(PBS(S, τ)− PBS(S, 0)) (6)
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Figure 2:The standard method of lines yields exact prices for an option that matures at a random time which is distributed

according to an Erlang distribution)

and the partial differential equation reduces to a sequence of one-dimensional ordinary differential equations. This technique

was used by Carr [6] and by Meyer and Van Der Hoek [24] to price American options. Clearly, the results obtained using the

method of lines yields only an approximate answer to the pricing problem. Carr proposed a very suggestive interpretation of

the method of lines, which implies that this method prices random maturity contracts exactly (see figure2). Starting from this

intuition, we now argue that a slight modification can render the method of linesexactfor the variance-gamma model.

To explore the connection between the method of lines and the variance-gamma model, first note that the representation

given in equation (4) for the conditioned variance-gamma price in terms of the Black-Scholes price can be used to obtain a

PDE for the conditioned price. If the time to maturity is taken to be equal toν the unconditioned price, given by (3), is simply

the Laplace-Carson transformation of the conditioned price. Consequently, as Carr demonstrated in [6], the PDE reduces to a

sequence of ODE’s. These step will now be carried out explicitly.

The conditioned price can be easily shown to satisfy the following PDE,

(−∂g + DS) p(St, g) = 0 (7)

lim
g→0

p(St, g) = e−rνφ(eωνSt) (8)

where the operatorDS is defined as,

DS ≡
1
2
σ2S2dSS +

(
θ +

1
2
σ2

)
SdS (9)
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Applying the integral kernel appearing in the right hand side of (3) to the above PDE one finds,

−1
ν

[
P (St)− lim

g→0
p(St, g)

]
+ DSP (St) = 0 (10)

Consequently, the unconditioned price of a European option maturing at timet + ν is given by the solution to the ordinary

differential equation,

−1
ν

[
P (St)− e−rνφ(eωνSt)

]
+ DSP (St) = 0 (11)

The first term of this equation is the analog of the discretized time in the usual method of lines framework. The main difference

between the standard method of lines and the one constructed here, is that both the stock price level and the option price must

be scaled from line to line. Furthermore, the variance-rate parameterν now has a natural interpretation as the time-span

between lines.

This procedure can be applied recursively to obtain the price of any pay-off with cash flows occurring only at integer

multiples ofν, and is given succinctly by the following differential-difference equations,

DSP (n)(S) =
1
ν

(
P (n)(S)− e−rνP (n−1) (eωνS)

)
(12)

whereP (n)(S) denotes the price functionn time-steps of sizeν prior to maturity. These equations must be supplemented by

appropriate boundary conditions (see section 3) and a terminal time condition at maturity,

P (0)(S) = φ (S) (13)

The system of equations (12) and (13) form what we term themodel of lines.

There are several important features of themodel of linesthat should be elaborated on. Firstly, the drift which appears in

(9) is not the risk-free rate. This is because in financial time the stock drifts according toθ rather thanr. Secondly, in the

operatorDS there is no constant term, i.e. the term−rP in the usual Black-Scholes equation is missing. On reflection it is

clear that such a term must be absent because the discounting occurs in real time and not financial time. Finally, once the price

on one line is known, the price on the next line is determined from an option with a scaled spot and discounted price. The
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discounting of the price is natural, and can be thought of as the spot price of the previous line. The scaling of the spot itself can

be understood from the fact that, although the drift of the stock in financial time is not equal to the risk free rate, risk neutrality

must still be enforced, hence across each line additional drifting must be imposed.

Thus far, it was assumed that the stock paid no dividends; if, however, dividends are paid continuously at a constant rate

d, the risk-neutrality condition is effectively modified to,

lE[St] = e(r−d)tS0 (14)

This implies thatω → ω − d, while all other quantities remain intact. The price of a continuously dividend paying stock then

reduces to that of its non-dividend paying cousin with the above adjustment toω.

Within themodel of linesframework, it is also possible to incorporate dividends that are paid on the lines. The methodology

is straight-forward, on the lines the spot must be effectively reduced by the dividend pay-out, and amounts to the following

alteration of the differential-difference equations (12) and (13),

DSP (n)(S) =
1
ν

(
P (n)(S)− e−rνP (n−1) (eων(S − dn))

)
(15)

P (0)(S) = φ (S) (16)

wheredn denotes the dividend paid on thenth line.

Extensions to situations with stochastic interest rates are also possible. In this case themodel of lineswould have to be

written in the forward measure and the payoff parameterized in terms of the forward price, which follows a martingale process.

Similarly, extensions of Black’s formulas for interest rate derivatives such as caps and swaptions can be obtained. While this

paper focuses on equity options, we are currently preparing articles on these and other extensions.

9



3 Option Pricing in the Model of Lines

The differential-difference equations (12), (13) are easier to solve if written in terms of the moneyness parameter

xt = ln(St/K) (17)

rather than the stock price. It is also convenient to work with the scaled dimensionless pricesP̃ (n)(x) defined so that

P (n)(x) = KP̃ (n) (x + nων) (18)

The differential equations for the scaled prices has the following simple form:

DxP̃ (n)(x) = −e−rν

ν
P̃ (n−1) (x) (19)

where, the differential operatorDx is given by

Dx ≡
1
2
σ2dxx + θdx −

1
ν

(20)

and the final time condition is now

P̃ (0)(x) =
1
K

φ (x) (21)

Additional boundary conditions depending on the particulars of the contract, such as early exercise clauses for Americans,

must also be included.

In the following sections, the above equations are used to derive closed form solutions for the price functions of a number

of standard option contracts.

3.1 European Options

Consider a European put option struck atK and maturing at timeT . The terminal boundary condition is expressed through

the payoff function

P̃ (0)(x,K) =
1
K

φ(x) ≡ (1− ex)+ (22)
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Notice that the coefficients of the system of ODE’s in (19) are constant in time. Furthermore, the boundary conditions do not

depend on the time change. The general solution to our system of equations on the linesn = 1, 2, .. therefore has the form

P̃ (n)(x,K) =


e−d+x

n−1∑
m=0

a(n)
m xm , x > 0

e−rnν − ex−nα + e−d−x
n−1∑
m=0

b(n)
m xm , x < 0

(23)

where, the constant

α ≡ ων (24)

has been introduced to lighten notations, andd± are the positive and negative solutions of the characteristic polynomial of the

differential operatorDx, i.e.

d± =
θ ±

√
θ2 + 2

ν σ2

σ2
(25)

Most of the coefficients of the price function on thenth-line can be computed using equation (19) and expressed in terms

of the coefficients on the(n− 1)th-line. The resulting recurrence relations to be solved backwards in time are

a(n)
m =

γ+a
(n−1)
m−1 + m(m+1)

2 σ2a
(n)
m+1

m (θ − σ2d+)
, 1 ≤ m ≤ n− 1 (26)

b(n)
m =

γ−b
(n−1)
m−1 + m(m+1)

2 σ2b
(n)
m+1

m(θ − σ2d−)
, 1 ≤ m ≤ n− 1 (27)

Here the discount factors,γ± ≡ −ν−1 e−rν−αd± have been introduced andb(n)
n = a

(n)
n ≡ 0. The coefficientsa(n)

0 andb
(n)
0

are an exception, as the they are fixed by enforcing continuity of the pricing function and the delta ratio at the at-the-money

pointx = 0  1 −1

−d+ d−


 a

(n)
0

b
(n)
0

 =

 e−rnν − e−nα

−e−nα − a
(n)
1 + b

(n)
1

 (28)

The three equations (26), (27), (28)fully determine the price of the European put option in terms of a finite combination

of elementary functions. It is quite surprising that although the underlying follows a variance-gamma process, the prices at

integer multiples of the variance rate can be expressed as simply as (23).
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Figure 3:The implied smiles of the variance-gamma model for maturities of 1, 2, 4, 8 and 16 weeks with parameters:ν = 1

week,σ = 15%, θ = −20% andr = 5%

Volatility smiles for a variance-gamma process withσ = 15%, θ = −20%, andν = 1 week are plotted in figure3. The

relative error between the implied volatilities obtained using the exact prices in [20] and those obtained using themodel of

lineswere also calculated. The largest relative error for the smiles in figure3 was found to be∼ 10−3% while the average

relative error over the smiles was found to be∼ 10−5%. These negligible discrepancies are due to computational round-off

errors; there was also little difference in computation time between the two pricing schemes.

Put options, the stock and a bond provide a spanning set of assets for all European style claims. The price of European

calls,C(n)(x, K), of the same maturity,T , is obtained from put-call parity, i.e.

C(n)(x, K) = P (n)(x, K) + K(ex − e−rT ) (29)

Furthermore, the priceF (S) of more general European style payoffsφ(ST ) can be reconstructed from put option prices as
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indicated in [9], where it is shown that a static replication argument leads to the pricing formula,

F (n)(S) = φ(S)e−rn∆t + φ′(S)[Cn(0,K)− P (n)(0,K)]

+
∫ S

0
φ′′(K)P (n)

(
log S

K ,K
)
dK +

∫∞
S

φ′′(K)C(n)
(
log S

K ,K
)
dK

(30)

3.2 Barrier Options

As an example of a barrier option, consider a pay-at-expiry, down-and-out put with barrierH such that

h = − ln
H

K
> 0 (31)

and rebate

R = ρK (32)

Since the boundary value is constant and the option price depends on the probability of breaching the barrier, but not on the

time when it happens, the boundary condition does not depend on the financial time change, just as in the case of European

options. Thus, the price of the barrier instrument must satisfy one of the following conditions,

P̃ (n)(x,K, H) =


e−rnνρ ;x ≤ nα− h pay-at-expiry

ρ ;x ≤ nα− h pay-at-hit

(33)

whereα was defined in (24). Notice that in terms of the moneyness parameterx, the boundary moves upwards ifα is positive

and downwards otherwise. This is a consequence of equation (18). The sign ofα largely depends on the size of the skewness

parameterθ, and can be explained as follows: for a small kurtosis parameter (recall thatν was estimated in [20] to be∼ 0.2)

equation (2) leads to the approximationα ∼ (r − θ − 1
2σ2)ν; consequently, ifθ . r − 1

2σ2 thenα > 0. For typical

equity options, the implied volatility smile is negatively skewed implying a negativeθ parameter, this in turn implies thatα is

typically positive. Nonetheless, it is entirely possible forα to be negative; as such, both signs ofα will be discussed here.

If α is positive, then the boundary condition moves in towardsx = 0 and eventually crosses it; while ifα is negative the

boundary condition continually moves away fromx = 0. In the former case, the solution contains at most three regions, the
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Figure 4: The moving boundary and solution regions

for a down and out barrier option with positiveα. No-

tice that the number of regions is at most three and re-

duces to two when the boundary moves across thex = 0

line.

Figure 5: The moving boundary and solution regions

for a down and out barrier option with negativeα. No-

tice that the number of regions constantly increases.

region when the spot is above the strike, between the strike and the boundary, and below the boundary. When the boundary

collides withx = 0, the solution then contains only two regions (see figure4). However, withα < 0, the number of regions

constantly increases (see figure5). In either case, the boundary is stationary in the original variables, even though it moves in

P̃ parameterization.

The pricing scheme forα > 0 will now be presented. Before the moving boundary crossesx = 0, the price function can
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be broken up into three regions and can be written as a series,

P̃ (n)(x,K, H) =



e−d+x
n−1∑
m=0

a(n,0)
m xm , x > 0

e−rnν − ex−nα +
n−1∑
m=0

{
e−d+xa(n,1)

m + e−d−xb(n,1)
m

}
xm ,x(n+1) ≤ x ≤ 0

e−rnνρ , x < x(n+1)

(34)

where the shifting barrier boundaries,x(i), have been introduced,

x(i) ≡ (i− 1)α− h (35)

Thea
(n,i)
m coefficients satisfy the recurrence relations given in (26) while theb

(n,i)
m coefficients satisfy the recurrence relations

given in (27). Once again, the coefficients withm = 0 cannot be obtained from the recurrence relations alone, and instead

must be found by imposing the continuity of the scaled price and its derivative atx = 0, and continuity at the boundary

x = x(n+1), 
1 −1 −1

−d+ d+ d−

0 e−x(n+1)d+ e−x(n+1)d−




a
(n,0)
0

a
(n,1)
0

b
(n,1)
0

 =


c
(n)
0

c′0
(n)

c
(n)
1

 (36)

where,

c
(n)
i =



e−rnν − e−nα, i = 0

e−h + e−rnν(R− 1)

−
n−1∑
m=1

{
e−d+x(n+1)

a(n,1)
m + e−d−x(n+1)

b(n,1)
m

}(
x(n+1)

)m

, i = 1

(37)

c′0
(n) = −e−nα − a

(n,0)
1 + a

(n,1)
1 + b

(n,1)
1 (38)

Equation (36) is the barrier analog of equation (28) for Europeans.
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The moving boundary crosses the strike whenn ≥ h
α , the solution then consists of only two regions,

P̃ (n)(x,K, H) =


e−d+x

n−1∑
m=0

a(n,0)
m xm , x > x(n+1)

e−rnνρ , x ≤ x(n+1)

(39)

Of course, thea(n,0)
m coefficients still satisfy the recurrence relations given in (26), while them = 0 coefficient is obtained by

enforcing continuity at the boundaryx = x(n+1),

a
(n,0)
0 = ed+x(n+1)−rnνρ−

n−1∑
m=1

e−d+x(n+1)
a(n,0)

m

(
x(n+1)

)m

(40)

This concludes the discussion of theα > 0 scenario. If however,α < 0, the number of regions on thenth-line is equal to

n + 2 as can be seen from figure5. In this case the solution is given by,

P̃ (n)(x,K, H) =



e−d+x
n−1∑
m=0

a(n,0)
m xm, x > 0

e−rnν − ex−nα +
n−1∑
m=0

{
e−d+xa(n,1)

m + e−d−xb(n,1)
m

}
xm, x(1) < x ≤ 0

e−rnνρ +
n−1∑
m=0

{
e−d+xa(n,2)

m + e−d−xb(n,2)
m

}
xm, x(2) < x ≤ x(1)

...
...

e−rnνρ +
n−1∑
m=0

{
e−d+xa(n,n+1)

m + e−d−xb(n,n+1)
m

}
xm, x(n+1) < x ≤ x(n)

e−rnνρ, x ≤ x(n+1)

(41)

As usual, thea(n,i)
m coefficients satisfy the recurrence relation (26) while theb

(n,i)
m coefficients satisfy the recurrence relation

(27). Enforcing continuity in the pricing functioñP and its derivative at each region switch except for the last, where only

continuity is forced, allows them = 0 coefficients to be calculated. The linear system of equations can be compactly
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represented as follows:

1 −1 −1 0 0 0 0 . . . 0 0

−d+ d+ d− 0 0 0 0 . . . 0 0

0 y
(1)
+ y

(1)
− −y

(1)
+ −y

(1)
− 0 0 . . . 0 0

0 −d+y
(1)
+ −d−y

(1)
− d+y

(1)
+ d−y

(1)
− 0 0 . . . 0 0

0 0 0 y
(2)
+ y

(2)
− −y

(2)
+ −y

(2)
− 0 0

0 0 0 −d+y
(2)
+ −d−y

(2)
− d+y

(2)
+ d−y

(2)
−

... 0 0

...
...

...
...

...
...

...
...

...

0 0 0 . . . y
(n−1)
+ y

(n−1)
− −y

(n−1)
+ −y

(n−1)
−

0 0 0 . . . −d+y
(n−1)
+ −d−y

(n−1)
− d+y

(n−1)
+ d−y

(n−1)
−

0 0 0 . . . 0 0 y
(n)
+ y

(n)
−





a
(n,0)
0

a
(n,1)
0

b
(n,1)
0

...

a
(n,n+1)
0

b
(n,n+1)
0



=



c
(n)
0

c′0
(n)

c
(n)
1

c′1
(n)

...

c
(n)
n

c′n
(n)

c
(n)
n+1



(42)

where,

y
(i)
± = e−x(i)d± (43)

and the right hand side for the smooth pasting conditions of the price function are given by,

c
(n)
i =



e−rnν − e−nα, i = 0

(ρ− 1)e−rnν + e−(h+nα) +
n−1∑
m=1

{
y
(1)
+

(
a(n,2)

m − a(n,1)
m

)
+y

(1)
−

(
b(n,2)
m − b(n,1)

m

)}
(−h)m

, i = 1

n−1∑
m=1

{
y
(i)
+

(
a(n,i+1)

m − a(n,i)
m

)
+ y

(i)
−

(
b(n,i+1)
m − b(n,i)

m

)} (
x(i)

)m

, 2 ≤ i ≤ n

−
n−1∑
m=1

{
y
(n+1)
+ a(n,n+1)

m + y
(n+1)
− b(n,n+1)

m

}(
x(n+1)

)m

, i = n + 1

(44)
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while the right hand side for the smooth pasting conditions of the delta are as follows,

c′i
(n) =



−e−nα − a
(n,0)
1 + a

(n,1)
1 + b

(n,1)
1 , i = 0

e−(h+nα) +
n−1∑
m=1

{
y
(1)
+ (m + d+h)

(
a(n,2)

m − a(n,1)
m

)
+ y

(1)
− (m + d−h)

(
b(n,2)
m − b(n,1)

m

)}
(−h)m−1

, i = 1

n−1∑
m=1

{
y
(i)
+

(
m− d+x(i)

) (
a(n,i+1)

m − a(n,i)
m

)
+ y

(i)
−

(
m− d−x(i)

) (
b(n,i+1)
m − b(n,i)

m

)} (
x(i)

)m−1

, 2 ≤ i ≤ n

(45)

The evaluation algorithm for down-and-out puts admits an easy generalization to the case of barriers that are piecewise

constant between the lines. In that case, the boundary valueh for each time-stepn is replaced withhn.

The case when the barrier condition is discretely monitored on the lines can also be accommodated. In this situation, the

price on each line is first evaluated assuming the absence of the barrier on that line. This means that the last region in the

pricing formula (34), (39), and (41), are replaced by a series similar to that in the pricing formula for European options (23).

However, before using this solution to evaluate the price on the next line, the pricing function needs to be truncated at the

barrier value on the current line. As a result, the pricing function may not be continuous at the boundary of this last region, as

should be expected for a discretely monitored barrier.

3.3 American Options

To price American options the same methods that apply in the barrier case can be utilized. As mentioned in the introduction,

themodel of linesapplied to the American option pricing problem does not yield exact prices; rather, the prices obtained in this

section are those of a piecewise constant barrier option, where the holder of the option is allowed to adjust the level of barrier

over every time-interval. With this in mind, the main difference between the barrier option discussed in the previous section

and the “American” option priced here, is that the moving boundary must now be located using the optionality clause, in

addition to assuring that the smooth pasting requirements are satisfied. An additional smooth pasting requirement is obtained

18



Figure 6: The boundary for an American

option with positiveα. The number of so-

lution regions at first increases, but it soon

begins to decrease, and eventually reduces

to two regions

Figure 7: The boundary for an American

option with negativeα. The number of re-

gions in this scenario is constantly increas-

ing

by maximizing the options value; the standard arguments imply that maximizing the option’s price is equivalent to forcing the

hedge ratio at the exercise boundary to be equal to negative one. As in the case of European and barrier options, the boundary

conditions are the same as those for the Black-Scholes partial differential equation.

Intuitively, the optimal exercise boundary is expected to decrease as time to maturity lengthens. However, since the price

of the option is obtained from the scaled prices by shifting its argument byα (see equation (18)), two situations corresponding

to the sign ofα can occur. Ifα > 0 the relevant boundary for the scaled pricesP̃ (x) decreases initially and eventually starts

to increase and ultimately crosses the strike level. This situation is illustrated in figure6. On the other hand, whenα ≤ 0, the

boundary will constantly decrease, forcing the number of regions to increase as time to maturity increases as depicted in figure

7. In either case the price on thenth-line can be written in a general form, assuming that the number of regions isbn + 2, as
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follows,

P̃ (n)(x) =



e−d+x
n−1∑
m=0

a(n,0)
m xm, x > 0

e−rnν − ex−nα +
n−1∑
m=0

{
e−d+xa(n,1)

m + e−d−xb(n,1)
m

}
xm, x(n,1) < x < 0

e−r(n−1)ν − ex−nα +
n−1∑
m=0

{
e−d+xa(n,2)

m + e−d−xb(n,2)
m

}
xm, x(n,2) < x < x(n,1)

...
...

e−r(n−bn+1)ν − ex−nα +
n−1∑
m=0

{
e−d+xa(n,bn)

m + e−d−xb(n,bn)
m

}
xm, x(n,bn) < x < x(n,bn−1)

1− ex−nα, x < x(n,bn)

(46)

With this ansatz, the position of the optimal exercise boundary on thenth-line is given byS
(n)
ex = S0ex

(n,bn)−nα. The

coefficientsa(n,i)
m , satisfy the recurrence relation (26), while theb

(n,i)
m coefficients satisfy the recurrence relation (27). Of

course, the recurrence relations do not determine them = 0 coefficients, rather they are obtained by enforcing continuity in

the price and the delta at the end of every interval. Also the optimal exercise boundary must be solved for.

In the case of negativeα, the number of regions is increasing, and as is clear from figure7, x(n,i) = x(n−1,i) for i =

1, . . . ,bn−1 and the number of regions between the strike level and the exercise boundary isbn = n. Consequently, all the

regions for the new line (with the exception of the new optimal exercise point) are known from the previous line. The system

of 2(n + 1) equations which determines the new exercise pointx(n,bn) in addition to them = 0 coefficients, is very similar

to the barrier case, only one more equation, which enforces continuity in the delta, must be added, and the system is now
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non-linear due to the new exercise point,

1 −1 −1 0 0 0 0 . . . 0 0

−d+ d+ d− 0 0 0 0 . . . 0 0

0 y
(1)
+ y

(1)
− −y

(1)
+ −y

(1)
− 0 0 . . . 0 0

0 −d+y
(1)
+ −d−y

(1)
− d+y

(1)
+ d−y

(1)
− 0 0 . . . 0 0

0 0 0 y
(2)
+ y

(2)
− −y

(2)
+ −y

(2)
− 0 0

0 0 0 −d+y
(2)
+ −d−y

(2)
− d+y

(2)
+ d−y

(2)
−

... 0 0

...
...

...
...

...
...

...
...

...

0 0 0 . . . y
(n−1)
+ y

(n−1)
− −y

(n−1)
+ −y

(n−1)
−

0 0 0 . . . −d+y
(n−1)
+ −d−y

(n−1)
− d+y

(n−1)
+ d−y

(n−1)
−

0 0 0 . . . 0 0 y
(n)
+ y

(n)
−

0 0 0 . . . 0 0 −d+y
(n)
+ −d−y

(n)
−





a
(n,0)
0

a
(n,1)
0

b
(n,1)
0

...

a
(n,n)
0

b
(n,n)
0



=



c
(n)
0

c′0
(n)

c
(n)
1

c′1
(n)

...

c
(n)
n

c′n
(n)



(47)

where,

y
(i)
± = e−x(n,i)d± (48)

and the right hand side for the smooth pasting conditions of the price function are given by,

c
(n)
i =



e−rnν − e−nα, i = 0

e−r(n−i)ν − e−r(n−i+1)ν +
n−1∑
m=1

{
y
(i)
+

(
a(n,i+1)

m − a(n,i)
m

)
+y

(i)
−

(
b(n,i+1)
m − b(n,i)

m

)} (
x(i)

)m

, 1 ≤ i ≤ n

(49)
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while the right hand side for the smooth pasting conditions of the delta are as follows,

c′i
(n) =



−e−nα − a
(n,0)
1 + a

(n,1)
1 + b

(n,1)
1 , i = 0

n∑
m=1

{
y
(i)
+

(
m− d+x(i)

) (
a(n,i+1)

m − a(n,i)
m

)
+ y

(i)
−

(
m− d−x(i)

) (
b(n,i+1)
m − b(n,i)

m

)}(
x(i)

)m−1

, 1 ≤ i ≤ n

(50)

also,a(n,n+1)
m = b

(n,n+1)
m ≡ 0. This is the complete solution, and although the system is non-linear, each guess ofx(n,bn)

renders it linear.

In the case of positiveα, the boundary should first be assumed to lie below the old boundary (x(n,bn) < x(n−1,bn−1)). If

no solution of system (47) exists, then the assumption is false. The bottom most region must then be deleted from the solution

assumption and the system must be solved once again. If no solution still exists, delete yet another region and so on until a

solution is found. Once the number of regions reduces to two, there will always be an optimal solution.

4 Extrapolation Techniques

Although the time-step dictates theν parameter in the VG model, it is possible to use themodel of linesto obtain good

approximations to the variance-gamma prices whenν is different from∆t. Just as Carr [6] demonstrated that Richardson

extrapolation toν = 0 reproduces the Black-Scholes value in the usual method of lines, we propose to use an extrapolation

scheme to obtain the prices of options forν 6= ∆t and in particular forν > ∆t. Figure8 shows the exact implied Black-

Scholes volatilitiesσBS(ν) for one-month European options with various strike levels as a function of the parameterν.

Quadratic polynomials inln ν were used to fit the first three points atν = ∆t = 1, 2 and4 weeks, and extrapolated to the

fourth point atν = 8 weeks, i.e.

σBS(ν) = A0 + A1 log ν + A2(log ν)2 (51)

The fitted curves in figure8 visually demonstrate the quality of the approximation. The absolute error measured in terms

of the implied Black-Scholes volatility for at-the-money instruments was found to be negligible. The largest errors appeared
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Figure 8:Extrapolation of the implied volatility of one month European options for a VG model withν = 8 weeks using a fit

to volatilities obtained withν = ∆t = 1, 2 and4 weeks. The model parameters wereσ = 15%, θ = −20% andr = 5% and

the spot was taken to be$100

in the out-of-the money option struck at 80% of the spot, for which the absolute error in implied volatility was 0.09%. Our

conclusion is that extrapolation allows for the pricing of variance-gamma models with realistic parameter choices using the

model of lines, albeit the prices thus obtained are approximate.

Just as in the case of European options, it is possible to use extrapolation to obtain the prices whenν 6= ∆t for exotic

options. In figure9 the boundary of a Bermudan option which can be exercised every 8 weeks is plotted as a function of

ν = ∆t = 1, 2, 4 and 8 weeks. The black dots in figure9 form the predicted 8 week boundary obtained by extrapolation from

the first three points. The extrapolation is based on a fit to a quadratic polynomial ofln ν to the first three boundaries. The

errors obtained by this extrapolation method are minimal with a maximum absolute error of $0.18 for the longest maturity

option. The at-the-money prices fitted to a linear function ofν are displayed in figure10. The errors are once again negligible

with the longest maturity option being underpriced by $0.02.
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Figure 9: The boundary of a Bermudan option which can be exercised every 8 weeks plotted for several values ofν = ∆t.

The black dots show the boundary withν = 8 weeks obtained by extrapolation using the first three boundaries. The model

parameters wereσ = 15%, θ = −20% andr = 5% and the spot was taken to be$100

Figure 10:The prices of the at-the-money options whose boundaries are shown in figure9. The lines indicate a fit to the first

three prices extrapolated to the fourth
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5 Conclusions

We proposed a new pricing model, coined themodel of lines, which is appropriate for both path-dependent and path-

independent options when the underlying asset follows a variance gamma process. Themodel of linesfor jump processes

is similar to the method of lines for American options in the Black-Scholes model. However, contrary to the numerical

approximation scheme, themodel of linesproducedexactprices for a large class of options, the would be “errors” were rein-

terpreted as the effect of the jump component in the process for the underlying. The new methodology was applied to several

pricing problems for European, American and barrier options, and the method was found to be both numerically efficient and

simple to implement.
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