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ABSTRACT

Functional Principal Component Analysis (FPCA) pro-
vides a powerful and natural way to model functional fi-
nancial data sets (such as collections of time-indexed fu-
tures and interest rate yield curves). However, FPCA as-
sumes each sample curve is drawn from an independent
and identical distribution. This assumption is axiomati-
cally inconsistent with financial data; rather, samples are
often interlinked by an underlying temporal dynamical pro-
cess. We present a new modeling approach using Vector
auto-regression (VAR) to drive the weights of the princi-
pal components. In this novel process, the temporal dy-
namics are first learned and then the principal components
extracted. We dub this method the VAR-FPCA. We apply
our method to the NYMEX light sweet crude oil futures
curves and demonstrate that it contains significant advan-
tages over the conventional FPCA in applications such as
statistical arbitrage and risk management.

KEY WORDS
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1 Introduction

Principal component analysis (PCA) has been widely used
to analyze coupled time-series [2], [4], [3] and recently, the
functional nature of certain data sets has received mounting
attention [9], [8]. Functional principal component analy-
sis (FPCA) provides a natural and powerful way to model
coupled time-series when the data are entire curves but are
observable only at discrete, not necessarily uniform, inter-
vals.

The current applications of PCA and FPCA on finan-
cial time-series assume that each sample in the data set
are drawn independently from a stationary distribution. As
such, the principal components (PCs) are invariant under a
permutation of the data set — defying the time-indexed na-
ture of financial data. For such data, the validity of the PCs
extracted in this manner is highly questionable. In the top
panel of Figure 1 we present a time-series resulting from
the NYMEX light sweet crude oil futures price data set (to
be explained in more detail in Section 2.2). This series is
typical of many types of financial data: there is an unmis-
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Figure 1. Removal of temporal structure. (Top) Shows the
data curve fitting coefficient 3, (t); (Bottom left) Scatter

~

plot of 3,(t) = B,(t) — m — dt and its lag revealing its
AR nature; (Bottom right) The residuals £} (t) scatter plot
— after the AR structure is removed from 3, (¢).

takable trend together with mean-reversion to this trend.

In this work, we propose a natural marriage between
vector auto-regressive (VAR) models and FPCA. First, the
underlying temporal dynamics is estimated and removed.
Then FPCA is performed on the detrended data, which now
satisfies the iid requirements of PCA. The rationale for em-
ploying a modified FPCA as opposed to a modification of
the usual PCA is quite simple: futures price data on a given
day are available for contracts maturing at the start of each
calendar month for the next two and a half years, and then
quarterly for the next year, and finally semi-annually for
the last two years. Consequently, the data points on a given
curve move to the left as time progresses and are also un-
equally spaced. Through the use of basis functions, these
discrete data points are transformed into a continuous func-
tion; FPCA then extracts the PCs from the now functional
data. Data sets of the sort above are quite common in func-
tional financial time-series. Furthermore, standard PCA
does not guarantee smooth PCs, cannot be used to extrap-
olate beyond or interpolate between data points, and does



not incorporate domain specific knowledge which in FPCA
enters through the choice of the basis functions.

This paper is organized as follows: Section 2
describes our modeling assumptions, our VAR-FPCA
methodology and the specific commodities data set used
in the analysis; Section 3 discusses the results of the data
analysis and the resulting financial intuition; and Section 4
concludes and discusses ongoing and future work.

2 The VAR-FPCA Methodology
2.1 Model

Please consult Ramsay & Silverman [10] and Hamilton [6]
for an excellent introduction to FPCA and VAR.

As usual in FPCA analysis, the data is first trans-
formed into functional form. This involves expressing the
original data as a linear combination of a set of basis func-
tions {¢r(7) : k = 1,..., K}. The curve-fitting error is
minimized in the least-square sense, on a curve-by-curve
basis, providing a time-series of coefficients (; for each
basis function. The data is now represented in functional
form:

K
Fy(r) = Budr(r) ,
k=1

or equivalently
F(r) =Bo(7) .

Here, F;(7) denotes the t + 7-maturity futures price at
time ¢, 7 is the time to maturity, and (B is the coef-
ficient of the k-th basis function ¢, at time ¢. F and
B = (B,_;...8,_n)" are NxK matrices, where N is
number of observed curves and 3, = (341 ...Bix)". Fi-
nally, ¢ is a column vector of the K basis functions. As
mentioned earlier, the 3, coefficients are obtained by least
squares minimization on a curve-by-curve basis

e

B = argﬁminz 18, ¢(ei) — Fe(ri3)|I?
¢ i=1

for every ¢, where { F;(7};) : i = 1,...,n;} is the observed
futures price curve at time ¢.

As evident in Figure 1, there is a strong underlying
temporal structure embedded in the 3 coefficients. We use
the following first order VAR process with a linear trend to
model this dynamics:

B, =m+dt+AB, ,+e:, (1)

where, m is a constant mean vector process, d is the linear
trend vector process, A is the Kx K cross-factor interaction
matrix, and &, ~ N(0,Q) is the iid K-dimensional zero
mean normal innovation. Let the estimators of the VAR pa-
rameters be denoted by {m, 8, 11, ﬁ} (see Hamilton [6]
for standard VAR estimation procedures). Based on these
estimates, we then extract the residuals

& =8, - (maH,&gt_l) . 2)

The scatter plot of the residuals &; versus their one-period
lag are shown in the bottom right panel in Figure 1. Com-
paring with the left panel, it is evident that the auto-
regression has been removed. The residuals therefore con-
tain the fluctuation of the basis loadings free of the tempo-
ral structure — precisely what is demanded in PC analysis
whether it be standard PCA or FPCA.

LetE = (€41 ... Et:N)T denote the matrix form of
all K residuals. FPCA, much like multi-variate PCA, seeks
to diagonalize the now continuous variance-covariance
function (instead of a finite dimensional matrix)

1
(1, m) = 5 &(r) "B Ee(r)
via the eigen-problem

(0,)(7) = p&(7) 3)

subject to the orthonormality constraints ({x,&) = Oy,
where the inner product is defined as follows

(f,9)(1) = /Tmaz f(r,8)g(s)ds .

min

The vector of eigen-functions &(7) are the functional PCs
representing the modes of largest variation in the functional
data. The eigen-problem is solved by expanding a given &
in terms of the basis functions ¢:

&(r) =2z &(T) )

transforming the eigen-equation (3) into one for zg:
1
~W/PETEW P = ppuy )

where z;, = W™1/2u;, and (W);; = (¢, ¢;) (see the
appendix for details). The domain specific knowledge of
the basis functions are now embedded in the W matrix.
Once the functional PCs are extracted, the original
data F can be projected into the new basis functions via

K
F(7) =Bo(r) = GE(r) or Fy(r) =Y yue(7)
k=1

where the matrix G = B(Z™1)T and Z = (z;...2zx)
is the matrix of eigenvectors stacked column wise. In the
above, the time-series of the PC’s coefficients v, = 7715,
naturally appears. Stacking these loadings columnwise
produces G.

Given that the basis function loadings 3; follow the
VAR(1) model in equation (1), the PC loadings v, therefore
follow the VAR(1) process

v, =Z'm+Z'dt+Z TAZ~y, +e,,  (6)

where €, ~ N(0;Q' = Z71Q(Z™HT) are the iid K-
dimensional normal innovations. In light of this fact, the
innovations will not be independent — Z is not an orthog-
onal matrix and therefore cannot diagonalize the positive
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Figure 2. Transforming discrete observed data into func-
tional form. (Top 4) A few typical examples of fitted data
curves. (Bottom) The relative RMS error [%] of each data
curve, averaging 0.40% with a maximum of 1.2%.

definite covariance matrix 2. Curiously, we find the co-
variance matrix €2’ is indeed essentially diagonal for the
NYMEX light sweet crude oil futures data. This may not
be a coincident; instead, although traditional PCA ignores
the functional form of the data, it will diagonalize the co-
variance matrix of the residual noise terms. Since FPCA is
a way of modifying PCA to correctly account for the func-
tional nature of data, Z should be “close” to a diagonalizing
matrix for the residual noise.

It is important to comment that the our procedure
is distinct from preprocessing the data, such as the re-
moval of seasonality trends or outliers. Instead it should be
viewed as a way of extracting the true stochastic degrees of
freedom from the pre-visible information embedded in the
data.

2.2 Data

To illustrate the utility of our VAR-FPCA methodology,
we used the daily NYMEX light sweet crude oil futures
contracts data with maturities between 3 weeks to 7 years,
dated from January 2002 to December 2006, totaling 1251
data curves with an average of 18 points on each curve.
In general, VAR-FPCA is a powerful tool to analyze any
functional time-series.

We selected a set of exponential basis functions to
capture the salient features of this specific data set:

1, k=1
o (T) = { (1= exp{—ap7))/ag, k=2.K

where ax, = {4,2,1,0.2}, representing the decay times of
a quarter, half, one, and five years. These varying decay

rates are included to provide sufficient coverage for both
short and long term horizons. The exponential form of
these basis functions is motivated by the implied forward
prices produced by modeling the spot price as a mean-
reverting multi-factor Gaussian Ornstein-Uhlenbeck pro-
cess. Such models assume the spot price has a tendency
to mean-revert to a given stochastic level which itself may
mean-revert to another stochastic level and so on. See for
example Schwartz [3] & [5] and Jaimungal & Hikspoors
[7]. Earlier work on yield-curve modeling and fitting (see
Nelson & Siegel [2] and Diebold & Li [4]) also used a sim-
ilar (but reduced) set of basis functions. For other specific
data sets, domain-specific knowledge can be incorporated
in the analysis through the selection of the basis functions.

Figure 2 provides a few typical quality of fit exam-
ples using our proposed basis functions. The bottom chart
of Figure 2 provides the relative RMS error for each data
curve. The average relative RMS errors over all the fit-
ted curves is about 0.4% with a maximum of 1.2%. Fit-
ting errors of this magnitude are quite small for practi-
cal purposes. We can therefore be confident in the func-
tional representation of our data using this basis. Interest-
ingly, the relative RMS for the period 2005 onwards is no-
tably smaller (~ 0.22%) than the period up to this point
(~ 0.50%).

The futures curves exhibit a variety of typical shapes
and are quite similar to interest rate yield curves. The
curves tend to have humps, although over some periods the
curves may appear flatter. These humps may be upward
humps or downward humps and typically peak in the one
to two year maturity region. Nonetheless, the fixed set of
basis functions are able to capture all of the observed fea-
tures quite well.

3 Results

Figure 3 shows the fitted 3; coefficients. Most of the lin-
ear trend is loaded on the first basis function, reflecting the
general upward trend of oil prices during the period of this
particular data set across all maturities. Furthermore, there
may have been a regime change in 2004 — in this article
we will ignore the existence of this regime change and in-
stead leave the analysis of a hidden Markov model driving
regimes for future work. The mean level, trend and mixture
matrix were estimated using standard VAR methods. Inter-
estingly, the estimated mixture matrix A has heavy weights
on its diagonal and lighter weights on the off-diagonal, im-
plying there is little cross-factor interactions. This feature
is illustrated in Figure 4.

We then remove the temporal structure from the 3,
time-series and determine the principal components £ from
E using the FPCA procedure outlined in Section 2.1. The
loadings of the three most dominant principal components
are shown in Figure 5. As expected, the PC loadings ~,
still exhibit mean-reversion. Pleasantly, the variability of
the PC loadings are significantly smaller than the basis
loadings themselves. Furthermore, the covariance matrix
Q' of the PC loadings coefficients G- are essentially di-



B,® B,

4W OMw'—w

10/11/02  02/23/04

10/11/02  02/23/04

B, B,®

’ ’ W
-2 -1
10/11/02  02/23/04 10/11/02  02/23/04

By(®)

Owﬂ\wdw
-0.1

10/11/02  02/23/04

Figure 3. The basis loading coefficients 3, of the fitted
functional data.

Matrix A

Figure 4. An image of the estimated mixture matrix A.
The relatively strong diagonal indicates there is little cross-
factor dependency in 3,.

agonal, with all correlations insignificantly different from
zero. This is a very desirable feature. The loadings of
the basis 3, do exhibit significant correlation, and although
the VAR-FPCA algorithm does not guarantee the indepen-
dence of the loadings of the PCs, this is precisely what we
find. This, together with the relatively low volatility of the
PC loadings, tantalizing suggests that data prediction will
be more accurate when based on the PCs rather than the
basis functions themselves. In addition, the low volatil-
ities exhibited in the PC loadings can potentially lead to
statistical arbitrage strategies that involve less transactions,
leading to substantial savings. To complete the description,
we found the volatility of the first three principal compo-
nents to be 53.0% 13.8% and 4.8% respectively (annual-
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Figure 5. The loading coefficients ~y, of the top three prin-
cipal components.
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Figure 6. Superposition of the top 3 principal components.

ized based on 251 trading days per year).

Figure 6 depicts the three most dominant principal
components. When compared with regular PCA, our VAR-
FPCA algorithm produces extremely smooth and easily in-
terpretable principal components. Similar to the PCs ex-
tracted from interest rate yield curves [2], [4], the first
principal component, accounting for 92.5% of the varia-
tion, governs the overall price level of the futures price
uniformly across all maturity dates with a slight biasing of
short term contracts. The second PC, accounting for 6.27%
of the variation, is primarily responsible for tilting the curve
as it biases short term contracts relative to long term con-
tracts. Finally, the third PC, accounting for 0.76% of the
variation, accounts for introducing convexity (or bending)
into the futures curves as it pushes the short and long term
upwards while pulling the medium term downwards. Sur-
prisingly, all of these principal components are more ex-
treme or pronounced than their analogs from interest rate
data. The flat PC is very flat, the titling PC is strongly tilt-
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Figure 7. Time consistency of the top 3 principal com-
ponents estimated using regular FPCA (left) versus VAR-
FPCA (right) The PCs extracted by the VAR-FPCA are ex-
tremely stable over the five year life of the dataset.

ing, and the bending PC produces significant bends.

When the PCs were extracted using standard FPCA
methods (i.e. ignoring the embedded temporal structure),
we found the first PC accounted for 99% of the variability
of the data. This contrasts with the 92.5% we found us-
ing the VAR-FPCA method. Such an over weighting of the
importance of a single PC can have significantly negative
consequences on both trading strategies and risk manage-
ment decisions.

The time consistency of our VAR-FPCA methodol-
ogy was also examined by computing the PCs using only
the first year of data, then adding one more year of data
and re-estimating the PCs, and so on until all the data was
included. In this manner, five estimates for each of the prin-
cipal components were produced, one for each cumulative
time-frame. Figure 7 provides the results of this analysis
using both our VAR-FPCA method and the regular FPCA
method ignoring the time dependency in the underlying
model. There is a marked difference in PC1 (which ac-
counts for more than 90% of the variation in the data in
both cases) and some significant difference in PC2 using
the standard FPCA method as more data is added; contrast-
ingly, our VAR-FPCA method produces PCs which are in-
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Figure 8. Perturbations of the sample price curve by
principal components. (Top-left) The sample price curve
is perturbed by +/- the weekly volatility of all the price
curves; Similarly, the sample price curve is perturbed by
+/- weekly volatility of v, (Top-right), vo (Bottom-left),
and 3 (Bottom-right). The effect of the PCs on the sample
curve is clearly visible — PC 1 shocks the price curve evenly
up and down; PC 2 perturbs by tilting the price curve about
the 2 year point; while PC 3 perturbs the bending the curve.

distinguishable across all years.

It is extraordinary that such time stability exists in
the PCs when not only the crude oil prices had undergone
highly turbulent changes between the years 2002 to 2006,
the term structures had also undergone some substantial
changes as evident in the shapes of the futures curves, de-
picted in Figure 2.

This temporal and market consistency exhibited in the
PCs plays an important role in risk management. The ex-
tracted PCs allow a risk manager to quickly identify the
source of exposures and map it directly into the dominat-
ing PCs [1]. Consistency in the PCs translates to more con-
sistent risk management strategies, reducing strategy turn-
over and therefore the associated costs.

Figure 8 provides an alternative illustration of the ef-
fects of each principal component. Here, the solid curve
represents a sample futures price curve from Nov 20, 2006.
The top-left panel shows the variability intrinsic to the data
set by showing the boundaries of one standard deviation of
all the price curves (normalized to 1 week) away from the
sample curve. In subsequent panels, the weekly volatilities
(standard deviations) of the top 3 principal components are
added and subtracted from the sample curve to show the
perturbation from the sample curve caused by each princi-
pal component. Note that the principal components perturb
the sample price curve corresponding to their shape (i.e.
level shift, tilting, and bending). The first PC perturbs the
sample curve more significantly than the other PCs merely
because it contains 92.5% of the variance of the data.



4 Conclusion and Future Work

By first removing the temporal structure embedded in the
functional time-series, we demonstrated that the principal
components can be extracted in a self-consistent manner.
Additionally, synergizing the temporal structure learned
through VAR together with the time-consistent and smooth
principal components extracted with FPCA, allows effec-
tive short-term predictions to be made. One obvious ap-
plication is in statistical arbitrage or algorithmic trading
strategies development. Moreover, the time and market sta-
bility of the principal components allows for efficient long-
term risk management. The customary FPCA would fail to
incorporate the current state of the data curves and there-
fore fail to correctly capture short term risks and / or statis-
tical arbitrage strategies.

Using the NYMEX light sweet crude oil futures price
data, the PCs are found to have very intuitive financial in-
terpretations. Specifically, the strongest principal compo-
nent corresponds to the broadbase price movements across
all contract maturities. This corresponds to the empiri-
cal fact that the price fluctuations are mostly due to par-
allel shifts. The second strongest PC corresponds to tilt-
ing and the third strongest corresponds to bending of the
futures price curves. All PCs are smooth and have very
pronounced and specific effects.

The technique proposed in this work is highly ver-
satile. It can be readily applied to other types of data
sets such as commodity futures spread, interest rate yield
curves, credit-spreads, credit default swap (CDS) rates and
volatility surfaces (albeit a two-dimensional version), etc.

We are currently working on using Hidden Markov
Models as an alternative to the VAR process for modeling
the basis loadings. This has the potential of greater flexi-
bility and predictive power, while still maintaining the in-
tuitive nature of the FPCA framework.
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6 Appendix: Functional Principal Compo-
nent Analysis (FPCA)

This proof of the equivalence of (3) and (5) a concise ver-
sion of the analysis contained in Ramsay & Silverman [10].
Insert (4) into (3) to obtain

1
N¢T(T)ETEWZ =pol(T)z .
Take the inner product of the above expression with ¢

(6 OTETEWs = (6,67

1
= NWETEWZ = pWz.

Finally, let u = W/2z and (5) follows. Notice that the
eigen-problem is symmetric for u but it is not symmetric
for z. Instead the basis functions distort the metric leading
to a non-orthogonal mapping of the basis functions into the
PCs.
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