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Insurance companies are increasingly facing losses that have heavy exposure to capital market risks
through the issuance of equity-linked insurance policies. In this paper, we determine the continuous
premium rate that an insurer charges via the principle of equivalent utility. Using exponential utility, we
obtain the resulting premium rate in terms of a risk-neutral expectation. We also consider the related
problem of pricing double-trigger reinsurance contracts, paying a function of the risky asset and losses,
once the insurer has fixed her premium rate. We solve the Hamilton-Jacobi-Bellman equation arising in
the indifference pricing problem and show that the price satisfies a PDE with a non-linear shift term.
Although a closed form solution is not, generally, attainable, we obtain analytical results in some special
cases. Finally, we recast the pricing PDE as a linear stochastic control problem and provide an explicit
finite-difference scheme for solving the PDE numerically.

1. Introduction

With the S&P 500 index yielding returns of 10% over the last year and 16% over the last two years,
it is no wonder that individuals seeking insurance are more often opting for equity-linked insurance
contracts rather than fixed payment contracts. Equity-linked insurance contracts are highly popular
options for policyholders because they also provide downside protection. From the insurer’s perspective,
such contracts induce claim sizes that are correlated to the fluctuations in the value of the S&P 500 index
and, as such, posses significant market risk in addition to the traditional mortality risk. Determining the
premium rate for this class of contracts is a daunting task which, due to the non-hedgable nature of the
contracts, requires a delicate balancing of the insurer’s risk preference, mortality exposure, and market
exposure. In this work, we adopt the principle of equivalent utility, also known as utility-based pricing
to value such contracts (see e.g. Bowers, et.al. (1997)). This pricing principle prescribes a premium rate
at which the insurer is indifferent between (i) taking on the risk and receiving no premium or (ii) taking
on the risk while receiving a premium. We review the methodology in more detail at the end of §2.

Equity-linked life insurance policies have been considered in many previous works. Young (2003), for
example, studied equity-linked life insurance policies with a fixed premium and with a death benefit that
was linked to an index. She demonstrates that the insurance premium satisfies a non-linear, Black-Scholes-
like PDE, where the nonlinearity arises due to the presence of mortality risk. Young and Zariphopoulou
(2002, 2003) also use utility-based methods to price insurance products with uncorrelated insurance
and financial risks. Insurance risks often result in economies that are incomplete, and in such incomplete
markets, equivalent utility pricing methods are both useful and powerful. Even when the risky asset itself
has non-hedgable jump risks, Jaimungal and Young (2005) studied, the indifference pricing methodology
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yields tractable and intuitively appealing results. Our work here extends these earlier studies in two
main directions: firstly, by considering equity-linked losses that arrive at Poisson times; and secondly, by
simultaneously considering the valuation of a reinsurance product within one consistent framework.

We assume that the equity-linked claims (losses) arrive at Poisson times and that the insurer may
both invest continuously and update her holdings in the equity on which the claims are written. As with
all utility-based approaches, this requires a specification of the real world (as opposed to risk-neutral)
evolution of equity returns and claim arrivals. We present our specific modeling assumptions in §2. In
§3, we then determine the premium rate for this portfolio of insurance claims through the principle of
equivalent utility. We focus exclusively on exponential utility for several reasons: firstly, we find that
the optimal investment strategies dictated by exponential utility is independent of the insurer’s wealth.
Secondly, the difference between the holdings, with and without the insurance risk, in the equity, reduces
to the hedge in Black and Scholes (1973). Thirdly, in the limit at which the investor becomes risk-neutral,
the premium reduces to the risk-neutral expected losses over the insurer’s investment time horizon.
From this, we derive the two Hamilton-Jacobi-Bellman (HJB) equations, corresponding to the premium
problem, and solve them explicitly for any level of risk-aversion and any equity-linked loss function. We
find that the resulting premium q is proportional to risk-neutral expectation of an exponentially weighted
average of the equity-linked loss function. The premium for an insurer who is almost risk-neutral is also
investigated via an asymptotic expansion of the exact result.

Any insurer who takes on equity-linked insurance risks is exposed to potentially large losses in the
event of good market conditions and/or poor underwriting; consequently, in §4, we consider the related
problem of pricing double-trigger reinsurance contracts once the insurer has fixed her premium rate. At
maturity, the reinsurance contract pays a function of the total observed losses and the equity value to the
insurer. The insurer pays an upfront single benefit premium for this contract. We prove that the price
satisfies a Black-Scholes-like PDE with a non-linear shift term due to the presence of the non-hedgable
mortality risk. If the reinsurance payoff does not depend on the loss level, we show that the indifference
price reduces to the Black-Scholes price of the corresponding equity option. We also investigate the price
that a near risk-neutral insurer would be willing to pay, and find that the price can be written in terms of
an iterated risk-neutral expectation. In §4.2, we provide a probabilistic interpretation of the indifference
price in terms of a dual optimization problem. Withinn this framework, the indifference price is the
minimum of the risk-neutral expected value of the reinsurance contract with a penalty term, where the
minimum is computed over the activity rate of a doubly stochastic Poisson process driving the claim
arrivals. Subsequently, §4.3 provides numerical examples for the reinsurance contract price in two special
cases: (i) a stop-loss payoff and (ii) a double-trigger stop-loss payoff.

2. The Model

To model the problem for insurers exposed to equity-linked losses, we assume that there is a risky asset
whose price process follows a Geometric Brownian motion, and that losses follow a compound Poisson
process with claim sizes depending on the price of the risky asset at the loss arrival time. More specifically,
let {S(t)}0≤t≤T denote the price process for a risky asset; let {L(t)}0≤t≤T denote the loss process for
the insurer; let FS ≡ {FS}0≤t≤T denote the natural filtration generated by S(t); let FL ≡ {FL}0≤t≤T

denote the natural filtration generated by L(t); let F ≡ FS ∨FL denote the product filtration generated
by the pair {S(t), L(t)}; and let (Ω , P, F) represent the corresponding filtered probability space with
statistical probability measure P.

We assume that the insurer is able to invest continuously in the risky asset S(t) and a risk-free money
market account with constant yield of r ≥ 0. Furthermore, the risky asset’s price process satisfies the
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SDE:

dS(t) = S(t) {µdt + σ dX(t)} , (1)

where {X(t)}0≤t≤T is a standard P-Brownian process, and µ > r. Equivalently,

S(t) = S(0)e(µ− 1
2 σ2) t+σ X(t) . (2)

The loss process is assumed to following a compound Poisson process with deterministic hazard rate λ(t),
and loss sizes of size g(S(t), t), where t is the arrival time of a loss. Notice that the loss size depends on the
price of the risky asset prevailing at the time the loss arrives. This is a defining feature of equity-linked
insurance products and introduces a new dimension to the optimal stochastic control problem associated
with pricing the premium stream. The loss process may be written in terms of an underlying Poisson
counting process: {N(t)}0≤t≤T as follows

L(t) =
N(t)∑
n=1

g(S(ti), ti) , (3)

where ti are the arrival times of the Poisson process. We implicitly assume that g(S, t) ≥ 0 and is bounded
for every finite pair (S, t) ∈ [0,∞)× [0, T ].

Since our assumptions on the dynamics of the risky asset and the loss process have been addressed, we
turn attention to the dynamics of the wealth process for the insurer. There are two separate situations of
interest: (i) the insurer does not take on the insurance risk, however, the insurer does invest in the risky
asset and the riskless money-market account; and (ii) the insurer takes on the insurance risk in exchange
for receiving a continuous premium of q and simultaneously invests in the risky asset and the riskless
money-market account. Let {W (t)}0≤t≤T and {WL(t)}0≤t≤T denote, respectively, the wealth process of
the insurer who does not take on the insurance risk (as in case (i)) and the wealth process of the insurer
who does take on the insurance risk (as in case (ii)). The process π ≡ {(π(t), π0(t))}0≤t≤T denotes an
Ft-adapted self-financing investment strategy, where π(t) and π0(t) represent the amount invested in the
risky asset and the amount in the money-market account, respectively. The wealth process dynamics
then satisfy the following two SDEs:{

dW (u) = [r W (u) + (µ− r) π(u)] du + σ π(u) dX(u) ,

W (t) = w ,
(4){

dWL =
[
r WL(u−) + (µ− r) π(u−) + q

]
du + σ π(u−) dX(u)− dL(u) ,

WL(t) = w ,
(5)

where w represents the wealth of the insurer at the initial time t; and for each process f , f(u−) represents
the value of the process prior to any jump at u.

To complete the model setup, we suppose that the insurer has preferences according to an exponential
utility of wealth u(w) = − 1

α̂e−α̂ w for some α̂ > 0. The parameter α̂ is the absolute risk-aversion
rα̂(w) ≡ −u′′(w)/u′(w) = α̂ as defined by Pratt (1964). We further assume the insurer seeks to maximize
her expected utility of terminal wealth at the investment time horizon T . This results in two separate
stochastic optimal control problems. We denote the value function of the insurer who does not accept
the insurance risk by V (w, t), and denote the value function of the insurer who does accept the insurance
risk by U(w,S, t; q). Explicitly, the value functions are defined as follows:

V (w, t) = sup
π ∈A

E [u(W (T ))|W (t) = w] , and (6)

U(w,S, t; q) = sup
π ∈A

E
[
u(WL(T ))|WL(t) = w,S(t) = S

]
. (7)
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Here, A is the set of admissible, square integrable, and self-financing, Ft-adapted trading strategies for
which

∫ T

t
π2(s) ds < +∞. This restriction is necessary for the existence of a strong solution to the wealth

process SDEs (4) and (5) (see Fleming and Soner, 1993).
A priori, it is not obvious that V should depend solely on the wealth process and time; similarly, it is

not obvious that U should be independent of the loss L. However, through the explicit solutions in the
next section, we determine that this is indeed the case, which is a familiar result when using exponential
utility. Although the value functions are found to depend on the insurer’s wealth, the optimal investment
strategy is, in fact, independent of the wealth. This too is a consequence of exponential utility.

Next, the indifference premium is defined as the premium q such that the two value functions are equal:

V (w, t) = U(w,S, t; q) . (8)

Intuitively, this implies that the insurer is equally willing either to accept the risk and receive a premium,
or to decline the risk and receive no premium.

Once the indifference premium is obtained, the problem of pricing a reinsurance contract is considered
in §4. The contract is assumed to pay an arbitrary function, h(L(T ), S(T )), of the total observed losses
and the risky asset’s price at the time horizon T . The associated value function of an insurer who receives
this payment will be denoted UR(w,L, S, t; q) and can be explicitly expressed as

UR(w,L, S, t; q) = sup
π∈A

E[u(WL(T ) + h(L(T ), S(T )))|WL(t) = w,S(t) = S, L(t) = L] . (9)

Notice that the reinsurance contract is relevant only at the terminal time, and its role is simply to increase
the insurer’s wealth by the contract value. Although the effect is explicitly felt at maturity, it will feed
back into the optimal investment strategy which the insurer follows, and consequently, it will feed back
into the value function itself.

The indifference price P (L, S, t) of the contract is the amount of wealth the insurer who receives the
reinsurance payment is willing to surrender so that the value function with the reinsurance payment is
equal to the value function without the reinsurance payment. That is, the indifference price satisfies the
equation:

UR(w − P (L, S, t), L, S, t; q) = U(w,L, S, t; q) . (10)

A posteriori, the price function is found to be independent of wealth for exponential utility. Furthermore,
the indifference price is independent of the premium that the insurer charges. Rather, it equates the
utility of the insurer who receives some premium rate q and is exposed to the equity-linked losses of an
insurer who, in addition, receives a reinsurance contract payment and pays upfront for that reinsurance.

3. The HJB Equation For The Indifference Premium

Now that the stochastic model for the insurer has been described, and the pricing principle has been
specified, we can focus on the details of the pricing problem itself. In the next subsection, the value
function without the insurance risk is reviewed. The results of this section are essentially those of Merton
(1969). These results are then used in §3.2 to solve the HJB equation for the insurer exposed to the
insurance risk. In §3.3, we determine the indifference premium for a general loss function and provide
specific examples. In §3.4, we address the issue of hedging the risk associated with this premium choice.

3.1. The Value Function Without The Insurance Risk
The value function of the insurer who does not take on the insurance risk is defined in (6), and we

now use the dynamic programming principle to determine the optimal investment strategy and the value



On Valuing Equity-Linked Insurance and Reinsurance Contracts 5

function itself. Given a particular investment strategy π, we determine that V satisfies the following
SDE:

dV (W, s) =
[
Vt + (r W + (µ− r) π) Vw + 1

2σ2π2 Vww

]
ds + πσ Vw dX . (11)

The subscripts denote the usual partial derivatives of V , and the time dependence of the various pro-
cesses are suppressed for brevity. Through the usual dynamic programming principle, V solves the HJB
equation:{

Vt + r w Vw + maxπ

[
(µ− r)π Vw + 1

2σ2π2 Vww

]
= 0,

V (w, T ) = u(w).
(12)

We may assume that the optimal investment is provided by the first order condition, and the Verification
Theorem confirms that the result holds. To this end, the optimal investment strategy is

π∗(t) = −µ− r

σ2

Vw

Vww
. (13)

On substituting π∗ into (12), we find that V satisfies the PDE

Vt −
1
2

(
µ− r

σ

)2
V 2

w

Vww
+ r w Vw = 0 . (14)

Assuming that

V (w, t) = − 1
α̂

e−α(t) w+β(t) , (15)

with β(T ) = 0 and α(T ) = α̂, we determine that the HJB equation reduces to

−(αt + rα) w + βt −
1
2

(
µ− r

σ

)2

= 0 . (16)

The above must hold for all w and t; therefore,

α(t) = α̂ er(T−t) and (17)

β(t) = −1
2

(
µ− r

σ

)2

(T − t) , (18)

resulting in the standard Merton optimal investment of (Merton, 1969)

π∗(t) =
µ− r

α̂ σ2
e−r(T−t) . (19)

The above solution satisfies the requirements of the Verification Theorem and, therefore π∗ corresponds
to the optimal investment strategy for (6); and V , given in (15), is the solution of the original optimal
stochastic problem.

3.2. The Value Function With Insurance Risk
While assuming the insurance company takes on the insurance risk and receives a premium rate of q,

we must solve for the optimal investment and value function U , given in (7). Through straightforward
methods, we establish the following HJB equation for the value function U :

0 = Ut + (rW + q)Uw + µS US + 1
2σ2 S2 USS + λ(t) (U(w − g(S, t), S, t)− U(w,S, t))

+maxπ

{
1
2σ2Uww π2 + π

[
(µ− r)Uw + σ2S(t)Uws

]}
,

U(w,S, T ; q) = u(w) .

(20)

The shift term appears due to the presence of the claim arrivals, and can be explained by observing that
a claim arrives in (t, t + dt] with probability λ(t) dt, causing the wealth to drop by g(S(t), t). At first
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sight, the presence of this non-linear shift term appears to render the problem intractable. However, on
closer inspection, we find that, since utility is exponential, the HJB equation can be solved explicitly for
arbitrary claims function g.

Theorem. 3.1 The solution to the HJB system (20) is

U(w,S, t; q) = V (w, t) exp
{
−q

α̂

r

(
er(T−t) − 1

)
+ γ(S, t)

}
, (21)

where

γ(S(t), t) = EQ

[∫ T

t

λ(u)
(
eα(u) g(S(u),u) − 1

)
du

∣∣∣∣∣Ft

]
, (22)

and the process S(t) satisfies the following SDE in terms of the Q-Wiener process {X(t)}0≤t≤T ,

dS(t) = S(t) r dt + S(t) σ dX(t) . (23)

Furthermore, the optimal investment strategy is independent of wealth and equals

π∗(S, t) =
e−r(T−t)

α̂

{
µ− r

σ2
+ S γS

}
. (24)

Proof. By assuming Uww < 0, the first order condition supplies the optimal investment strategy as

π∗(S, t) = − (µ− r)Uw + σ2S(t)Uws

σ2Uww
. (25)

Substitute this into (20), and make the substitution

U(w,S, t; q) = V (w, t; q) exp{γ(S, t)} , (26)

where V (w, t; q) denotes the value function of the insurer who receives a premium rate of q but does
not accept the insurance risk. If we denote the wealth process for such an insurer as W q(t), then
W q(t) = W (t) + q t. Notice that V (w, t; 0) = V (w, t), and that V (w, t; q) satisfies the HJB equation:{

0 = Vt + (r w + q)Vw + maxπ

[
(µ− r) π Vw + 1

2σ2π2 Vww

]
,

V (w, T ; q) = u(w).
(27)

Straightforward calculations yield the solution:

V (w, t; q) = V (w, t) exp
{
−q

α̂

r

(
er(T−t) − 1

)}
. (28)

Making the substitution (26) into (20), we discover, after some tedious calculations, V (w, t; q) factors out
of the problem, and the function γ(S, t) satisfies the inhomogeneous linear partial differential equation:{

0 = λ(t) (eα(t)g(S,t) − 1) + rSγs + 1
2σ2S2γSS + γt ,

γ(S, T ) = 0 .
(29)

The Feynman-Kac theorem directly leads to solution (34) from which we observe that Uww < 0 so that
the maximization term is indeed convex. For smooth loss functions g(S(t), t), the Verification Theorem
implies, indeed, that (34) is the value function for the problem and strategy (25) is optimal. Accordingly,
substituting the ansätz (26) into π∗ leads to (24). �

Notice that if ∀u ∈ (t, T ], g(S(u), u) > 0 Q− a.s. then γ(S, t) is strictly positive for every S. In the next
section, under these conditions the indifference premium is show to also be positive.
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3.3. The Indifference Premium
Now given both value functions, V and U , it is possible to obtain an explicit representation of the

indifference premium.

Corollary 3.2 The insurer’s indifference premium rate q is independent of wealth and is given by

q(S(t), t) =
r

er(T−t) − 1
EQ

[∫ T

t

λ(u)
eα(u) g(S(u),u) − 1

α̂
du

∣∣∣∣∣Ft

]
. (30)

Proof. The indifference premium rate q is defined as the rate q such that U(w,S, t; q) = V (w, t). Ex-
pression (30) then immediately follows from Theorem 3.1. �

Since q is essentially proportional to γ, based on the remarks at the end of the previous section, and if
the claim sizes are positive Q-a.s. over the time horizon (t, T ], then the indifference premium is positive.

It is important to discuss the dependence of q on the risky asset’s price and time. In analyzing the
value function U , we assumed that q was constant; however, on glancing at (30) it can be inferred that q

is not a constant, and therefore, our assumptions are false, discrediting the analysis. This initial reaction
is premature. The situation is best explained by appealing to the familiar case of a forward contract.
On signing of a forward contract, the delivery price is set such that the contract has zero value. This
delivery price is a function of the spot price of the asset and bond prices at the time of signing. Although
the contract value on signing is zero, the forward price, at any future date, will not equal to the delivery
price, and the contract’s value is no longer zero. In the present context, the insurer is looking forward
to a future time horizon, and is deciding on a rate to charge so that she is indifferent to taking the
risk. Our analysis shows that the amount q(S(t), t), which depends on the prevailing price of the risky
asset, should be charged. This rate is fixed until the end of the time horizon, and does indeed render
the insurer indifferent to the insurance risk at the current time. However, as time evolves, the prevailing
indifference premium at that future point in time may be higher or lower than the rate the insurer initially
set. Consequently, if the insurer took on the insurance risk at time t in exchange for q(S(t), t) until the
horizon end, then at some future time she may develop a preference either towards releasing the insurance
risk or for holding onto it. With the forward contract analogy, it is no surprise then that the premium
rate depended on the risky asset’s price.

The indifference premium (30) also has a few very appealing properties which warrant discussing.
Regardless of the risk-aversion level of the insurer, the expectation appearing in the premium calculation
is always computed in a risk-neutral measure Q. Furthermore, the risk-neutral distribution of claim sizes
has not been distorted from the real world distribution. Indeed, the Radon-Nikodym derivative process
which performs the measure change is

η(t) ≡
(

dQ
dP

)
t

= exp

{
−1

2

(
µ− r

σ

)2

t +
µ− r

σ
X(t)

}
. (31)

This is the same measure change that Merton (1976) uses in his jump-diffusion model and corresponds
to risk adjusting only the diffusion component. Although the risk-aversion level does not feed into the
probability measure used for computing expectations, it does manifest itself in the distortion of the claim
sizes through the exponential term. The exponential term is inherited, indeed, from the utility function.
Furthermore, notice that the factor in front of the expectation can be represented as 1/

∫ T

t
er(T−u)du.

The denominator of this expression is simply the continuous premium rate of $1 per annum which is
accumulated to end of the time horizon T . Consequently, the factor in front of the expectation can
be viewed as a normalization constant. Finally, although the premium is a non-linear functional of the
claim sizes g(S(t), t), it is linear in the arrival rate of the claims λ(t). This observation suggests that the
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generalization to multiple claims distributions is straightforward. In the theorem below, we provide the
results for multiple claims distributions. The proof follows along the same lines as those in the previous
two sections and we omit it for brevity.

Theorem. 3.3 Suppose that the insurer is exposed to losses from m different sources of risk. Explicitly,
the loss process is modeled as follows:

L(t) =
m∑

j=1

Nj(t)∑
n=1

gj(S(tij), t
i
j) , (32)

where {Nj(t) : j = 1, . . . ,m} are independent Poisson processes with arrival rates {λj(t) : j = 1, . . . ,m}
and gj(S, t) denote the loss functions for the i-th source of risk. Then, the value function of the insurer
who takes on the insurance risk and receives a premium of q(w,S, t) is

U(w,S, t; q) = V (w, t) exp
{
−q

α̂

r

(
er(T−t) − 1

)
+ γ(S, t)

}
, (33)

where

γ(S(t), t) =
m∑

j=1

EQ

[∫ T

t

λj(u)
(
eα(u) gj(S(u),u) − 1

)
du

∣∣∣∣∣Ft

]
, (34)

and the process S(t) satisfies the following stochastic differential equation in terms of the Q-Wiener
process {X(t)}0≤t≤T :

dS(t) = S(t) r dt + S(t) σ dX(t) . (35)

Furthermore, the insurer’s indifference premium is independent of wealth and is explicitly

q(w,S, t) =
r

er(T−t) − 1

m∑
j=1

EQ

[∫ T

t

λj(u)
eα(u) gj(S(u),u) − 1

α̂
du

∣∣∣∣∣Ft

]
. (36)

3.3.1. Constant Losses And Risk Neutral Insurers
In this subsection, we consider claims which have constant losses g(S, t) = l and a constant arrival rate

λ(t) = λ. In this case, we determine the premium rate is

q =
λ

α̂
(
er(T−t) − 1

) (
Ei(α̂ l er(T−t))− Ei(α̂ l)− (T − t)r

)
, (37)

where Ei(x) denotes the so called “exponential integral”, defined as the following Cauchy principle value
integral:

Ei(x) ≡
∫ x

−∞
− et

t
dt . (38)

If the insurer is near risk-neutral, then a Taylor expansion in α̂ l can be carried out, and we find the
indifference premium rate to linear order is

q = λ l

(
1 +

1
4

(
er(T−t) + 1

)
α̂ l + o(α̂ l)

)
. (39)

As such, a risk-neutral insurer who is exposed to fixed losses, will charge a rate equal to the expected
loss per unit time λ l - an intuitively appealing result. As expected, the sign of the first order correction
is positive. For losses that grow at most linearly, i.e. there exists b(t) > 0 and S∗(t) > 0 such that for
each t and S > S∗(t), g(S, t) ≤ b(t)S, the rate has the following perturbative expansion in terms of the
risk-aversion parameter α̂:

q =
λ r

er(T−t) − 1

∞∑
n=1

α̂n−1

n!

∫ T

t

en r(T−u) EQ [ gn(S(u), u)| Ft] du . (40)
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Figure 1. The dependence of the indifference premia on the underlying equity spot price for losses
described in §3.3.2. The model parameters are F = 1, K = 100, β = 1, r = 4%, σ = 15%, and λ = 100.
The terms in the left/right panels are one and five years respectively.

This series is shown to converge by appealing to the Lebesgue dominated convergence theorem and
noting that EQ[Sn(u)|Ft] = S(t)en(r+ 1

2 σ2(n−1))(u−t). In fact, the linearity condition can be weakened
considerably; however, at this point we are concerned with aiding intuition and as a result, omit such
details from the analysis. A risk-neutral insurer would then charge a premium rate of

q =
r

er(T−t) − 1

∫ T

t

λ(u) er(T−u)EQ [ g(S(u), u)| Ft] du . (41)

The above premium can be interpreted as the average risk-neutral expected loss per unit time, where the
expected losses have been accumulated to maturity and then normalized (rather than discounted) back
to time t.

In the next two subsections, we provide two explicit examples of the premium when the losses are
functions of the logarithm of the stock index. While still maintaining the essential properties of linear
claim sizes, we use the logarithm of the stock price because it allows for partially closed form solutions.
To this end, we define A(u) as the expectation appearing under the integral in the indifference premium
(30), i.e.

A(u) ≡ EQ
[
eα(u) g(S(u),u)

∣∣∣Ft

]
. (42)

Then, the indifference premium q can be written in terms of A(u) explicitly as

q =
r

α̂
(
er(T−t) − 1

) ∫ T

t

λ(u) {A(u)− 1} du . (43)

3.3.2. Floor and Market Participation Claims
In our first explicit example, we consider insurance claims which pay a minimum of F and then grows

proportionately to the logarithm of the excess spot price above the strike level K; that is,

g(S(t), t) = F + β (log (S(t))− log(K))+ . (44)

Straightforward, but tedious, calculations lead to the result:

A(u) = eFα(u)

[(
S(t)
K

)βα(u)

Φ(−d2(K)) eβα(u)(r− 1
2 σ2(1−βα(u)))(u−t) + Φ(d1(K))

]
, (45)
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Figure 2. The dependence of the indifference premia on the underlying equity spot price for losses
described in §3.3.3. The model parameters are θ = 1, β = 1, c1 = 90, c2 = 110, r = 4%, σ = 15%, and
λ = 100. The terms in the left/right panels are one and five years respectively.

where

d1(K) =
log

(
K

S(t)

)
− (r − 1

2σ2)(u− t)

σ
√

u− t
, (46)

d2(K) = d1(K)− β α(u)σ
√

u− t , (47)

and Φ(·) is the cumulative distribution function for the standard normal distribution.
In Figure 1, we illustrate how the premium depends on the underlying spot price for three choices of

the risk-aversion parameter α̂, and for terms of one and five years respectively. The boxed line shows the
pure loss function (44) scaled by the activity rate for comparison purposes. Naturally, as the risk-aversion
parameter increases, the premia increases. Furthermore, since the loss is increasing as the spot grows,
the premia increases as the maturity increases. This result is analogous to the pricing behavior of a call
option in the Black-Scholes model.

3.3.3. Floor, Capped, and Market Participation Claims
In our second explicit example, we consider insurance claims which have a cap and a floor protection

in addition to a participation in the risky asset’s return. In this case, the claim sizes are

g(S(t), t) =


θ , S(t) < c1 ,

θ + β (log (S(t))− log(c1)) , c1 ≤ S(t) < c2 ,

θ + β (log(c2)− log(c1)) , S(t) ≥ c2 .

(48)

Once again, after some tedious calculations, we find that the integrand A(u) reduces to

A(u) = eα(u)θ

{
Φ(d1(c1)) +

(
S(t)
c1

)β α(u)

eβ α(u)(r− 1
2 σ2(1−β α(u)))(u−t) (Φ(d1(c3))− Φ(d2(c1)))

+
(

c2
c1

)β α(u)

Φ(−d1(c2))
}

.
(49)

In Figure 2, we illustrate how the premium depends on the underlying spot price for three choices of
the risk-aversion parameter α̂, and for terms of one and five years respectively. The boxed line shows
the pure loss function (48) scaled by the activity rate for comparison purposes. Once again, as the
risk-aversion parameter increases, the premia increases. In this case, the loss is bounded from above
and below; therefore, increasing maturity does not alter the premia as significantly as the uncapped case
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explored in the previous example. In fact, the premium actually decreases for larger spot prices when
the term increases. This result is analogous with the pricing for a standard bull-spread option in the
Black-Scholes model.

3.4. Hedging The Insurance Risk
Now that we have determined the indifference premium that the insurer charges, it is interesting to

explore the hedging strategy that she would follow. In this incomplete market setting, it is impossible to
exactly replicate the insurance claims; nonetheless, the insurer still holds different units of the risky asset
when she is exposed to the insurance risk or is not exposed to the insurance risk. As a result, we can
define an analog of the Black-Scholes Delta hedging parameter. To this end, we define the Delta as the
excess units of the risky asset that the insurer holds when taking on the risk and receiving the premiums,
and when there is an absence of insurance risk.

Corollary 3.4 The Delta of the insurer’s position is

∆(S, t) ≡ 1
S

(π∗U − π∗V ) =
e−r(T−t)

α̂
γS(S, t) . (50)

Proof. The optimal investment in the risky asset without the insurance risk appears in (13), and with
the insurance risk appears in (24). �

Notice that this result is quite similar to the Black-Scholes Delta for an option. However, there is a
subtle difference since the function γ(S(t), t) appears in the result, rather than in the premium rate itself.
Moreover, as t → T−, the Delta vanishes, this behavior contrast with the behavior of the Delta of an
option. In the case of a European option, the Delta becomes equal to the derivative of the payoff function,
and is zero only when the option has a constant payoff, namely, when the option is actually a bond. To
understand why the Delta vanishes as maturity approaches in our case, suppose that the time horizon
ends in ∆T � 1 from now; then, the probability of a loss arriving is λ∆T and therefore there is no need
to hold additional shares of the risky-asset.

In Figure 3, we show how the Delta behaves as a function of the spot-level, risk-aversion parameter,
and time to maturity for the examples in §3.3.2 and §3.3.3. The general shape of these curves is expected.
In the first example, although the payoff grows logarithmically, it appears to grow linearly over the scale
shown in diagram (see Figure 1), and therefore the Delta flattens out. While in the second example, the
payoff is asymptotically flat outside of the participation region (see Figure 1), and therefore, the Delta
decays in the tails.

4. The Indifference Price For Reinsurance

Now that we have determined the indifference premium that the insurers charges, we can address the
dual problem of pricing a reinsurance contract which makes payments at the end of the time horizon. In
section 2, we describe the value function associated with the insurer who takes on the insurance risk and
receives the premium rate q and receives a reinsurance payment of h(L(T ), S(T )). The value function of
such an insurer was denoted UR as defined in equation (9). The associated HJB equation for this value
function is essentially the same as the one for U (see equation (20)); however, the boundary condition
is now altered to account for the presence of the reinsurance, and we must also keep track of the loss
process explicitly. Through the usual dynamic programming principle, we determine that UR satisfies
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Figure 3. The dependence of the Delta on the underlying equity spot price for losses described in §3.3.2
and §3.3.3 (left/right panel respectively). The model parameters are the described in Figures 1 and 2.

the following HJB equation:
0 = UR

t + (rW + q)UR
w + µS UR

S + 1
2σ2 S2 UR

SS

+λ(t) (UR(w − g(S, t), L + g(S, t), S, t)− UR(w,L, S, t))
+maxπ

{
1
2σ2UR

ww π2 + π
[
(µ− r)UR

w + σ2S(t)UR
ws

]}
,

UR(w,L, S, t; q) = u(w + h(L, S)) .

(51)

The shift term now contains two types of shifting: the first, due to the decrease in the wealth of the
insurer; and the second, due to the increase in the loss process. However, both shifts come from the
same risk source. Once again, exponential utility allows us to obtain a solution of the HJB equation in
a semi-explicit form.

Theorem. 4.1 The solution to the HJB system (51) can be written as

UR(w,L, S, t) = U(w,S, t)φ(L, S, t) , (52)

where φ satisfies the non-linear PDE 0 = φt + r SφS + 1
2σ2S2

(
φSS − φ2

S

φ

)
+ λ(t) eα(t)g(S,t) (φ(L + g(S, t), S, t)− φ(L, S, t)) ,

φ(L, S, T ) = e−α̂ h(L,S) .
(53)

Furthermore, the optimal investment in the risky-asset is

π∗(S, t) =
e−r(T−t)

α̂

{
µ− r

σ2
+ S

[
γS +

φS

φ

]}
. (54)

Proof. Assuming that UR
ww < 0, we find the first order conditions allow the optimal investment strategy

to be written,

π∗(t) = − (µ− r)UR
w + σ2S(t)UR

wS

σ2UR
ww

. (55)

On substituting the ansätz (52) and the optimal investment (55) into the HJB equation (51), we establish
0 = φ

{
Ut + (rw + q)Uw + µSUS + 1

2σ2S2USS − 1
2

((µ−r)Uw+σ2SUwS)2

σ2Uww

}
+U

{
φt +

(
µ− (µ− r) U2

w

U Uww

)
S φS + 1

2σ2S2
(
φSS − U2

w

U Uww

φ2
S

φ − 2
(

UwSUw

U Uww
− US

U

)
φS

)}
+λ(t) [U(w − g(S, t), S, t) φ(L + g(S, t), S, t)− U(w,S, t) φ(L, S, t)] ,

(56)
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subject to the boundary condition U(w,S, T )φ(L, S, T ) = u(w + h(L, S)). From (20), the terms inside
{·} in the first line of the above expression equals −λ(t) [U(w − g(S, t), S, t)− U(w,S, t)]; collecting this
with the last line and making use of the identities

U(w − g(S, t), S, t) = U(w,S, t) eα(t)g(S,t) ,
U2

w

UwwU
= 1 , and

UwSUw

UwwU
=

US

U
= γS , (57)

we find, then, equation (56) distills to (53). It can then be proven that UR
ww < 0. Using the ansätz

(52), the optimal investment π∗ can be rewritten as (54). For smooth g, the Verification Theorem allows
us to confirm that the constructed solution is the value function for the original problem and that the
described strategy is clearly optimal. �

Corollary 4.2 The insurer’s indifference price P (L(t), S(t), t) for the reinsurance contract satisfies the
nonlinear shifted PDE:{

r P = Pt + r S PS + 1
2σ2 S2 PSS + λ(t)

α(t)e
α(t)g(S,t)

(
1− e−α(t)[P (L+g(S,t),S,t)−P (L,S,t)]

)
,

P (L, S, T ) = h(L, S) .
(58)

Proof. The indifference price is defined as the amount of initial wealth P the insurer is willing to
surrender so that her value function with the reinsurance payment is equal to her value function without
the reinsurance payment. Specifically, the price P satisfies

UR(w − P,L, S, t) = U(w,S, t) . (59)

Hence, P (L, S, t) = − 1
α(t) lnφ(L, S, t), and on substituting φ in terms of P in (53), we obtain (58). �

Notice that if the payoff function h(L, S) is independent of the loss level, i.e. h(L, S) = h(S), then (58)
reduces to{

r P = Pt + r S PS + 1
2σ2 S2 PSS ,

P (L, S, T ) = h(S) .
(60)

The above price can be recognized as the price of a European option with payoff h(S) in the Black-Scholes
model (Black and Scholes, 1973). This result is expected since the reinsurance contract is now exposed
only to the hedgable risk - the risky asset - and not to the non-hedgable claims risk. Therefore, our result
should reduce to the no arbitrage Black-Scholes price for an insurer of any degree of risk-aversion.

4.1. Near Risk-Neutral Insurer
Let the price of a risk-neutral insurer, taken as the limit of a risk-averse insurer, be denoted P 0(L, S, t) =

limα̂→0+ P (L, S, t). Then, the pricing PDE for P 0 follows from (58) and reduces to r P 0 = P 0
t + r S P 0

S + 1
2σ2 S2 P 0

SS + λ(t)∆P 0

P 0(L, S, T ) = h(L, S) ,
(61)

where ∆P 0 denotes the increase in the price due to a loss arrival, i.e. ∆P 0 ≡ P 0(L + g(S, t), S, t) −
P 0(L, S, t). Consequently, through the Feynman-Kac Formula, a risk-neutral insurer would be willing to
pay

P 0(L, S, t) = EQ
[
e−r(T−t)h(L(T ), S(T ))

∣∣∣Ft

]
(62)

for the reinsurance contract, where the Q-dynamics of S(t) appears in (35). Furthermore, the risk-neutral
dynamics of L(t) is unaltered from its real world dynamics, and in particular, the activity rate of the
driving Poisson process remains at λ(t) under the measure Q. Although this market is incomplete, and
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therefore there exists many risk-neutral measures equivalent to the real world measure (Harrison and
Pliska, 1981), the indifference pricing methodology selects a unique measure.

It is interesting to investigate the first order correction in the risk-aversion parameter α̂ to gain some
understanding of the perturbations around the risk-neutral price. If we assume that the payoff function
is bounded from above, and hence the price is also bounded, then the price can be expanded in a power
series in α̂. Specifically, write

P (L, S, t) = P 0(L, S, t) + α̂P 1(L, S, t) + o(α̂) , (63)

subject to P 0(L, S, T ) = h(L, S) and P 1(L, S, T ) = 0. When inserting this ansätz into (58) and using
(61), we determine P 1(L, S, t) satisfies the following PDE:

r P 1 = P 1
t + r S P 1

S + 1
2σ2 S2 P 1

SS + λ(t)∆P 1

+λ(t) er(T−t)
{

g2(S, t)−
[
∆P 0(L, S, t)− g(S, t)

]2} + o(α̂) ,

P 1(L, S, T ) = 0 .

(64)

Through Feynman-Kac, the first order correction can be represented as a risk-neutral expectation as well,
and we find the following result:

P 1(L, S, t) = EQ

[∫ T

t

λ(u)
{

g2(S(u), u)−
[
∆P 0(L(u), S(u), u)− g(S(u), u)

]2}
du

∣∣∣∣∣Ft

]
. (65)

Interestingly, the payoff function h(L, S) does not explicitly appear in P 1; rather, it feeds from the risk-
neutral price function P 0 which does explicitly depend on the payoff. The sign of this correction term
is difficult to discern on first observation. However, we may deduce that if (i) h is increasing in L, (ii) g

is non-negative, and (iii) h is Lipschitz-continuous with Lipschitz constant 2, then the correction term is
non-negative.

4.2. Probabilistic Interpretation of The Indifference Price
Although explicit solutions to the general pricing PDE (58) were not constructed, we follow Musiela

and Zariphopoulou (2003) and show that the price function solves a particular stochastic optimal control
problem. By using the convex dual of the non-linear term, the PDE is linearized and results in a pricing
result similar to the American option problem. However, in the current context, the optimization is not
over stopping times. Instead, we find that the optimization is over the hazard rate of the driving Poisson
process.

Theorem. 4.3 The solution of the system (58) is given by the value function

P (S, L, t) = e−r(T−t) inf
y∈Y

EQ̂

[
h(L(T ), S(T )) +

∫ T

t

er(T−u) λ̂(u)
y(u)α(u)

β(y(u)) du

∣∣∣∣∣Ft

]
(66)

where Y is the set of non-negative Ft-adapted processes, the loss process

L(t) =
N̂(t)∑
n=1

g(S(ti), ti) (67)

and ti are the arrival times of the doubly-stochastic Poisson process N̂(t) where the Ft-adapted hazard
rate process is

λ̂(t) = y(t) λ(t) eα(t)g(S(t),t) (68)
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in the measure Q̂. Finally, S(t) satisfies the SDE:

dS(t) = r S(t) dt + σ S(t) dX̂(t) , (69)

where {X̂(t)}0≤t≤T is a Q̂-Wiener process.

Proof. Let β(x) denote the non-linear term in (58), i.e.

β(x) = 1− e−x , (70)

and let β̂(y) denote its convex-dual so that

β̂(y) = max
x

(β(x)− x y) = 1− y + y ln y . (71)

Clearly, β̂(y) is defined on (0,∞) and is non-negative on its domain of definition. Furthermore,

β(x) = min
y≥0

(
β̂(y) + y x

)
. (72)

Rewriting the exponential term in (58) in terms of β̂(y), we find that the PDE becomes linear in P :
r P = Pt + r S PS + 1

2σ2 S2 PSS

+ λ(t)
α(t)e

α(t)g(S,t) miny(t)≥0

(
β̂(y(t)) + y(t) α(t)[P (L + g(S, t), S)− P (L, S)]

)
,

P (L, S, T ) = h(L, S) .

(73)

Through the usual dynamic programming principle, we find that the value function (66) satisfies the
above HJB equation. The Verification Theorem, therefore, then implies that the solutions of (58) can be
represented by (66). �

The pricing problem reduces to finding the activity rate that minimizes the Black-Scholes price of the
reinsurance contract, subject to a penalty term, which is a function of the activity rate itself. It is useful
to illustrate how the risk-neutral result of the previous subsection is recovered. In the limit in which
α̂ → 0+, the penalty term increases to infinity and the process y that minimizes (66) is clearly the one
in which β̂(y(s)) = 0 for all s ∈ [t, T ]. This is achieved when y(s) = 1. The optimal hazard rate then
becomes equal to its real world value λ̂(t) = λ(t), and the price reduces to (62).

4.3. Numerical Examples
In the absence of explicit solutions, we demonstrate how the pricing PDE can be used, nonetheless,

to obtain the value of reinsurance contracts through a simple finite-difference scheme. Since we are not
concerned with proving that the scheme converges in a wide class of scenarios, we take a practitioner’s
viewpoint and apply the scheme to situations in which the loss function and reinsurance contract itself
are both bounded. To this end, it is convenient to rewrite the problem using the log of the forward-price
process z(t) ≡ lnS(t) + r(T − t). Also, it is appropriate to scale the price function by the risk-aversion
parameter and the discount factor by introducing the function

P (L, z, t) ≡ α(t) P (L, ez−r(T−t), t) . (74)

With these substitutions, the pricing PDE (58) becomes 0 = P t − 1
2σ2 P z + 1

2σ2 P zz + λ(z, t)
(
1− e−(P (L+g(z,t),z,t)−P (L,z,t))

)
,

P (L, z, T ) = α̂ h(L, ez) ,
(75)

where g(z, t) = g(ez−r(T−t), t) and λ(z, t) = λ(t) eα(t)g(z). Here, we introduce a grid for the (L, z, t) plane
with step sizes of (∆L,∆z,∆t) so that

Lj = j∆L , zk = zmin + k∆L , tn = n∆t . (76)
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We then obtain the following explicit finite difference scheme for solving (75):
P (Lj , zk, tn−1) = 1

2 σ̃2(1 + 1
2∆z)P (Lj , zk−1, tn) + (1− σ̃)P (Lj , zk, tn)

+ 1
2 σ̃(1− 1

2∆z)P (Lj , zk+1, tn) + λ(zk, tn)
(
1− e−∆P (Lj ,zk,tn)

)
,

P (Lj , zk, T ) = h(Lj , e
zk) ,

(77)

where

σ̃2 =
∆t

∆z2
σ2 and (78)

∆P (Lj , zk, tn) = P (Lj + g(zk, tn), zk, tn)− P (Lj , zk, tn) . (79)

However, to complete the description of the finite difference scheme, we need to impose appropriate
boundary conditions. For the numerical examples in this section, we assume that claim sizes are generate
losses as described in §3.3.3. Since such claims are asymptotically constant as S approaches zero and
infinity, the price of the reinsurance must be asymptotically constant as well. Accordingly, we impose
the boundary conditions PS(L, zmin, t) = 0 and PS(L, zmax, t) = 0 for all loss levels L and times t.

To illustrate the effects of the insurer’s risk aversion level on the pricing results, we focus on two
prototypical reinsurance payoff functions:

h1(L, S) = min(M,max(0, L−m)) and (80)

h2(L, S) = I(S > S∗) min(M,max(0, L−m)) . (81)

The first reinsurance payoff function h1 corresponds to a stop-loss reinsurance contract with payments
starting at losses of m and attaining a maximum of M . This reinsurance contract makes payments that
are independent of the risky asset’s price at maturity; however, because the loss sizes are linked to the
equity value, the value of the contract at initiation will depend on the spot price of the risky asset. The
second reinsurance payoff function h2 corresponds to a double-trigger reinsurance contract in which a
stop-loss payment is made if the risky asset’s price rises above a critical value S∗.

In Figure 4, we show how the price of the two reinsurance contracts depend on the prevailing spot
price for several levels of risk aversion α̂. As expected, for both reinsurance contracts, the price increases
as the insurer becomes more risk averse. Furthermore, for any given risk-aversion level, the price of the
double-trigger stop-loss contract is lower than the pure stop-loss contract. This too is expected since
the double-trigger contract pays nothing if the risky asset’s price is below the trigger level at maturity.
Finally, in the region of large risky asset prices, the two contracts asymptotically approach the same
values.

5. Conclusions

In this paper, we obtained the premium an insurer requires if she takes on the risk of equity-linked
losses. To do so, we employed the principle of equivalent utility with constant absolute risk-aversion, i.e.
exponential utility, to value the contract, and although the insurer is risk-averse, we demonstrated that
the premium is obtainable by computing a risk-neutral expectation of an exponentially weighted average
of the claim sizes. In the limit in which the insurer becomes risk-neutral this expectation reduces to the
expected loss per unit time. Furthermore, we examined the indifference price for and an insurer who
took on the risk of the equity-linked insurance contract, but the general non-linear PDE that arises from
the associated HJB equations was not solved. However, we were able to rewrite the non-linear PDE in
terms of a dual linear optimization problem. This allowed us to provide a probabilistic interpretation of
the pricing problem for the reinsurance contract: The price in the dual representation, is a minimum of
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Figure 4. The indifference price for the reinsurance contracts (80) and (81) with losses described in §3.3.3.
The model parameters are those used in Figure 2. In the bottom panels, the risk-aversion parameter is set
to α = 0.2. In all experiments, we used 1000 time steps and a grid of size 1000× 1000 with zmin = −10,
zmax = 10 and Lmax = 2000.
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the risk-neutral price plus a penalty term, where the optimization is over a stochastic activity rate for
the Poisson processes driving the arrival times. In the limit of a risk-neutral insurer, we demonstrated
that the price reduces to an expectation of the reinsurance payoff over a risk-neutral measure in which
the distribution of losses are identical to the real-world distribution.

There are several avenues that are open for further exploration. For example, it would be interesting to
obtain the distribution of the ruin times for insurers facing these equity-linked risks. A closed form result
for general loss functions g(S, t) is not likely. We suspect, however, that in cases when g is a piecewise
linear function of the log-stock price, a semi-explicit form might be available. Another exploration could
involve ruin-related problems: such as the optimal consumption problem for the insurer where the value
function truncates at the time of ruin. This is similar to the questions Young and Zariphopoulou (2002)
addressed in the context of fixed loss sizes. Extending their results to the case of equity-linked losses
would be quite interesting. The Gerber and Shiu (1998) penalty function is another problem related to
the time of ruin, and although it is not explicitly connected to question of indifference pricing, it would
also be interesting to investigate its equity-linked extensions.
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