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It is well known that purely structural models of default cannot explain short term credit

spreads, while purely intensity based models of default lead to completely unpredictable default

events. Neither of these features are realistic. Additionally, investor preference may play an

important role in introducing correlation of defaults as well as setting spreads themselves. Leung,

Sircar and Zariphopoulou (2008) recently introduced a structural model, in which default of the

reference entity is triggered by a (non-traded) credit worthiness index, and utilized indifference

pricing to value defaultable bonds. We build on this base structural model and add a new

distressed regime which allows for unpredictable defaults, thus creating a hybrid model of default.

Furthermore, in an unrelated paper, Uppal and Wang (2003) study portfolio optimization when

model parameters are unknown. By combining the hybrid default model with the uncertain

parameter portfolio optimization problem, we succeed in determining corporate bond spreads

and CDS spreads using indifference valuation. Our framework therefore allows for risk aversion,

parameter uncertainty and both structural and intensity default features.
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1. Introduction

There are two main approaches to modeling default events – the reduced form approach and

the structural approach.

In the reduced form approach, a credit event is modeled as the first arrival of an exogenous

jump process such as a Poisson counting process or, more generally, a Cox process (see e.g. Lando

(1994) and Schönbucher (2003)). So called risk-neutral hazard rates are then extracted from

market prices of traded default triggered securities – defaultable bonds and credit default swap

(CDS) are prime examples. Subsequently, reduced form approaches do not use any information

about the internal structure of the company, like firm value or corporate debt. This can be an

advantage, since the relevant data may be hard to observe or extract from available information.

In contrast, the structural approach models default as a consequence of a company becoming

unhealthy. A popular structural model is the firm value model, which measures the company’s

health by its firm value, which itself is the viewed as the sum of the company’s equity and debt.

This interpretation makes the firm value a traded asset. Default occurs when the value of the

firm is less than its outstanding debts or some percentage of the outstanding debt.

In the first paper using a structural approach, Merton (1974) models a company’s equity as

a European call option on its firm value with its debts used as a strike level. The company

defaults if at maturity the value of the firm is below the company’s debts. The advantage of

this model is its simplicity even though it lacks realism. Black and Cox (1976) extend this idea

to the more realistic case where the company defaults the instant its firm value drops below a

critical level, turning the problem into a first passage time one.

There have been numerous extensions, modifications and increases in the sophistication of the

firm value model over the last several decades. A limited list of important contributions to the

field include Leland (1977) extension of the debt to a coupon paying bond; Kim, Ramaswamy,

and Sundaresan (1993) and Longstaff and Schwartz (1995) inclusion of stochastic interest rates;

Leland (1994) and Leland and Toft (1996) extension to endogenously specifying the default

boundary as a result of equity holders maximizing the value of the firm; Duffie and Lando (2001)

model of incomplete market information; and Fouque, Sircar, and Solna (2006) integration of

stochastic volatility in firm value models.

In a recent paper, Leung, Sircar, and Zariphopoulou (2008) introduce a market model with

a money market account and a defaultable risky asset, and use utility indifference pricing to

price defaultable bonds on this risky asset. In that work, the firm’s stock price and its asset
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value are modeled as correlated geometric Brownian motions; however, in contrast to previous

models, although the asset value is assumed observable it is not tradable. Default of the firm

is triggered by the asset value hitting a barrier D. The non-tradability of the firm’s asset value

makes the market incomplete. This contrasts with Sircar and Zariphopoulou (2007) where the

authors analyze the effect of risk aversion within a reduced form approach.

Here, we are interested in addressing how risk aversion and model uncertainty combine to

affect bond values and CDS rates. To achieve this, the paper is structured in two parts. The

first part assumes complete knowledge of the model parameters while the second introduces

model uncertainty. We now describe these parts in some detail.

In the first part of this article, we assume complete knowledge on the model parameters, and

adopt a similar setting to Leung, Sircar, and Zariphopoulou (2008). Specifically, we assume the

perceived health of a company is measured by a creditworthiness index (CWI; treated as the

firm’s asset value in Leung, Sircar, and Zariphopoulou (2008)). Since the health of a company

is typically determined by more complex factors than the prices of its stocks and bonds, we

assume that the CWI is not tradable. It is natural that the company’s health will be correlated

with its equity value, therefore we assume the CWI is positively correlated to the firm’s stock

price. However we extend the model in Leung, Sircar, and Zariphopoulou (2008) in several

aspects. Firstly, there is no reason to assume that the defaultable stock is the only available

tradable asset. A real world investor is always able to invest in many liquid stocks, and more

importantly, investors will try to diversify their portfolios. As a consequence, we consider a

market in which the investor also trades in a correlated non-defaultable index. This setting can

easily be extended to several default-free risky assets, but we will not do this here. Secondly,

experience shows that it is not reasonable to assume that default of a company can be completely

anticipated. Consequently, we assume that after the CWI crosses a certain threshold D, the

state of the company changes from healthy to distressed. At this point the company does not

default, and instead enters a state of financial distress, in which default is now triggered by an

exogenous Poisson process. In this context, D can be interpreted as a rough upper estimate of an

otherwise unknown default barrier, after whose hitting investors become nervous and withdraw

their investments from the firm. Another interpretation of D is that of the level at which rating

agencies downgrade the credit rating of the company.

In the second part of this article, we address the very real fact that some model parameters

may be uncertain. In particular, this concerns the CWI since usually the perceived health of a
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company can only be fully observed a few times a year, e.g. when the firm publishes its earnings.

While it would be desirable to introduce the CWI as an unobservable quantity, in the indiffernce

pricing setting this would lead to a highly non-tractable problem. Instead, we take a different

approach, following ideas from Anderson, Hansen, and Sargent (2000), Maenhout (2004) and

Uppal and Wang (2003), who introduce model uncertainty to portfolio optimization problems.

In these approaches, the optimization problem is augmented to incorporate a minimax problem

where one maximizes expected penalized utility of terminal wealth over all admissible trading

strategies while minimizing over a set of measures equivalent to the historical one. Details on

the methodology are provided in Section 6.

Due to the incomplete market framework, the market price of risk of the CWI must be incor-

porated into any risk-neutral valuation procedure. However, since we are explicitly investigating

the affects of risk-aversion we do not take this risk-neutral approach. Another reason for avoid-

ing the risk-neutral approach is that it assumes that the entity being valued is liquidly traded.

Although there is a good market for CDS and defaultable bonds, it is far from being completely

liquid – and in the current market conditions that liquidity has considerably dried up. There is

an alternative approach to valuation in incomplete market settings which has been under intense

study over the last several years – indifference valuation (also known as utility indifference and

certainty equivalence). Indifference valuation circumvents the issue of tradability all together,

and instead focuses on the optimal investment investment strategy in the presence and absence

of the embedded risks. In particular, from the seller’s viewpoint, utility indifference pricing com-

pares (i) not taking on the default risk and receiving no premium or (ii) taking on the default

risk while receiving a premium. For the buyer the setup is analogous. Some recent studies using

indifference pricing include: Hodges and Neuberger (1989) demonstrate how transaction costs

can be analyzed in this framework, Davis, Panas, and Zariphopoulou (1993) study the impact

on derivative pricing in the presence of transaction costs, Young and Zariphopoulou (2002) ap-

ply these methods to insurance products, Henderson and Hobson (2002a) explore options on a

non-tradable asset correlated to a tradable one, and Stoikov (2005) investigates the implications

for volatility derivatives. It is important to note that the indifference price is a personal price

and depends on the investor’s level of risk aversion. Only if the market price is higher than this,

will the seller engage in the transaction.

The remainder of this article is organized as follows: In section 2 we introduce the model. In

section 3 we compute the value functions for the investment problem, i.e. the scenario in which
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the investor is invested in the tradable assets and the money market only. In sections 4 and 5

we compute the value functions corresponding to investments in defaultable bonds and credit

default swaps. We combine the results from sections 3, 4 and 5 to determine bond yields and

CDS spreads. Up to this point, the investor is assumed to have complete knowledge of the model

parameters. In section 6 we introduce model uncertainty and examine how the results from the

previous sections change in this generalized setting. The article closes with some concluding

remarks in section 7.

2. The Model

We now outline our modeling framework and key assumptions.

Assumption 1. The investor’s utility function is exponential u(w) = − 1
γ e
−γ w.

Let a certain threshold D > 0 be given. We first consider the state before the CWI hits D

for the first time, which we shall call the healthy regime henceforth. In this article, we work on

the filtered probability space (Ω,F,P). Let {(B(1)
t , B

(2)
t , B

(3)
t ) : 0 ≤ t ≤ T} denote correlated

Wiener processes, let Nt denote a Poisson process, independent of the Brownian motions, with

constant activity rate κ, and F denotes the natural filtration generated by the Wiener processes

and the Poisson process: F , {Ft : 0 ≤ t ≤ T} where Ft = σ{(B(1)
u , B

(2)
u , B

(3)
u , Nu) : 0 ≤ u ≤

t}. The continuously compounded interest rate r is assumed constant throughout 1.

The non-defaultable index Pt, the defaultable stock St and the creditworthiness index Ct are

modeled as correlated geometric Brownian motions

dPt = Pt

(
µ1 dt+ σ1 dB

(1)
t

)
,

dSt = St

(
µ2 dt+ σ2 dB

(2)
t

)
,

dCt = Ct

(
ν dt+ η dB

(3)
t

)
.

For our purposes it is convenient to write the variance-covariance matrix of Pt, St, Ct in the

form  Ω ω

ωT η2

 .

1It is trivial to make interest rates deterministic. Extending to stochastic interest rates is both interesting and

non-trivial as demonstrated by Young (2004) in the context of equity insurance linked products. In principal,

stochastic hazard rates can also be handled as in Ludkovski and Young (2008)
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Here Ω is the variance-covariance matrix of Pt, St, and ω = (ρ13σ1η, ρ23σ2η), and d[B(i), B(j)]t =

ρij dt.

Let

τh , inf{t : min
0≤s≤t

Ct = D}

be the first time that the CWI hits the threshold D. At this time the stock St does not default

yet. However the investor realizes that from now on, the firm is in a state of financial distress.

As a consequence, he completely liquidates his investment in S and from thereon only invests in

the money market and the non-defaultable index. Since S has not defaulted yet, it is resonable

to assume that the investor can sell S at the current market price Sτh .

After Ct has hit D for the first time, the firm enters a state of financial distress, which will

be called the distressed regime henceforth. In the distressed regime default is triggered by the

switching of the Poisson process Nt for which τd denotes the first arrival time of Nt after time

τh, i.e.

τd , inf{t > τh | Nt > Nt−}.

Since the investor has liquidated their position in the defaultable stock, the only sources of

randomness in this state are B(1)
t and, if invested in a credit derivative written on the firm, also

Nt.

An alternative realistic model for the distressed regime would be the following: in addition to

the non-defaultable index the investor is still allowed to invest in the defaultable stock. Since

default is triggered by the switching of a Poisson process and therefore cannot be anticipated,

the investor loses at least a portion of the wealth invested in S. To our knowledge, this setup

has not been investigated in previous papers. It makes the model more interesting, but also less

mathematically tractable, and particularly so when the investor invests in credit derivatives. In

this paper we will therefore concentrate on the simpler model introduced earlier.

3. The Investment Problem

Given our model above, we now proceed to describe the optimal portfolio problem for an

investor who wishes to trade in the money-markets, the risky (but non-defaultable) index and

the risky defaultable equity.
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3.1. Trading Strategies and Wealth Process

In this subsection, we define the set of admissible trading strategies and their corresponding

wealth processes.

Throughout this paper, we let Bt = (B(1)
t , B

(2)
t )T , µ = (µ1, µ2)T , and r = (r, r)T . Further,

let π = (πt)
T
t=0, where πt = (π(1)

t , π
(2)
t ) ∈ R2, be an Ft-adapted process satisfying

∫ T
0 π

2
t dt <∞

almost surely. Then for all t ∈ [0, T ], w ∈ R the SDE dWs =
[
(µ− r)Tπs + r Ws

]
ds+ π

(1)
s σ1 dB

(1)
s + π

(2)
s σ2 dB

(2)
s ,

Wt = w,

has a unique strong solution Wπ
s . We interpret π(1)

t and π
(2)
t as the dollar amounts invested in

P and S at time t, and Wπ
s as the wealth process corresponding to the self-financing trading

strategy π and the initial condition Wt = w. For convenience we will write Ws rather than Wπ
s

whenever w and π follow from the context.

In this paper we only consider Markovian strategies, which means that the investor makes

their decisions according to the current state of Wt, Pt, St, and Ct. Furthermore, at any time

the investor knows which of the three regimes the firm is currently in (healthy, distressed, post

default). Consequently, the strategy will also depend on I{t ≥ τh} and I{t ≥ τd} and leads us

to the following definition:

Defintion 1. An admissible trading strategy is a function

πt = (π(1)
t , π

(2)
t ) = π(w,P, S, C, t, I{t > τh}, I{t > τd})

of the form

πt =

 π(Wt, Pt, St, Ct, t), t < τh,

π(Wt, Pt, t), t > τh,

satisfying the following:

1. π(2)
t = 0 for t ≥ τh,

2.
∫ T

0 π
2
t dt <∞ almost surely,

3.
∫ T

0

(
exp

{
−γer(T−t)Wπ

T

})2
dt <∞.

The last condition ensures that certain uniform integrability conditions are satisfied, which

allow us to construct the necessary verification theorems. The set of admissible trading strategies

will be denoted A. In the interest of readability, we have opted to record and prove the relevant

verification theorems in Appendix A.
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3.2. Utility Maximization

We begin by maximizing the investor’s terminal expected utility of wealth in the two regimes.

The dynamics of the wealth process are given by

dWt =


[
(µ− r)Tπt + r Wt

]
dt+ π

(1)
t σ1 dB

(1)
t + π

(2)
t σ2 dB

(2)
t , t < τh,[

(µ1 − r)π(1)
t + r Wt

]
dt+ π

(1)
t σ1dB

(1)
t , t > τh,

subject to Wτh = Wτ−h
. In this setup, the investor is not exposed to any default risk since their

position is liquidated once the firm enters the distressed regime. Consequently, in the distressed

regime, the optimization problem reduces to that of the standard Merton (1969) investment

problem with a money market account and risky asset Pt. The value function V in this case is

well known, for exponential utility, to be

V (w, t) = sup
(π1,0)∈A

E [u(WT ) | Wt = w, Pt = P ] = − 1
γ exp{atw − 1

2λ
2(T − t)}, (1)

using the notation at = −γer(T−t) and λ = (µ1 − r)/σ1.

Given the value function in the distressed regime, we now maximize expected terminal utility

in the healthy regime through investment in the index Pt, the defaultable asset St and the

money-market account. Here, the investor wishes to solve the following problem:

U(w,P, S, C) = sup
π∈A

E [u(WT ) | W0 = w, P0 = P, S0 = S, C0 = C > D] ,

where A represent the set of admissible strategies. To invoke the dynamic programming princi-

ple, we introduce the time dependent value function

U(w,P, S, C, t) = sup
π∈A

E [u(WT ) | Wt = w, Pt = P, St = S, Ct = C, t < τh] .

Note that U is defined on the domain D , R× [0,∞)2 × [D,∞)× [0, T ].

Applying the standard Bellman principle we find that assuming U to be sufficiently regular,

we expect it to satisfy the partial differential equation
∂tU + sup

π∈R2

LπU = 0,

U(w,C, T ) = u(w), w ∈ R, C > D,

U(w,D, t) = V (w, t), w ∈ R, t ∈ [0, T ],

(2)

where Lπ is the infinitesimal generator of the processes (Wt, Pt, St, Ct), and in particular LπU =
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KU +KπU with

KU , rw ∂wU + µ1P ∂PU + µ2S ∂SU + νC ∂CU +
1
2
σ2

1P
2 ∂PPU +

1
2
σ2

2S
2 ∂SSU +

+
1
2
η2C2 ∂CCU + ρ12σ1σ2PS ∂PSU + ω1PC ∂PCU + ω2SC ∂SCU,

KπU ,
1
2
πTΩπ ∂wwU + πT

[
(µ− r)∂wU + Ω(P ∂wPU, S ∂wSU)T + ωC ∂wCU

]
.

The first boundary condition in (2) is the obvious terminal condition, and the second boundary

condition is due to the firm’s switching to the distressed regime at time τh.

It is straightforward to see that U is independent of P and S, i.e. U(w,P, S, C, t) = U(w,C, t).

Therefore the two terms above simplify to

KU = rw ∂wU + νC ∂CU +
1
2
η2C2 ∂CCU, and

KπU =
1
2
πTΩπ ∂wwU + πT [(µ− r) ∂wU + ωC ∂wCU ] .

Furthermore, a verification theorem (see appendix A.1) shows that if a function Ũ satisfies

equation (2) on D, then U = Ũ .

The first order condition for the optimal investment in the risky assets π is

Ω ∂wwU π = −(µ− r) ∂wU − ωC ∂wCU ,

which yields

π∗ = − 1
∂wwU

Ω−1 [(µ− r) ∂wU + ωC ∂wCU ] .

Due to the exponential utility assumption, wealth can be removed from (2) by writing U(w,C, t) =

u
(
w er(T−t)

)
g(C, t), and we get

∂tg + νC∂Cg +
1
2
η2C2∂CCg

− 1
2g

[(µ− r)g + ωC ∂Cg] Ω−1 [(µ− r)g + ωC ∂Cg] = 0

g(D, t) = e−
λ2

2
(T−t) ,

g(C, T ) = 1 .

Following Zariphopoulou (2001) and Henderson and Hobson (2002b) we make a power trans-

form substitution of the form

g(C, t) = e−
1
2

Λ2 (T−t)Gβ(ln C
D , T − t),

where

Λ2 = (µ− r)TΩ−1(µ− r)
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and β is chosen such that the resulting PDE for G becomes linear. The PDE for G is

−∂τG+
(
ν − 1

2
η2 − ωTΩ−1(µ− r)

)
∂xG+

1
2
η2 ∂xxG+

1
2

(∂xG)2

G

[
(β − 1) η2 − β ωTΩ−1ω

]
= 0.

The appropriate choice for β is then

β =
1

1− 1
η2 (ωTΩ−1ω)

,

and the corresponding linear equation for G(x, τ) is
−∂τG+ ν̃ ∂xG+

1
2
η2 ∂xxG = 0

G(0, τ) = e
1

2β
(Λ2−λ2)τ

,

G(x, 0) = 1 .

(3)

Here, ν̃ = ν− 1
2η

2−(µ−r)T Ω−1 ω is the drift of the CWI under the minimal entropy martingale

measure2. Due to the boundary condition along the barrier C = D, which is inherited from the

subproblem of optimizing in the distressed regime, G is not simply the probability of remaining

in the healthy regime under the MEMM. In fact, the PDE can be solved fairly easily through

standard techniques (see appendix B) to find

G(x, τ) = 1− x√
2π η

∫ τ

0

e−(x+ν̃u)2/(2η2u)

u3/2

[
1− e+ 1

2β
(Λ2−λ2)(τ−u)

]
du

= qt(x, T ; ν̃) + e
(ν̂−ν̃)x/η2+ 1

2β
(Λ2−λ2)τ (1− qt(x, T ; ν̂)) , (4)

where

qt(x, s; θ) , Qθ(τh > s | ln(Ct/D) = x), and ν̂ = ν̃ +
√
ν̃2 + η2 · 1

β
(Λ2 − λ2).

Here, as usual, Φ(y) denotes the standard normal cdf and Qθ is a measure induced the Radon-

Nikodym derivative process

dQθ

dP

∣∣∣∣
Ft

= exp
{
−
(
ν−θ
η

)2
−
(
ν−θ
η

)
B

(3)
t

}
.

4. The defaultable bond

We now include investment in a defaultable bond in addition to the money-market account,

the risky (non-defaultable) index and the risky defaultable stock. In this case, the investor
2Since the process Ct is continuous the MEMM measure is equivalent to the minimal martingale measure (see

Schweizer (1999)).
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receives a notional of F at maturity if the reference entity does not default before the maturity

date T , or receives a random recovery3 R (with 0 ≤ R ≤ 1) of the notional at default if default

occurs prior to maturity. Consequently, if we let τ1 , τh ∧ T , τ2 , τd ∧ T , the dynamics of the

wealth process is given by

dW t =



[
(µ− r)Tπt + r W t

]
dt+ π

(1)
t σ1 dB

(1)
t + π

(2)
t σ2 dB

(2)
t , t < τ1,

[
(µ1 − r)π(1)

t + r W t

]
dt+ π

(1)
t σ1dB

(1)
t , τ1 < t < τ2,

[
(µ1 − r)π(1)

t + r W t

]
dt+ π

(1)
t σ1dB

(1)
t , t > τ2,

subject to

W τ1 = W τ−1
+ F · I{τ1 = T},

W τ2 = W τ−2
+RF · I{τ2 < T}+ F · I{τ2 = T}.

Mainly for notational purposes we assume that the Poisson process Nt, which drives default in

the distressed regime, has a constant hazard rate κ. However the computations can easily be

generalized to deterministic hazard rates.

The derivation of the corresponding value function is similar as for the investment problem,

however the expression for the value function in the distressed regime is not as simple as in the

pure investment problem.

4.1. Valuation in the Distressed Regime

The value function V corresponding to an investment in the defaultable bond in the distressed

regime is

V (w,P, t) = sup
π∈A

E
[
u(W T ) |W t = w, Pt = P, τh < t < τd

]
,

As before, it is clear that V is independent of P , i.e. V = V (w, t). The corresponding HJB

equation is
∂tV + sup

π∈R

{
[rw + (µ1 − r)π] ∂wV +

1
2
σ2

1π
2∂wwV

}
+κ

[
V (w + R̃F, t)− V

]
= 0,

V (w, T ) = u(w + F ), w ∈ R .

(5)

3The recovery rate is assumed to be random, but independent of the driving Brownian motions and Nt.
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Here, V is the value function for the standard Merton investment problem (see Eq.(1)) and

R̃t , − 1
γFer(T−t)

log E e−γRFe
r(T−t)

, i.e. e−γR̃tFe
r(T−t)

= E e−γRFe
r(T−t)

. (6)

Note that if the recovery rate is assumed known, then R̃t = R.

The last term on the left hand side of Eq.(5) is due to a potential default and the corresponding

switch from the distressed regime to the state of default. In addition, applying verification

Theorem 6 from the appendix shows that any classical solution to Eq.(5) coincides with the

value function V .

Factoring out wealth (i.e. writing V (w, t) = u(w er(T−t)) g(t)) provides the following equation

for g:
g′ + inf

π∈R

{
(µ1 − r)πat g +

1
2
π2σ2

1a
2
t g

}
− κ g + κ e−

1
2
λ2(T−t)+R̃tFat = 0 ,

g(T ) = e−γF .

The infimum is attained at π(1),∗ = −λ2/(2at), and on substitution leads to the linear ODE
g′ −

(
κ+

1
2
λ2

)
g + κ e−

1
2
λ2(T−t)+R̃tFat = 0

g(T ) = e−γF .

(7)

This ODE can be easily solved to find

g(t) = e−
1
2
λ2(T−t) ·

[
e−γF · e−κ(T−t) +

∫ T

t
e−γR̃sFe

r(T−s)
κe−κ(s−t)ds

]
. (8)

Interestingly, it is possible to rewrite this result in terms of an expectation over the default time

as follows:

g(t) = e−
1
2
λ2(T−t)E

[
exp

{
−γ
(
F I{τd>T} +RFer(T−τd) I{τd≤T}

)}∣∣∣ τh < t < τd

]
. (9)

It is pleasing that an expectation over the risky bond’s cash-flow accumulated to maturity arises

in this context. This is of course a specific realization of the general duality result of Delbane,

Grandits, Rheinlnder, Samperi, Schweizer, and Stricker (2002). However, this duality result is

not so simple to apply in the healthy region.

Now it is a straightforward matter to determine the indifference price p of the risky bond in

the distressed regime. The defining equation is V (w−p, t) = V (w, t) resulting in an indifference

price of

p = −1
γ
e−r(T−t) ln

(
e−γF · e−κ(T−t) +

∫ T

t
e−γR̃sFe

r(T−s)
κe−κ(s−t) ds

)
.
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In Figure 1 we show the bond yield term structures with several levels of risk-aversion for both

the seller and the buyer. Notice that as risk-aversion increases the buyer’s yield increases as a

more risk-averse investor demands a lower price and therefore a higher yield, while the opposite

occurs for the seller. Interestingly, as term grows the spread decreases.
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(b) Buyer’s Yields

Figure 1. The seller’s and buyer’s indifference yields for varying levels of risk-aversion in the

distressed regime. The model parameters are: C0 = 1.1, r = 0.05, µ1 = 0.08, µ2 = 0.1, ν = 0.01,

σ1 = 0.2, σ2 = 0.25, η = 0.05 κ = 0.1, ρ12 = 0.5, ρ13 = 0.3, ρ23 = 0.8, D = 1, R = 0.3.

4.2. Valuation in the Healthy Regime

Given the value function in the distressed regime, we are now in a position to solve for the

value function in the healthy regime. In this case, the value function is defined as

U(w,P, S, C, t) , sup
π∈A

E
[
u(W T ) | W t = w, Pt = P, St = S, Ct = C, t < τh

]
.

Then we expect U to satisfy the HJB equation
∂tU + sup

π∈R2

LπU = 0,

U(w,C, T ) = u(w + F ), w ∈ R, C > D,

U(w,D, t) = V (w, t), w ∈ R,

(10)

i.e. the only difference between this HJB equation and Eq. (2) is the modified boundary

conditions along the distress barrier C = D. As in the investment problem, the verification

Theorem 6 from the appendix guarantees that any solution of (10) coincides with the value

function U .
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Once again, it is clear that U is independent of P and S. Writing

U(w,C, t) = u(w er(T−t)) e−
Λ2

2β
(T−t)

G
β(ln C

D , T − t)

as before, implies G satisfies the linear PDE
−∂τG+ ν̃ ∂xG+

1
2
η2 ∂xxG = 0 ,

G(0, τ) = e
Λ2

2β
τ
g(T − τ)1/β ,

G(x, 0) = e
− γ F

β ,

(11)

whose solution can be written

G(x, τ) = e
− γ F

β qt(T ; ν̃) +
x

η
√

2π

∫ τ

0

e−(x+ν̃u)2/(2η2u)

u3/2
e

Λ2

2β
(τ−u) (g(T − τ + u))1/β du. (12)

Given (4) and (12), the indifference value p of the defaultable bond can be found by setting

U(w, S,C, t) = U(w − p, S, C, t) from which we find

pt(x, T ) = e−rτ
β

γ
ln
G(x, τ)
G(x, τ)

with x = ln C
D and τ = T − t. Unfortunately, we cannot simplify this expression any further;
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(b) Buyer’s Yields

Figure 2. The seller’s and buyer’s indifference yields for varying levels of risk-aversion in the

distressed regime. The model parameters are as in Figure 1

however, it is easy to numerically integrate using any standard quadrature routine. In Figure

2, the yield curves for different levels of risk-aversion are shown for the same set of parameters

as in Figure 1. Notice that in the healthy regime there is a definite hump shape in the risky
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yield despite the flat risk-free term structure. The hump is due to the non-zero recovery of 30%

assumed in the example. Once again we observe the increasing/decreasing of the buyer’s/seller’s

yields as risk-aversion increases.

5. The Credit Default Swap

In this section we will address how to determine the CDS rate consistent with indifference

valuation. To this end, suppose that the investor sells (or purchases) a CDS and receives (or

pays) a continuous premium rate of A paid on a notional of F up until default time or maturity

which ever occurs first. If default occurs first, the investor provides (or receives) a random4

payment of (1− R)F (with 0 ≤ R ≤ 1) and all future premium payments cease. In this setup,

the wealth process has the dynamics

dW̃t =



[
(µ− r)Tπt + r W̃t + εAF

]
dt+ π

(1)
t σ1 dB

(1)
t + π

(2)
t σ2 dB

(2)
t , t < τ1,[

(µ1 − r)π(1)
t + r W̃t + εAF

]
dt+ π

(1)
t σ1dB

(1)
t , τ1 < t < τ2,[

(µ1 − r)π(1)
t + r W̃t

]
dt+ π

(1)
t σ1dB

(1)
t , t > τ2,

subject to W̃τ1 = W̃τ−1
, W̃τ2 = W̃τ−2

− ε(1 − R)F · I{τ2 < T}. Here ε = +1 for the seller and

ε = −1 for the buyer of protection.

To determine the indifference rate A, the value functions in the two regimes must be deter-

mined separately, very much like for the defaultable bond.

5.1. Valuation in the Distressed Regime

The value function Ṽ in the distressed regime is defined as

Ṽ (w,P, t;A) = sup
π∈A

E
[
u(W̃T )

∣∣∣ W̃t = w, Pt = P, τh ≤ t < τd

]
.

The rate A is written here to emphasis that the solution explicitly depends on the CDS rate.

Through the dynamic programming principle, an HJB equation for the investor exposed to the

CDS risk can be written as
∂tṼ + sup

π∈R

{
[rw + εAF + (µ1 − r)π] ∂wṼ +

1
2
σ2

1π
2∂wwṼ +

+κ
[
V (w − ε(1− R̃t)F, t)− Ṽ

]}
= 0 ,

Ṽ (w, T ) = u(w), w ∈ R .

(13)

4Again assumed independent of all other stochastic factors.
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Verification Theorem 6 once again shows that any solution to the HJB equation above is indeed

a solution to the original optimal control problem.

Letting Ṽ (w, t) = u(wer(T−t)) g̃(t) leads to the following ODE for g̃:
∂tg̃ − (κ− εAF ) atg̃ − inf

π∈R

{
(µ1 − r)at +

1
2
π2σ2

1a
2
t

}
g̃ = −κe−

1
2
λ2(T−t)−ε(1−R̃t)at

g̃(T ) = 1.
(14)

The infimum is attained at π∗ = −λ2/(2at), and on resubstituting leads to the equation
g̃′ −

(
κ+

1
2
λ2 − εAFat

)
g̃ = −κ e−

1
2
λ2(T−t)−ε(1−R̃t)Fat

g(T ) = 1 .
(15)

This ODE has the solution

g̃(t) = e−
λ2

2
(T−t)

{
e−κ(T−t) · eεAF

∫ T
t audu +

∫ T

t
eεF(A

∫ s
t audu−(1−R̃s)as) κ e−κ(s−t) ds

}
.

This can be simplified slightly by noticing that
∫ s
t audu = 1

r (as − at); however, in its current

form a natural interpretation arises akin to the result for the risky bond’s value function in the

distress region (see Eq.(9)). In particular, it is easy to see that

g̃(t) = e−
λ2

2
(T−t)E

[
exp

{
−γ
(
εFA

∫ τd∧T

t
er(T−u)du− εF (1−R)er(T−τd)Iτd≤T

)}∣∣∣∣ τh < t < τd

]
.

Once again this is a specific realization of the general duality results of Delbane, Grandits,

Rheinlnder, Samperi, Schweizer, and Stricker (2002).

Similar to the price of the defaultable bond, the indifference CDS spread is defined as the

rate A which renders the investor indifferent to taking on the risk or not, i.e. A such that

Ṽ (w, t;A) = V (w, t), implying

e−κ(T−t) · eεAF
∫ T
t audu +

∫ T

t
eεF(A

∫ s
t audu−(1−R̃s)as) κ e−κ(s−t) ds = 1.

It is not possible to obtain an analytical expression for A in terms of the remaining model

parameters; however, it is possible to carry out an asymptotic expansion for A in powers of

the risk-aversion parameter γ. Expansions of this type have been explored in Davis (1998) in

the options context. He demonstrates that the zeroth order term is equivalent to price of an

infinitesimal position in the option - the so called marginal price. Rather than exploring this

direction, we will opt to solve for the spread numerically.

In Figure 3, we illustrate the seller’s and buyer’s CDS rates in the distressed regime using the

same parameter values as in the risky bond (see Figure 1). As expected, for any given level of
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risk-aversion and term, the seller’s rate is indeed higher than the buyer’s rate. Also, for the seller,

the required premium increases with increasing risk aversion, while for the buyer, the indifference

premium decreases with increasing risk aversion. Furthermore, as maturity increases, the seller

requires a higher premium, while the buyer’s indifference premium decreases.
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(a) Seller’s CDS spreads
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(b) Buyer’s CDS spreads

Figure 3. The indifference CDS rate term structure for the buyer and seller in the distressed

regime. See Figure 1 for the model parameters.

5.2. Valuation in the Healthy Regime

Now that the distressed regime value function has been obtained, we move onto the more

interesting task of the healthy regime. In this case, the value function is defined as

Ũ(w,P, S, C, t;A) , sup
π∈A

E
[
u(W̃T )

∣∣∣ W̃t = w, Pt = P, St = S, Ct = C, t < τh

]
,

which has the corresponding HJB equation
∂tŨ + εAF∂wŨ + sup

π∈R2

LπŨ = 0,

Ũ(w,D, t) = Ṽ (w, t),

Ũ(w,C, T ) = u(w), C > D.

(16)

This differs from equation (2) by the boundary condition along C = D and the inclusion of the

term εAF∂wŨ representing the accumulation of premium payments. Once gain, Ũ is indepen-

dent of P and S and assuming that Ũ has the form

Ũ(w,C, t) = u
(
w er(T−t)

)
G̃β
(

ln
C

D
, T − t

)
· eψ(T−t)
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with

β =
(

1− 1
η2 (ωTΩ−1ω)

)−1
, and ψ(τ) = −1

2
Λ2τ − ε γ AF

r
erτ

linearizes equation (16) resulting in
−∂τ G̃+ ν̃∂xG̃+

1
2
η2∂xxG̃ = 0 ,

G̃(0, τ) = e−ψ(τ)/β · g̃(T − τ)1/β ,

G̃(x, 0) = 1 .

(17)

This can be solved as before to find

G̃(x, τ) = qt(T ; ν̃) +
x

η
√

2π

∫ τ

0

e−(x+ν̃u)2/(2η2u)

u3/2
e−ψ(τ−u)/β (g̃(T − τ + u))1/β du . (18)

Armed with the solutions (4) and (18) the indifference CDS rate A = A(C, t) makes the

two value functions U(w,C, t) and Ũ(w,C, t;A) equal and requires solving the highly non-linear

equation

εγ F A =
β r

erτ
ln
(
G̃
(
ln C

D , τ ;A
)/

G
(
ln C

D , τ
))

. (19)

The dependence of G̃(x, τ ;A) on A is explicitly shown to emphasis the embedded non-linearity.

In Figure 4, we numerically solve this equation for the model parameters in Figure 2 and

illustrate the seller’s and buyer’s CDS spreads for several levels of initial perceived health C0.

As expected, as the perceived health approaches the distress barrier, the CDS spread increases,

while at every level of perceived health, the seller’s rate is higher than the buyer’s rate. Unlike

in the distressed regime, the spreads do indeed tend to zero for very short maturities; however,

this occurs only at very short maturities. Once uncertainty in model parameters is accounted

for, this steepening can be controlled not only by the proximity to the distress barrier, but also

by the amount of model uncertainty. The next section addresses this issue.

6. Indifference Pricing With Model Misspecification

6.1. Motivation

Following ideas of Anderson, Hansen, and Sargent (2000) and Maenhout (2004), we now

incorporate model uncertainty into our default model. Suppose that in a market with a money

market account and n risky, tradable and default free assets S(1)
t , . . . , S(n)

t the investor seeks to

maximize expected utility of terminal wealth over all admissible trading strategies, i.e. wants
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(a) Seller’s CDS spreads
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Figure 4. The indifference CDS rate term structure for the buyer and seller in the distressed

regime. See Figure 1 for the model parameters.

to determine supπ∈A E[u(WT )]. The dynamics of the economy is first estimated to be described

by the measure P, called the reference measure, under which S(1)
t , . . . , S

(n)
t have the dynamics

dS
(i)
t = S

(i)
t

(
µ

(i)
t dt+ σ

(i)
t dB

(i)
t

)
,

the B(i)
t are correlated Wiener processes. Since the investor is uncertain whether or not P is

indeed the correct measure, he is willing to consider other candidate measures Q ∼ P as well.

However, a measure change comes at the cost of a penalty for his value function, and his new

goal is to find

sup
π∈A

inf
Q∼P

{
EQ[u(WT )] + h(Q)

}
(20)

In equation (20) the freedom of choice of the candidate measure can be interpreted as a sec-

ond control (apart from the trading strategy). The penalty term h(Q) controls the distance

between the candidate measure Q and the reference measure P which the investor still considers

reasonable.

A popular choice for h (see e.g. Anderson, Hansen, and Sargent (2000)) is the entropic penalty

function

h(Q) = k H(Q|P) = k EQ
[
log

dQ

dP

]
= k E

[
dQ

dP
log

dQ

dP

]
,

where k is a positive constant.

If we work with the standard filtration generated by the driving Brownian motionsB(1)
t , . . . , B

(n)
t ,

then an equivalent measure change corresponds to an adjustment of the drifts in the dynamics
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of the S(i)
t , i.e. under a measure Q ∼ P the risky assets have the dynamics

dS
(i)
t = S

(i)
t

[
(µ(i)
t + v

(i)
t ) dt+ σ

(i)
t dB

Q,(i)
t

]
(21)

for some Ft-adapted processes v(1)
t , . . . , v(n)

t . Here the BQ,(i)
t are correlated Brownian motions

under Q.

A short calculation shows that

EQ
[
log

dQ

dP

]
=

1
2

EQ
[ ∫ T

0
vTs Ω−1vs ds

]
,

where vt = (v(1)
t , . . . , v

(n)
t )T and Ω is the variance-covariance matrix of S(1)

t , . . . , S(n)
t . It follows,

that if U is the value function defined by (20), then U satisfies the HJB equation

∂tU + sup
π∈Rn

inf
v∈Rn

{
Lπ,vU +

1
2
k vTΩ−1v

}
= 0, (22)

subject to the appropriate terminal condition. Here Lπ,v is the infinitesimal generator of the

price processes.

Unfortunately, due to the last term on the left hand side not containing U or any of its deriva-

tives, equation (22) cannot be solved analitically. In fact, for the case of power or exponential

utility, we are even unable to factor wealth out of the solution. As a resolution, Maenhout (2004)

suggests the following approach: he modifies the HJB equation by scaling the penalty term and

defines U to be the solution of the equation

∂tU + sup
π∈Rn

inf
v∈Rn

{
Lπ,vU +

1
2
kU vTΩ−1v

}
= 0. (23)

subject to the natural boundary condition at maturity t = T . Maenhout then shows that this

modified equation can be solved and uses it to optimize portfolios under power utility.

Alternatively one can also modify the optimization problem and define the value function as

the solution of

U(w, t) = sup
π∈A

inf
Q∼P

EQ
[
u(WT ) +

1
2
k

∫ T

t
U(Ws, s) vTs Ω−1vs ds

∣∣∣∣ Wt = w

]
. (24)

The penalty term equation (23) can therefore be interpreted as a scaled version of the penalty

term corresponding to relative entropy. However the scaling factor is not constant, but depen-

dent on future utility. The definition of U would normally also depend on initial conditions

corresponding to the risky assets. However, as in the case with complete certainty, it turns

out that e.g. for power and exponential utiliy, U depends only on wealth and time. The HJB-

equation corresponding to the modification (24) is in fact equation (23).
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In the following sections we adopt this approach to generalize our results from the previous

sections on the investment problem as well as on pricing the defaultable bond and the credit

default swap. Our work differs from Maenhout (2004) firstly in the choice of the utility function.

More importantly, due to the default risk of one of the assets, the arising optimization problems

are different and lead to more complicated HJB equations. Nevertheless, we show that we can

solve them analytically, at least to the same extent as for the case of complete model specification.

In a related paper, Uppal and Wang (2003) generalize the setting in Maenhout (2004) and

introduce different levels of ambiguity for different assets. Applying their idea to our setting,

we define the value function U as solution of the equation

U(w, t) = sup
π∈A

inf
Q∼P

EQ
[
u(WT ) +

1
2

∫ T

t
U(Ws, s) vTs Φvs ds

∣∣∣∣ Wt = w

]
. (25)

where the matrix Φ arises as a weighted sum of the levels of model uncertainty corresponding

to different subsets of the risky assets. The construction of Φ is discussed in detail in appendix

C. This generalization is particularly useful for our setting, since the model for the tradable

assets can usually be estimated well from past data, whereas the dynamics of the health of the

defaultable firm are rather uncertain.

6.2. The Investment Problem

For the remainder of the paper we assume that under a measure Q ∼ P the dynamics of Pt,

St, Ct are given by
dPt = Pt

[
(µ1 + v

(1)
t ) dt+ σ1 dB

Q,(1)
t

]
,

dSt = St

[
(µ2 + v

(2)
t ) dt+ σ2 dB

Q,(2)
t

]
,

dCt = Ct

[
(ν + v

(3)
t ) dt+ η dB

Q,(3)
t

] (26)

with correlated Q-Brownian motions BQ,(1)
t , BQ,(2)

t , BQ,(3)
t . Normally we will write B(1)

t , B(2)
t ,

B
(3)
t only for notational purposes. In addition to the same notation as in section 3 we let

vt = (v(1)
t , v

(2)
t , v

(3)
t )T . As in the completely specified case, we assume that the investor liquidates

their position in S at time τh. Consequently, in the absence of default risk, the corresponding

wealth process has the Q-dynamics

dWt =


[
((µ− r)T + (v(1)

t , v
(2)
t ))πt + r Wt

]
dt+ π

(1)
t σ1 dB

(1)
t + π

(2)
t σ2 dB

(2)
t , t < τh,[

(µ1 − r + v
(1)
t )π(1)

t + r Wt

]
dt+ π

(1)
t σ1dB

(1)
t , t > τh,

(27)
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subject to

Wτh = Wτ−h
.

Since we are working with several different measures, we have to modify the definition of the

set of admissible trading strategies. We now require that in order for a trading strategy to be

admissible, the conditions from section 3.2 have to hold for every candidate measure Q.

6.2.1. The Value Function in the Distressed Regime

We start with computing the value function V corresponding to an optimal investment in the

distressed regime. For t > τh the wealth process has the Q dynamics

dWt =
[
rWt + (µ1 − r + v

(1)
t )π(1)

t

]
dt+ π

(1)
t σ1dB

(1)
t .

From this point forward, we will write v and π instead of v(1) and π(1), when there is no confusion.

We define V to be the solution of the optimization problem

V (w,P, t) = sup
π∈A

inf
Q∼P

EQ
[
u(WT ) +

1
2

∫ T

t
V (Ws, Ps, s) φ v2

s ds

∣∣∣∣ Ws = w, Ps = P

]
. (28)

Here φ is a negative scalar. The penalty term in (28) is a scaled version of the relative entropy

of a measure change induced by adjusting the drift of the index Pt only. We choose this penalty,

because in the distressed regime the only model uncertainty relevant for the wealth process is

through v
(1)
t , the drift adjustment of Pt. The scalar φ is negative, because V is negative.

Assuming V is independent of P , the corresponding HJB equation is
∂tV + sup

π∈R
inf
v∈R

{
Lπ,v V +

1
2
V φv2

}
= 0 ,

V (w, T ) = u(w) , w ∈ R ,

(29)

where

Lπ,vV = (rw + (µ1 − r + v)π) ∂wV +
1
2
π2σ2

1 ∂wwV.

In contrast to the completely specified case, it is by far not obvious that V is indeed independent

of P . However verification Theorem 7 from the appendix shows that a solution of equation (29)

indeed coincides with the value function V in equation (28).

As in the completely specified case, we make the ansatz V (w, t) = u(wer(T−t)) g(t), which

results in the following ODE for g:
g′ + inf

π∈R
sup
v∈R

{
g(µ1 − r + v) atπ +

1
2
π2σ2

1a
2
t g +

1
2
g φ v2

}
= 0,

g(T ) = 1.

(30)
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To find the saddle point, it is convenient to write the PDE in the form

g′ + inf
π∈R

sup
v∈R

F (h) = 0, (31)

where

F (h) =
1
2
hTKh+ dTh

and

h =

 v

π̃

 , π̃ = atπ, K = g

 φ 1

1 σ2
1

 , d =

 0

(µ1 − r)g

 .

The first order condition for a saddle point is Kh = −d which has the unique solution

h∗ = −K−1d =
µ1 − r
φσ2

1 − 1

 −1

φ

 .

The corresponding critical value is F (h∗) = −1
2d

TK−1d, and leads to the ODE
g′ − 1

2
(µ1 − r)2φ

φσ2
1 − 1

g = 0,

g(T ) = 1.

(32)

This ODE has the solution g(t) = e−
1
2
λ

2
(T−t) with λ

2 = (µ1 − r)φ/(φσ2
1 − 1).

The above result is quite interesting in the two extreme cases φ = 0 and φ → ∞. In the

limit φ → ∞ the solution reduces to the standard Merton problem with complete certainty.

This is expected, since φ → ∞ penalizes any deviation from the reference measure P heavily.

In contrast, φ = 0 corresponds a complete lack of confidence in the reference measure P. It is

interesting to observe that in this case, π∗ → 0, i.e. the investor invests less and less money in

the risky asset. Furthermore, vt = r − µ1, and the corresponding measure Q is measure under

which the risky asset grows at the risk-free rate.

6.2.2. The Value Function in the Healthy Regime

Prior to τh the corresponding wealth process has the Q-dynamics

dWt =
[(

(µ− r)T + (v(1)
t , v

(2)
t )
)
πt + r Wt

]
dt+ π

(1)
t σ1 dB

(1)
t + π

(2)
t σ2 dB

(2)
t ,

The value function U(w,P, S, C, t) in the healthy regime is defined to be the solution of the

optimization problem

U(w,P, S, C, t) = sup
π∈A

inf
Q∼P

EQ
[
u(WT ) +

1
2

∫ τh∧T

t
U(Ws, Ps, Ss, Cs, s) vTs Φvs ds +

+
1
2

∫ T

τh∧T
V (Ws, s) φ v2

s ds

∣∣∣∣ Wt = w, Pt = P, St = S, Ct = C

]
. (33)
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Here Φ is a negative semidefinite matrix. Its construction is explained in detail in appendix C.

The choice of the penalty terms in equation (33) are motivated in a similar way as in equation

(28). Up to time τh, the penalty is a scaled version of the relative entropy of the measure change

from P to Q, since the wealth process is affected by model uncertainty in all three processes Pt,

Qt, Ct. After time τh only model uncertainty in Pt affects Wt, so we choose the same penalty

term as in the value function for the distressed regime.

Assuming that U is dependent on w, C, and t only, the corresponding HJB equation is
∂tU + sup

π∈R2

inf
v∈R3

Lπ,vU = 0,

U(w,C, T ) = u(w)

U(w,D, t) = V (w, t),

(34)

with

Lπ,vU =
[
rw + πT

(
(µ− r) + (v(1), v(2))T

)]
∂w U +

1
2
πTΩπ ∂wwU+

+ (ν + v(3))C ∂CU + πTωC ∂wC +
1
2
η2C2 ∂CCU +

1
2
U vTΦv

(35)

Once again, it is not obvious that U should depend only on w, C and t; however, Verification

Theorem 7c demonstrates that any solution to (34) indeed coincides with the value function U

in (33).

The method for solving this equation is similar to the one in section 3. Our goal is to write U

in the form U(w,C, t) = u(wer(T−t)) e−
1
2

Λ
2
(T−t) G(ln C

D , T − t)
β. Then we determine Λ and β

such that the PDE for G is linear. Firstly, letting U(w,C, t) = u(wer(T−t)) g(C, t) leads to the

PDE 

∂tg + inf
π∈R2

sup
v∈R3

{
πT
(
µ− r + (v(1), v(2))T

)
atg +

1
2
πTΩπ a2

t g+

+(ν + v(3))C ∂Cg +πTω atC ∂Cg +
1
2
η2C2 ∂CCg +

1
2
g vTΦv

}
= 0,

g(C, T ) = 1

g(D, t) = e−
1
2
λ

2
(T−t).

(36)

As in the case of the distressed regime, the notation for this equation can be simplified by writing

it in the form

∂tg + ν C∂Cg +
1
2
η2C2 ∂CCg + inf

π∈R2
sup
v∈R3

F (h) = 0,
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where

F (h) =
1
2
hTKh+ dTh

and

h =

 v

π̃

 , π̃ = atπ, K = g


Φ

1 0

0 1

0 0

1 0 0

0 1 0
Ω


, d =


0

0

C ∂Cg

(µ− r)g + ωC ∂Cg

 .

As before, the optimization problem has the unique solution h∗ = −K−1d, the corresponding

critical value is F (h∗) = −1
2 d

TK−1d, and the PDE reduces to

∂tg + νC∂Cg +
1
2
η2C2∂CCg −

1
2
dTK−1d = 0. (37)

To solve this equation, we first compute K−1. Letting E ,


1 0

0 1

0 0

 and noting that Φ

and Ω are symmetric, we have

K−1 =
1
g

 (Φ−EΩ−1ET )−1 −Φ−1E(−ETΦ−1E + Ω)−1

−(−ETΦ−1E + Ω)−1ETΦ−1 (−ETΦ−1E + Ω)−1

 (38)

Since the term −1
2d

TK−1d contributes the term −1
2g (µ − r)T (−ETΦ−1E + Ω)−1(µ − r) to

equation (37), we make the substitution

g(C, t) = Gβ(ln
C

D
, T − t)) e−

1
2

Λ
2
(T−t),

where

Λ2 = (µ− r)T (−ETΦ−1E + Ω)−1(µ− r).

To find the resulting equation for G it is convenient to write

d =


0

0

0

µ− r

 g +


0

0

1

ω

C∂Cg,
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Using the notation e = (0, 0, 1)T , G satisfies the PDE

−∂τG+
(
ν − 1

2
η2 − (µ− r)T

(
−ETΦ−1E + Ω

)−1 (−ETΦ−1e+ ω
))

∂xG+
1
2
η2 ∂xxG−

+
1
2

(∂xG)2

G

[
(β − 1)η2 − β d̃TK−1d̃

]
= 0,

where d̃ =

e
ω

, and hence the appropriate choice of β is

β =
1

1− 1
η2 d̃TK

−1d̃
.

With this choice of β the PDE for G is linear:
−∂τG+ ν̃ ∂xG+

1
2
η2 ∂xxG = 0,

G(0, τ) = e
− 1

2β
(Λ

2−λ2
)τ
,

G(x, 0) = 1,

(39)

where this time ν̃ = ν− 1
2η

2−(µ−r)T
(
−ETΦ−1E + Ω

)−1 (−ETΦ−1e+ ω
)
. It is pleasing that

the same PDE that arises in the case of full certainty (equation (3), section 3) appears here as

well – except with λ, Λ replaced by λ, Λ and with a modified ν̃ (no longer the MEMM adjusted

drift).

As for the distressed regime, we consider the limiting behaviour of the value function for the

cases Φ→∞ and Φ→ 0. For convenience we restate the values of the parameters in equation

(39):

ν̃ = ν − 1
2
η2 − (µ− r)T

(
−ETΦ−1E + Ω

)−1 (−ETΦ−1e+ ω
)
,

β =
1

1− 1
η2 d̃TK

−1d̃
,

Λ2 = (µ− r)T (−ETΦ−1E + Ω)−1(µ− r),

λ
2 =

(µ1 − r)2φ

φσ2
1 − 1

.

For Φ → ∞, φ → ∞ it is easy to see that these parameters converge to the corresponding

parameters in the completely specified case, and hence the same applies for the value function.

For the other extreme case we first explain what we mean by Φ→ 0. Let Φ = εΦ0, φ = εφ0,

for some fixed Φ0 and φ0. We will examine the behaviour of the value function as ε → 0. It is

convenient to write Φ0 and Φ−1
0 in the form

Φ0 =

 Ψ0 a

aT ϕ0

 , Φ−1
0 =

 Ψ−1
0 a

aT ϕ0

 .
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If we assume that Φ0 is strictly negative definite, then ϕ0 < 0, ϕ0 < 0 and Ψ0, Ψ−1
0 are strictly

negative definite.

Since the entries of K−1 frequently appear in the parameters above, we first examine their

behaviour for ε→ 0. We immediately see that

(−ETΦ−1E + Ω)−1 = (−εΨ−1
0 + Ω)−1 = −εΨ0(I − εΩΨ0)−1 = −εΨ0 +O(ε2), (40)

and

Φ−1E(−ETΦ−1E + Ω−1)−1 =
1
ε

Ψ−1
0

aT

 · [−εΨ0 +O(ε2)
]

=

 −I

−aTΨ0

+O(ε). (41)

Now we examine the behaviour of the entries of (Φ−EΩET )−1.

Lemma 2. The (3,3) entry of (Φ−EΩET )−1 is

1
εϕ0

+O(1), (42)

and all other entries of (Φ−EΩ−1ET )−1 approach finite values as ε→ 0.

Proof. Recall that for a regular square matrix A = (aij), the elements of the inverse matrix

A−1 = (aij) can be computed as follows:

aij =
(−1)i+j · [(j,i) minor of A]

detA
.

By (i, j) minor of A we mean the determinant of the submatrix obtained from A by deleting

the ith row and the jth column.

We have

Φ−EΩET =

 εΨ0 −Ω−1 εa

εaT εϕ0

 ,

and hence

det(Φ−EΩET ) = εϕ0 · det Ω−1 +O(ε2).

The (3,3) minor of Φ−EΩ−1ET is

det(εΨ0 −Ω−1) = det Ω−1 +O(ε),

and therefore the (3,3) entry of (Φ−EΩET )−1 is

1
εϕ0

+O(1). (43)

All other minors of Φ −EΩ−1ET are at least of order O(ε), and therefore all other entries of

(Φ−EΩ−1ET )−1 approach finite values as ε→ 0.
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From the results of (40), (41) it follows that as ε→ 0,

ν̃ = ν − 1
2
η2 − (µ− r)T

(
−εΨ0 +O(ε2)

) (
ETΦ−1e+ ω

)
= ν − 1

2
η2 − (µ− r)T

(
−εΨ0 +O(ε2)

)
(ε−1a+ ω) → ν − 1

2
η2 + (µ− r)TΨ0a

and

Λ2 = −ε (µ− r)TΨ0(µ− r) +O(ε2),

λ
2 = −ε (µ1 − r)2 φ0 +O(ε2).

Furthermore, the only entry of K−1 of order O(ε−1) is the (3, 3) entry. Hence β → 0 (ε→ 0),

and more precisely by lemma 2, we have

β = −εη2ϕ0 +O(ε2).

It follows that

1
β

(Λ2 − λ2)→ 1
η2ϕ0

·
[
(µ− r)TΨ0(µ− r)− (µ1 − r)2 φ0

]
.

Therefore the boundary conditions in equation (39) imply that G remains bounded as well as

bounded away from 0 (as ε→ 0). Since β → 0, it follows that g → 1 and hence U → u(wer(T−t)).

Now we examine how the optimal trading strategy π∗ and the optimal measure Q∗ behave as

ε→ 0. Recall that

 v∗

π∗

 = −K−1d. Firstly, it is helpful to notice that

C∂Cg

g
= β

∂xG

G
→ 0 (ε→ 0),

since in the limit as ε→ 0: ∂xG is bounded, G is bounded away from 0 and β → 0.

Theorem 3. For ε→ 0,

π
(1),∗
t → 0, π(2),∗

t → 0

pointwise for all w, P , S, C, t.

In other words, when there is complete uncertainty, no risky investments are made. This is

the analog to the distressed regime’s result.

Proof. For π∗ we get from equation (38)

π∗ = (−ETΦ−1E + Ω)−1(µ− r)− (−ETΦ−1E + Ω)−1
(
ETΦ−1e+ ω

) C∂Cg
g
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and hence

π∗ = −εΨ0(µ− r) + εΨ0(ε−1a+ ω)
C ∂Cg

g
+O(ε) → 0.

For the optimal measure we first focus on the limiting behaviour of v(1)
t and v

(2)
t .

Theorem 4. As ε→ 0,

v
(1),∗
t → r − µ1, v

(2),∗
t → r − µ2

pointwise for all w, P , S, C, t.

Hence under the optimal measure, the drifts of Pt and St tend to r as uncertainty increases.

This result is also the analog to the distressed regime.

Proof. For v∗ we get from equation (38)

v∗ = −(Φ−EΩ−1ET )−1e
C∂Cg

g
+ Φ−1E(−ETΦ−1E + Ω)−1 (µ− r) +

+Φ−1E(−ETΦ−1E + Ω)−1 ω
C∂Cg

g
. (44)

Since Φ−1 = ε−1Φ−1
0 , (−ETΦ−1E+Ω)−1 = −εΨ0+O(ε2), C∂Cgg → 0, the third term approaches

0 as ε→ 0. Furthermore, since by (41),

Φ−1E(−ETΦ−1E + Ω−1)−1 =

 −I

−aTΨ0

+O(ε),

it is easy to see that the first two components of the second term tend to r − µ1 and r − µ2.

Therefore we still have to show that the first two components of the first term approach 0.

Recalling that e = (0, 0, 1)T , this follows from the fact that the (1,3) and (2,3) entries of

(Φ−EΩ−1ET )−1 approach finite values for ε→ 0.

Theorem 5. Let L(x, t) , ∂xG
G . Then for ε→ 0,

v
(3),∗
t → η2L(x, t)− aTΨ0(µ− r).

In particular, v(3),∗ approaches a finite limit for all w, P , S, C, t and not ±∞, as one might

expect.
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Proof. We start from equation (44). The third component of the third term on the right hand

side is O(ε), whereas the third component of the second term is −aTΨ0(µ−r)+O(ε). Noticing

that C∂Cg
g = β · ∂xGG and β = −εη2ϕ0 + O(ε2) and furthermore using the result from lemma 2,

we can see that the third component of the first term is

η2L(x, t) +O(ε).

This proves the lemma.

6.3. Valuation of Credit Derivatives

In this section we examine how prices of defaultable bond and CDS rates change under model

misspecification. Since the computations are similar to those in sections 4 and 5, we treat the

two kinds of credit derivatives simultaneously.

Under a measure Q ∼ P we assume that the wealth process has the dynamics

dWt =



[
((µ− r)T + (v(1)

t , v
(2)
t ))πt + r Wt + εAF

]
dt+

+π(1)
t σ1 dB

(1)
t + π

(2)
t σ2 dB

(2)
t , t < τ1,[

(µ1 − r + v
(1)
t )π(1)

t + r Wt + εAF
]
dt+ π

(1)
t σ1dB

(1)
t , τ1 < t < τ2,[

(µ1 − r + v
(1)
t )π(1)

t + r Wt

]
dt+ π

(1)
t σ1dB

(1)
t , t > τ2,

subject to

Wτ1 = Wτ−1
+R2 · I{τ1 = T},

Wτ2 = Wτ−2
−R1 · I{τ2 < T}+R2 · I{τ2 = T}.

Here R1 is a random payment independent of the driving Brownian motions, and R2 is a de-

terministic payment. The choice ε = 0, R1 = RF (R=recovery), R2 = F corresponds to an

investment in the defaultable bond, whereas ε = ±1, R1 = ε(1 − R)F , R2 = 0 corresponds to

the investment of the seller/buyer of credit protection.

6.3.1. Valuation in the Distressed Regime

In the distressed regime we assume that the only model uncertainty comes from the drift of

the tradable asset P . While it would be both desirable and realistic to incorporate uncertainty

in the hazard rate κ as well, we choose not do so here due to analytical tractability. In certain

cases this can be somewhat justified by assuming that the default probability of the firm can

be estimated fairly well from past data (e.g. from firms within the same market sector and of
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similar size). Furthermore we also assume complete model certainty in the distribution of the

recovery rate.

We define the value function V as the solution of the optimization problem

V (w,P, t) = sup
π∈A

inf
Q∼P

EQ
[
u(WT ) +

1
2

∫ τd∧T

t
V (Ws, Ps, s) φ v2

s ds +

+
1
2

∫ T

τd∧T
V (Ws, s) φ v2

s ds

∣∣∣∣ Ws = w, Ps = P

]
.

This definition is the analog of the definition of V in section 6.2.1. The corresponding HJB

equation for V is
∂tV + εA ∂wV + sup

π∈R
inf
v∈R

{
Lπ,v V +

1
2
V φv2

}
+

+κ
[
V (w − εR̃1, t)− V

]
= 0 ,

V (w, T ) = u(w +R2) , w ∈ R ,

(45)

where

Lπ,vV = (rw + (µ1 − r + v)π) ∂wV +
1
2
π2σ2

1 ∂wwV .

Factoring out wealth by writing V (w, t) = u(wer(T−t)) g(t) leads to the following ODE for g:
g′ + inf

π∈R
sup
v∈R

{
[εA+ (µ1 − r + v)π] atg +

1
2
σ2

1π
2a2
t g +

1
2
g φv2

}
+

+κ
[
e−

1
2
λ

2
(T−t)−εR̃1at − g

]
= 0,

g(T ) = e−γR2 ,

Carrying out the optimization on the left hand side like in section 6.2.1 leads to
g′ −

(
κ+

1
2
λ

2 − εAat
)
g + κe−

1
2
λ

2
(T−t)−εR̃1at = 0,

g(T ) = e−γR2 ,

which can be solved in the usual way. Things become easy by noticing that for the defaultable

bond (ε = 0, R1 = RF , R2 = F ) the equation above is the same as equation (7), its analog for

the completely specified case, only with λ replaced by λ. Similarly, for the CDS we get the same

equation as (15), where again λ is replaced by λ.

It is interesting to see that since the indifference price of the bond as well as the indifference

CDS rates do not depend on λ, they are exactly the same as in the case with complete model

certainty. This fact makes it even more interesting to check whether and how uncertainty on κ

influences the prices of credit derivatives. This however is material for future research.
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6.3.2. Valuation in the Healthy Regime

In analogy to the previous sections we define the value function U(w,P, S, C, t) to be the

solution of the optimization problem

U(w,P, S, C, t) = sup
π∈A

inf
Q∼P

EQ
[
u(WT ) +

1
2

∫ τh∧T

t
U(Ws, Ps, Ss, Cs, s) vTs Φvs ds +

+
1
2

∫ τd∧T

τh∧T
V (Ws, s) φv2

s ds +
1
2

∫ T

τd∧T
V (Ws, s) φv2

s ds

∣∣∣∣∣∣∣∣ Wt = w, Pt = P, St = S, Ct = C

]
. (46)

Here Φ is the same matrix as in the investment problem in section 6.2.2.

Assuming that U is independent of P and S, the corresponding HJB equation is
∂tU + εA ∂wU + sup

π∈R2

inf
v∈R3

Lπ,vU = 0,

U(w,C, T ) = u(w +R2)

U(w,D, t) = V (w, t).

The operator Lπ,v is the same as in (35). As in section 5, we make an ansatz of the form

U(w,C, t) = u(wer(T−t)) eψ(T−t) h(C, t) with ψ(τ) = −εγAr e
rτ leading to the PDE

∂th+ inf
π∈R2

sup
v∈R3

{
πT
(
µ− r + (v(1), v(2))T

)
ath+

1
2
πTΩπ a2

th+

+(ν + v(3))C ∂Ch+ πTω atC ∂Ch+
1
2
η2C2 ∂CCh+

1
2
h vTΦv

}
= 0,

h(C, T ) = e−γR2 ,

h(D, t) = e−ψ(T−τ) · g(t).

Note that this equation is the same as (36), only with different boundary conditions. To solve

it, we can therefore make an analogous substitution to get a linear equation. More specifically,

we let h(C, t) = G
β(ln C

D , T − t) · e
− 1

2
Λ

2
(T−t) with Λ, β as in equation (40) to get

−∂τG+ ν̃ ∂xG+
1
2
η2 ∂xxG = 0,

G(0, τ) = e
− 1

2β
(Λ

2−λ2
)τ−ψ(τ)

β ,

G(x, 0) = e−γR2/β

with ν̃ as in (40). As in the distressed regime, we find the same equation as in the fully specified

cases in sections 4 and 5, only now with the new parameters ν̃ and β, and with λ and Λ replaced

by λ and Λ. Once again the MEMM adjusted drift that appeared in the fully specified case

disappears and is replaced by a model uncertainty version.
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Figure 5. The effect of model misspecification on yields and CDS spreads. The parameters for

the measure reference measure P are as in Figure 2. Initial CWI was set at C0 = 1.05. The

uncertainty scalar φ = εφ0 and matrix Φ = εΦ0 with φ0 and Φ0 reported in Appendix .

As for the completely specified case, we plot the bond yields as well as the seller’s and buyer’s

CDS spreads. For the following plots we have made specific choices for the negative scalar φ0

and the negative definite matrix Φ0. This choice is explained in detail at the end of Appendix

C. We then let φ = εφ0, Φ = εΦ0 for different values of ε. In Figure 5 we plot the resulting

yields and buyer/seller CDS spreads as the uncertainty varies. The case ε = 100 corresponds to

almost complete model certainty. For this case we get almost the same yields and CDS rates as

in the completely specified case (for C0 = 1.05). With increasing model uncertainty we observe

that the bond yields and seller’s CDS rates increase, while the buyer’s CDS rates decrease. This

is what we intuitively expect. Furthermore, there appears to be more flexibility in the shapes

of the resulting CDS spreads when compared with those in the fully specified case.
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7. Conclusions

In this article we introduced a new hybrid model for default occurring in two stages. Firstly,

the perceived health of the company, modeled as a GBM, must drop below a critical level leaving

the firm in a state of distress – this is the structural part of the model. Once distressed, the firm

defaults at an exponential time, viewed as the first arrival of an independent Poisson process –

providing the intensity base of the model. The perceived health is not a traded asset, however,

it is correlated to the firm’s equity and a wide-base (non-defaultable) index. Since the market

is incomplete, we utilize certainty equivalence to value credit derivatives written on the firm.

When the intensity of the Poisson process driving default in the distressed regime tends to

infinity, the barrier for the perceived health behaves as a default barrier and our model reduces

to that of Leung, Sircar, and Zariphopoulou (2008). However, in real world settings default will

not occur instantly at this point. We succeed in deriving closed form, classical, solutions to the

optimization in the absence and presence of the credit risk and hence are able to determine the

certainty equivalent risky yields and CDS spreads.

Given that estimating model parameters from limited data, particularly for the perceived

health process, we also develop an uncertain parameter formulation of our model and valuation

framework. Motivated by Maenhout (2004) and the robust optimization literature, we introduce

a value function which maximizes over admissible trading strategies while minimizing over equiv-

alent measures subject to a scaled entropic penalty. We succeed in obtaining classical solutions

to this problem and determine risky yields and CDS spreads subject to parameter uncertainty.

All of the observed behaviour is consistent with intuition and we find that parameter uncertainty

allows for a wider range of term structures.

There are several doors remaining open for further study. One clear direction is to incorporate

multiple firms. The main difficulty here is that a high dimensional first passage time problem

must be solved. However, if the portfolio has enough symmetry and if the perceived health

factors are viewed as uncorrelated the dimensionality reduces considerably. Such an approach,

in the purely intensity based model, was explored by Sircar and Zariphopoulou (2008) where the

authors demonstrate that the effective correlation can be introduced through risk-aversion alone

– without the necessity of correlating the underlying intensity processes. Another interesting

direction, which we have already begun exploring, is to randomizing the boundary below which

the firm becomes distressed. This will allow us to introduce a gap in the very term spreads in

the healthy regime (recall that a gad appears in the distressed since this regime corresponds to
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an intensity model). In the complete market setting this has already been addressed, and it is

well known that introducing randomness in the default boundary allows the structural model

to inherit intensity model features. A third direction is to allow the firm to recover from the

distressed regime. This is a more difficult problem than the one studied here, since now the

healthy and distressed regimes will be coupled not only through the boundary condition along

the boundary but also through the source terms in the HJB equations. In all, this arena of com-

bining structural and intensity models and incorporating risk-aversion together with parameter

uncertainty is a rich area full of interesting and worthwhile problems.
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A. Verification Theorems

A.1. For the Completely Specified Case

We assume the same model as in section 2. Let τ1 , τh ∧ T and τ2 , τd ∧ T . Furthermore we

assume that the wealth process Wt has the following dynamics:

dWt =



[
(µ− r)Tπt + r Wt + εA

]
dt+ π

(1)
t σ1 dB

(1)
t + π

(2)
t σ2 dB

(2)
t , t < τ1,[

(µ1 − r)π(1)
t + r Wt + εA

]
dt+ π

(1)
t σ1dB

(1)
t , τ1 < t < τ2,[

(µ1 − r)π(1)
t + r Wt

]
dt+ π

(1)
t σ1dB

(1)
t , t > τ2,

subject to

Wτ1 = Wτ−1
+R2 · I{τ1 = T},

Wτ2 = Wτ−2
− εR1 · I{τ2 < T}+R2 · I{τ2 = T}.

A is a constant and corresponds to a continuous payment made (ε = −1) or received (ε = +1)

up to time τd, or making/receiving no continuous payments at all (ε = 0). R1 is a random

variable independent of the processes driving the wealth process and corresponds to a payment

made/received at time τd. Finally, R2 is a constant and corresponds to a potential payoff at

maturity T . For t ∈ [0, T ] we define

U1(w,P, S, C, t) , sup
π∈A

E [ u(WT ) | Wt = w, Pt = P, St = S, Ct = C, τh ≤ t < τd ]

U2(w,P, S, C, t) , sup
π∈A

E[ u(WT ) | Wt = w, Pt = P, St = S, Ct = C, t < τh ].

Wealth is independent of P and S for t ∈ [0, τh) and independent of P , S and C for t ≥ τh.

Hence U2 = U2(w,C, t) and U1 = U1(w, t). We consider the corresponding HJB equation for U1,
∂tU1 + sup

π∈R
Lπ1U1 + κ

[
V (w + R̃1F, t)− U1

]
= 0,

U1(w, T ) = u(w +R2), w ∈ R
(47)

with

Lπ1U1 = [rw + εA+ (µ1 − r)π] ∂wU1 +
1
2
σ2

1π
2 ∂wwU1

and

R̃1 =
1

γεer(T−t)
log E eγεR1er(T−t) ,
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as well as the HJB equation for U2,
∂tU2 + sup

π∈R2

Lπ2 U2 = 0,

U2(w,C, T ) = u(w +R2), w ∈ R, C > D,

U2(w,D, t) = U1(w, t), w ∈ R, t ∈ [0, T ],

(48)

with

Lπ2 U2 = (rw + εA) ∂wU2 + νC ∂CU2 +
1
2
η2C2 ∂CCU2 +

+
1
2
πTΩπ ∂wwU2 + πT [(µ− r) ∂wU2 + ωC ∂wCU2] ,

As in previous sections, V is the value function for the standard Merton investment problem

and πMt is the corresponding optimal investment strategy. We demand that the functions in

the following verification theorem be sufficiently integrable in the sense that all the stochastic

integrals in the proofs exist and that we can exchange the order of taking expectations and limits

with respect to time, where necessary.

Theorem 6. (a) Suppose there exists a function Ũ1 = Ũ1(w, t) which is a solution of (47) and

which is sufficiently integrable. Furthermore, suppose that for each (w, t) ∈ R× [0, T ] there exists

π∗ = π∗(w, t) ∈ R such that

Lπ∗1 Ũ1 = sup
π∈R
Lπ1 Ũ1. (49)

Assume that the trading strategy πt defined by

πt =

 π∗(wt, t), τh ≤ t < τd,

πMt , t ≥ τd

is admissible. Then U1 = Ũ1 for (w, t) ∈ R× [0, T ], and π is an optimal strategy, i.e. U1(w, t) =

Et
[
u
(
W π
T

)]
.

(b) Suppose there exists a function Ũ2 = Ũ2(w,C, t) which solves (48) and which is sufficiently

integrable. Suppose that for each (w,C, t) ∈ R× (D,∞)× [0, T ] there exists π∗∗ = π∗∗(w,C, t) ∈

R2 such that

Lπ∗∗2 Ũ2 = sup
π∈R2

Lπ2 Ũ2. (50)

Assume that the trading strategy defined by

πt =

 π∗∗(wt, Ct, t), t < τh,

(πt, 0), t ≥ τh,
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is admissible. Then U2 = Ũ2 for (w,C, t) ∈ R × (D,∞) × [0, T ], and π is an optimal strategy,

i.e. U2(w,C, t) = Et
[
u
(
Wπ
T

)]
.

Proof. We begin with proving part (a). Let Ũ1 be as in the theorem, and let π be any admissible

trading strategy. Writing τ instead of τ2 for convenience, Ito’s lemma yields

Ũ1(Wτ− , τ
−) = Ũ1(w, t) +

∫ τ

t
(∂tŨ1 + Lπ1 Ũ1) ds+

∫ τ

t
πsσ1 ∂wŨ1 dB

(1)
s .

Since π is an arbitrary admissible strategy and noting that Ũ1 solves the HJB equation, we

always have ∂tŨ1 + Lπ1 Ũ1 ≤ −κ
[
V (w + R̃1, t)− Ũ1

]
. Taking expectations on both sides makes

the stochastic integral on the right hand side vanish and therefore yields

Ũ1(w, t) ≥ Et Ũ1(Wτ− , τ
−) + Et

∫ τ

t
κ
[
V (Ws + R̃1, s)− Ũ1(Ws, s)

]
ds.

Here we use the notation Et to abreviate the conditioning Wt = w. Assuming that we may

interchange the order of taking limits in time and taking expectations, a short calculation shows

that

Et
∫ τ

t
κ
[
V (Ws + R̃1, s)− Ũ1(Ws, s)

]
ds = Et

[(
V (Wτ− + R̃1, τ)− Ũ1(Wτ− , τ

−)
)
· I{τd ≤ T}

]
,

so we get

Ũ1(w, t) ≥ Et
[
Ũ1(Wτ− , τ

−) · I{τd > T}
]

+ Et
[
V (Wτ− + R̃1, τ

−) · I{τd ≤ T}
]
. (51)

If τd > T , then

Ũ1(Wτ− , τ
−) = Ũ1(WT− , T

−) = u(WT− +R2) = u(WT ),

and if τd ≤ T , then obviously V (Wτ− + R̃1, τ
−) = V (Wτ , τ) ≥ Eτu(WT ). Therefore, (51) implies

Ũ1(w, t) ≥ Et [u(WT )]. Since this holds for any admissible strategy, it follows that

Ũ1(w, t) ≥ U1(w, T ).

On the other hand, for π = π we get equality everywhere, and hence Ũ1(w, t) = U1(w, t).

Now we prove part (b). Let πt and Ũ2 as in the theorem, and let π ∈ A be an arbitrary

admissible strategy. Writing τ instead of τ1 this time, we get from Ito’s lemma

Ũ2(Wτ , Cτ , τ) = Ũ2(w,C, t) +
∫ τ

t

(
∂tŨ2 + Lπ2 Ũ2

)
ds+

∫ τ

t
∇(w,C)Ũ2(Ws, Cs, s) dBs.
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Since π ∈ A is an arbitrary strategy, we always have ∂tŨ2+Lπ2 Ũ2 ≤ 0, so that taking expectations

on both sides yields Ũ2(w,C, t) ≥ Et Ũ2(Wτ , Cτ , τ). Making use of the fact that Ũ2 is a solution

of (48), we get

Ũ2(Wτ , Cτ , τ) = Ũ2(WT , CT , T ) · I {τh > T}+ Ũ2(Wτ , Cτ , τ) · I{τh ≤ T}

= u(WT ) · I{τh > T}+ Ũ2(Wτ , D, τ) · I{τh ≤ T}

= u(WT ) · I{τh > T}+ U1(Wτ , τ) · I{τh ≤ T}.

Taking expectations on both sides and using the definition of U1 leads to

Et Ũ2(Wτ , Cτ , τ) ≥ Et [u(WT ) · I{τh > T}] + Et [u(WT ) · I{τh ≤ T}]

= Etu(WT ),

and hence Ũ2(w,C, t) ≥ Etu(WT ). Since π is an arbitrary admissible strategy, this implies

Ũ2(w,C, t) ≥ U2(w,C, t). Now let π = π. By the same argument we get equality in all the steps

above, and therefore Ũ2 = U2.

A.2. For the Misspecified Case

We assume the same model as in sections 6.2 and 6.3. Let τ1 , τh ∧ T and τ2 , τd ∧ T .

Furthermore we assume that under a measure Q ∼ P, the dynamics of Pt, St, Ct are

dPt = Pt

[(
µ1 + v

(1)
t

)
dt+ σ1 dB

(1)
t

]
,

dSt = St

[(
µ2 + v

(2)
t

)
dt+ σ2 dB

(2)
t

]
,

dCt = Ct

[(
ν + v

(3)
t

)
dt+ η dB

(3)
t

]
,

and the wealth process Wt has the dynamics

dWt =



[(
(µ− r)T + (v(1)

t , v
(2)
t )
)
πt + r Wt + εA

]
dt+ π

(1)
t σ1 dB

(1)
t + π

(2)
t σ2 dB

(2)
t , t < τ1,[(

µ1 − r + v
(1)
t

)
π

(1)
t + r Wt + εA

]
dt+ π

(1)
t σ1 dB

(1)
t , τ1 < t < τ2,[(

µ1 − r + v
(1)
t

)
π

(1)
t + r Wt

]
dt+ π

(1)
t σ1 dB

(1)
t , t > τ2,

subject to

Wτ1 = Wτ−1
+R2 · I{τ1 = T},

Wτ2 = Wτ−2
− εR1 · I{τ2 < T}+R2 · I{τ2 = T}.
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As in previous sections, we often write vt instead of v(1)
t . The interpretation of A, R1, R2 is the

same as section 6.3. The value functions U1, U2 and U3 are defined as solutions of the equations

U1(w,P, t) = sup
π∈A

inf
Q∼P

EQ
[
u(WT ) +

1
2

∫ T

t
U1(Ws, Ps, s) φ v2

s ds

∣∣∣∣ Wt = w, Pt = P, t > τd

]
,

(52)

U2(w,P, t) = sup
π∈A

inf
Q∼P

EQ
[
u(WT ) +

1
2

∫ τ2

t
U2(Ws, Ps, s) φ v2

s ds +
1
2

∫ T

τ2

U1(ws, Ps, s) φ v2
s ds

∣∣∣∣∣∣∣∣ Ws = w, Ps = P, τh ≤ t < τd

]
, (53)

U3(w,P, S, C, t) = sup
π∈A

inf
Q∼P

EQ
[
u(WT ) +

1
2

∫ τ1

t
U3(Ws, Ps, Ss, Cs, s) vTs Φvs ds+

+
1
2

∫ τ2

τ1

U2(Ws, Ps, s) φ v2
s ds +

1
2

∫ T

τ2

U1(ws, Ps, s) φ v2
s ds

∣∣∣∣∣∣∣∣ Wt = w, Pt = P, St = S, Ct = C, t < τh

]
. (54)

Here φ < 0 is a constant and Φ ∈ R3×3 is a negative definite matrix.

Corresponding to U1, U2, U3 we consider the HJB equations
∂tU1 + sup

π∈R
inf
v∈R

{
Lπ,v1 U1 +

1
2
U1 φ v

2

}
= 0 ,

U1(w, T ) = u(w) , w ∈ R ,

(55)

where

Lπ,v1 U1 = (rw + (µ1 − r + v)π) ∂wU1 +
1
2
π2σ2

1 ∂wwU1,


∂tU2 + εA ∂wU2 + sup

π∈R
inf
v∈R

{
Lπ,v2 U2 +

1
2
U2 φ v

2

}
+

+κ
[
U1(w + R̃1, t)− U2

]
= 0 ,

U2(w, T ) = u(w +R2) , w ∈ R ,

(56)

where

Lπ,v2 U2 = (rw + (µ1 − r + v)π) ∂wU2 +
1
2
π2σ2

1 ∂wwU2, R̃1 =
1

γεer(T−t)
log E eγεR1er(T−t) ,
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and 
∂tU3 + εA∂wU3 + sup

π∈R2

inf
v∈R3

Lπ,v3 U3 = 0,

U3(w,C, T ) = u(w +R2), w ∈ R, C > D,

U3(w,D, t) = U2(w, t), w ∈ R, t ∈ [0, T ],

(57)

with

Lπ,v3 U3 =
[
rw + πT

(
(µ− r) + (v(1), v(2))T

)]
∂wU3 +

1
2
πTΩπ ∂wwU3 + (ν1 + v(3))C ∂CU3 +

+πTωC ∂wCU3 +
1
2
η2C2 ∂CCU3 +

1
2
U3 v

TΦv.

Let Ω be the variance-covariance matrix of Pt, St, Ct (in contrast to Ω, the variance-covariance

matrix of Pt, St). In analogy to the completely specified case, the following verification theorem

holds:

Theorem 7. (a) Suppose that there exists a function Ũ1 = Ũ1(w, t) that is a solution of (55).

Furthermore, suppose that for each (w, t) ∈ R × [0, T ] there exist πM = πM (w, t) ∈ R, vM =

vM (w, t) ∈ R such that

Lπ
M ,vM

1 Ũ1 = sup
π∈R

inf
v∈R
Lπ,v1 Ũ1. (58)

Assume that the trading strategy defined by (58) is admissible and that there exists a measure

QM ∼ P under which P has the dynamics

dPt = Pt

[
(µ1 + vMt ) dt+ σ1 dB

(1)
t

]
.

Then Ũ1(w, t) is a solution of equation (52) for (w,P, t) ∈ R× [0,∞)× [0, T ].

(b) Suppose there exists a function Ũ2 = Ũ2(w, t) that is a solution of (56). Furthermore,

suppose that for each (w, t) ∈ R × [0, T ] there exist π∗ = π∗(w, t) ∈ R, v∗ = v∗(w, t) ∈ R such

that

Lπ
∗,v∗

2 Ũ2 = sup
π∈R

inf
v∈R
Lπ,v2 Ũ2. (59)

Assume that the trading strategy πt defined by

πt =

 π∗(wt, t), τh ≤ t < τd,

πMt , t ≥ τd

is admissible and that there exists a measure Q∗ ∼ P under which Pt has the dynamics

dPt = Pt

[
(µ1 + vt) dt+ σ1 dB

(1)
t

]
,
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where

vt =


v∗, t < τd,

vM , t ≥ τd.

Then Ũ2 is a solution of (53).

(c) Suppose there exists a function Ũ3 = Ũ3(w,C, t) which solves (48), and suppose that for

each (w,C, t) ∈ R × (D,∞) × [0, T ] there exist π∗∗ = π∗∗(w,C, t) ∈ R2 and v∗∗ = v∗∗(w,C, t)

such that

Lπ
∗∗,v∗∗

3 Ũ3 = sup
π∈R2

inf
v∈R3

Lπ,v3 Ũ3. (60)

Assume that the trading strategy defined by

πt =

 π∗∗(wt, Ct, t), t < τh,

(πt, 0), t ≥ τh,

is admissible and that there exists a measure Q∗∗ ∼ P under which P , S, C have the drift

adjustments v∗∗t up to time τh ∧ T , and furthermore P has drift adjustment vt between τh ∧ T

and T . Then Ũ3 is a solution of (54).

Proof. We start with part (a). Note that this part is very similar to the verification theorem of

the standard Merton investment problem. Since our optimization problem is somewhat different

and non-standard, we give the proof anyway.

Consider the measure QM and let π ∈ A be any admissible strategy. Working under QM , we

get from Ito’s lemma

Ũ1(WT , T ) = Ũ1(w, t) +
∫ T

t
(∂tŨ1 + Lπ,v

M

1 Ũ1) ds+
∫ T

t
πsσ1 ∂wŨ1 dB

(1)
s .

Using the facts that Ũ1 is a solution of (55) and that π ∈ A is an arbitrary strategy, we always

have ∂tŨ1 + Lπ,vM Ũ1 ≤ −1
2 Ũ1φ(vM )2. Taking expectations therefore leads to

EQ
M

t Ũ1(WT , T ) ≤ Ũ1(w, t)− EQ
M

t

[
1
2

∫ T

t
Ũ1(Ws, s) φ (vMs )2 ds

]
.

Using Ũ1(WT , T ) = u(Wt) we get

Ũ1(w, t) ≥ EQ
M

t

[
u(WT ) +

1
2

∫ T

t
Ũ1(Ws, s) φ (vMs )2 ds

]
.



Incorporating Risk Aversion and Model Misspecification into Structural Models of Default 43

Since this inequality holds for all admissible trading strategies, it follows that

Ũ1(w, t) ≥ sup
π∈A

EQ
M

t

[
u(WT ) +

1
2

∫ T

t
Ũ1(Ws, s) φ (vMs )2 ds

]
≥ sup

π∈A
inf
Q∼P

EQt
[
u(WT ) +

1
2

∫ T

t
Ũ1(Ws, s) φ v2

s ds

]
. (61)

Now fix the strategy πMt and let Q ∼ P be any equivalent measure. Let Pt have drift µ1 + vt

under Q. Since we always have ∂tŨ1 + LπM ,vŨ1 ≥ −1
2 Ũ1φv

2
s , a similar argument as above leads

to

EQt Ũ1(WT , T ) ≥ Ũ1(w, t)− EQt
[

1
2

∫ T

t
Ũ1(Ws, s) φ v2

s ds

]
,

and hence

Ũ1(w, t) ≤ EQt
[
u(WT ) +

1
2

∫ T

t
Ũ1(Ws, s) φ v2

s ds

]
.

Since this relation holds for any Q ∼ P, we get

Ũ1(w, t) ≤ inf
Q∼P

EQt
[
u(WT ) +

1
2

∫ T

t
Ũ1(Ws, s) φ v2

s ds

]
≤ sup

π∈A
inf
Q∼P

EQt
[
u(WT ) +

1
2

∫ T

t
Ũ1(Ws, s) φ v2

s ds

]
. (62)

The theorem then follows from inequalities (61) and (62). For later and in analogy to the verifica-

tion theorem for the completely specified case we note that for the strategy πM and the measure

QM we get equality everywhere, i.e. Ũ1(w, t) = EQM
[
u(W πM

T + 1
2

∫ T
t Ũ1(W πM

s , s) φ (vMs )2 ds
]
.

Now we prove part (b). Let πt be an arbitrary trading strategy and consider the measure Q∗.

Then as in part (a), Ito’s lemma yields

Ũ2(Wτ , τ) = Ũ2(w, t) +
∫ τ

t
(∂tŨ2 + εA∂wŨ2 + Lπ,v

∗

2 Ũ2) ds+
∫ τ

t
πsσ1 ∂wŨ2 dB

(1)
s ,

where we have written τ instead of τ2. Using the fact that Ũ2 solves equation (56), we have ∂tŨ2+

εA ∂wŨ2 +Lπ,v
∗

2 Ũ2 ≤ −1
2U2φv

2−κ
[
U1(w + R̃1, t)− Ũ2

]
. Taking expectations we therefore get

Ũ2(w, t) ≥EQ
∗

t

[
Ũ2(Wτ− , τ

−)
]

+

+ EQ
∗

t

[
1
2

∫ τ

t
Ũ2(Ws, s) φ (v∗s)

2 ds+
∫ τ

t
κ
[
U1(Ws + R̃1, t)− Ũ2(Ws, s)

]
ds

]
.

As in appendix A.1, we have

EQ
∗

t

[∫ τ

t
κ
[
U1(Ws + R̃1, s)− Ũ2(Ws, s)

]
ds

]
= EQ

∗

t

[(
U1(Wτ− + R̃1, τ)− Ũ2(Wτ− , τ

−)
)
· I{τd ≤ T}

]
.
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Using EQ
∗

t

[
U1(Wτ− − εR̃1, τ

−) · I{τd ≤ T}
]

= EQ
∗

t [ U1(Wτ , τ) · I{τd ≤ T}], the inequality above

becomes

Ũ2(w, t) ≥ EQ
∗

t

[
U(WT , T ) · I{τd > T}+ U1(Wτ , τ) · I{τd ≤ T}+

1
2

∫ τ

t
Ũ2(Ws, s) φ (v∗s)

2 ds

]
.

From the proof of part (a) we know that

U1(Wτ , τ) ≥ EQ
∗

τ

[
u(WT ) +

1
2

∫ T

τ
U1(Ws, s) φ (v∗s)

2 ds

]
,

so we get

Ũ2(w, t) ≥ EQ
∗

t

[
u(WT ) +

1
2

∫ τ

t
Ũ2(Ws, s) φ (v∗s)

2 ds +
1
2

∫ T

τ
U1(ws, s) φ (v∗s)

2 ds

]
,

hence, since π is an arbitrary admissible strategy,

Ũ2(w, t) ≥ sup
π∈A

EQ
∗

t

[
u(WT ) +

1
2

∫ τ

t
Ũ2(Ws, s) φ (v∗s)

2 ds +
1
2

∫ T

τ
U1(Ws, s) φ (v∗s)

2 ds

]
≥ sup

π∈A
inf
Q∼P

EQt
[
u(WT ) +

1
2

∫ τ

t
Ũ2(Ws, s) φ v2

s ds +
1
2

∫ T

τ
U1(Ws, s) φ v2

s ds

]
.

(63)

Now fix the strategy πt and let Q ∼ P be any equivalent measure. Then from arguments

analog to those above and in part (a), it follows that

Ũ2(w, t) ≤ inf
Q∼P

EQt
[
u(WT ) +

1
2

∫ τ

t
Ũ2(Ws, s) φ v2

s ds +
1
2

∫ T

τ
U1(Ws, s) φ v2

s ds

]
≤ sup

π∈A
inf
Q∼P

EQt
[
u(WT ) +

1
2

∫ τ

t
Ũ2(Ws, s) φ v2

s ds +
1
2

∫ T

τ
U1(Ws, s) φ v2

s ds

]
.

(64)

Them the claim follows from inequalities (63) and (64). Furthermore, for π = π and Q = Q∗ we

get equality everywhere, i.e. we have

Ũ2(w, t) = EQ
∗

t

[
u(W π

T ) +
1
2

∫ τ2

t
Ũ2(W π

s , s) φ (v∗s)
2 ds +

1
2

∫ T

τ2

U1(W π
s , s) φ (v∗s)

2 ds

]
.

The proof of part (c) is analogous.

B. The Heat Equation on the Half Plane

We would like to find a solution u to the heat equation
∂tu+ ν ∂xu+

1
2
η2 ∂xxu = 0,

u(0, t) = g(t),

u(x, T ) = f(x).

(65)
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We assume that f and g are chosen such that a solution exists. Alternatively we can solve the

equation
−∂tu+ ν ∂xu+

1
2
η2 ∂xxu = 0,

u(0, t) = g(T − t),

u(x, 0) = f(x),

(66)

and then let u(x, t) = u(x, T − t).

Assume that u is a solution of (65) and fix x and t. As introduced in section 3, for θ ∈ R let Qθ

be a measure under which a certain stochastic process has the dynamics Xs , x+θ(s−t)+ηBθ
s−t

where Bθ
s is a standard Brownian motion under Qθ. Furthermore let τ , inf{s ≥ t : Xs = 0}∧T .

Working under the measure Qν , we get from Ito’s lemma

u(Xτ , τ) = u(x, t) +
∫ τ

t

(
∂tu+ ν ∂xu+

1
2
η2 ∂xxu

)
dt+

∫ τ

t
η ∂xu dB

ν
s .

Taking expectations on both sides and using the fact that u solves the given heat equation yields

u(x, t) = EQν [u(Xτ , τ)] = EQν [g(τ) · I{τ ≤ T}+ f(XT ) · I{τ > T}] . (67)

If f is a constant K as in this paper, then EQν [f(XT ) · I{τ > T}] obviously simplifies to

K · qt(T ; ν), where

qt(s; θ) , Qθ(τ > s)

Under certain circumstances we can also simplify the first term on the right hand side of

equation (67). Switching to the measure Q0 under which Xs has the dynamics Xs = x+ ηB0
s−t

and applying the reflection principle, we get the well-known result that

qt(s; θ) = Φ
(
x+ θ(s− t)
η
√
s− t

)
− e−2θx/η2

Φ
(
−x+ θ(s− t)
η
√
s− t

)
.

We can compute the corresponding density dt(s; θ) of τ by differentiating 1−qt(s; θ) with respect

to s to get

dt(s; θ) =
−1√
2π

[
exp

{
−1

2

(
x+ θ(s− t)
η
√
s− t

)2
}
·
(
− x

2η(s− t)3/2
+

θ

2η
√
s− t

)

−e−2θx/η2 · exp

{
−1

2

(
−x+ θ(s− t)
η
√
s− t

)2
}
·
(

x

2η(s− t)3/2
+

θ

2η
√
s− t

)]

=
1√
2π

x

η(s− t)3/2
· exp

(
− [x+ θ(s− t)]2

2η2(s− t)

)



Incorporating Risk Aversion and Model Misspecification into Structural Models of Default 46

We then have

EQν [g(τ) · I{τ ≤ T}] =
∫ T

t
g(s) dt(s; ν) ds.

If the boundary condition at x = 0 is of the form u(0, t) = eL(T−t) for some constant L, it follows

from equation (68) that

E [g(τ) · I{τ ≤ T}] =
1√
2π

eL(T−t) ·
∫ T

t

x

η(s− t)3/2
e−L(s−t) · exp

{
−(x+ θ(s− t))2

2η2(s− t)

}
ds

= eL(T−t) · e
1
η2 (x
√
θ2+2η2L−xθ) ·

· 1√
2π

∫ T

t

x

η(s− t)3/2
exp

{
−(x+

√
θ2 + 2η2L (s− t))2

2η2(s− t)

}
ds

= e
L(T−t)+ (θ̂−θ)x

η2 (1− qt(T ; θ̂))

with θ̂ =
√
θ2 + 2η2L.

C. Motivation for the Definition of Φ

In this section we give the defintion and its motivation of the matrix Φ in section 6.2. Suppose

that instead of equation (??), the definition for U is

U(w,P, S, C, t) , sup
π∈A

inf
Q∼P

EQ
[
u(WT ) + k log

dQ

dP

]
(68)

= sup
π∈A

inf
Q∼P

EQ
[
u(WT ) +

1
2
k

∫ T

t
vsΩ−1vs ds

]
, k > 0,

where Ω is the covariance matrix of P , S and C. This is the analog of the original definition in

Anderson, Hansen, and Sargent (2000). Following the idea in Uppal and Wang (2003), we would

like to modify this definition to take into account different levels of uncertainty corresponding

to the marginal distributions of different subsets of {Pt, St, Ct}.

Let A1, . . . , A7 be the different non-empty subsets of {P, S, C}. Corresponding to a subset

Ai, we start with the matrix Ω̃
−1

i ∈ R|Ai|×|Ai|, the inverse of the variance-covariance matrix

of the elements contained in Ai. Then we define the matrix Ω−1
i =


ω

(i)
PP ω

(i)
PS ω

(i)
PC

ω
(i)
SP ω

(i)
SS ω

(i)
SC

ω
(i)
CP ω

(i)
CS ω

(i)
CC

 as

follows (following Uppal and Wang (2003)):

• Let X,Y ∈ {P, S, C}. If X /∈ Ai or Y /∈ Ai, then ω
(i)
XY = 0.
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• If we delete all rows and columns of Ω−1
i indexed by elements not contained in Ai, the

resulting matrix is Ω̃
−1

i . 5

Then Φ is defined as linear combination

Φ ,
7∑
i=1

αiΩ−1
i , (69)

where the αi are non-positive weights. A large |αi| corresponds to a high level of certainty for

the marginal distribution of the corresponding subset, whereas a small |αi| corresponds to a

high level of uncertainty. Note that as a negative linear combination of positive semi-definite

matrices, Φ is negative semi-definite. If the weight corresponding to the uncertainty in the joint

distribution of Pt, St, Ct is negative, then Φ is strictly negative definite.

Given a measure Q ∼ P and a non-empty subset Ai ⊆ {Pt, St, Ct}, let Pi, Qi be the induced

measures for the marginal distribution of the elements in Ai. Then an appropriate modification

of (68) is

U(w,P, S, C, t) , sup
π∈A

inf
Q∼P

{
EQ [u(WT )] +

7∑
i=1

αiEQi
[
log

dQi
dPi

]}
, wi < 0. (70)

For a given subset Ai, let vAit ∈ R|Ai| be the vector obtained from vt ∈ R3 by deleting the

components that correspond to elements not contained in Ai. Then it is easy to see that

EQi
[
log

dQi
dPi

]
= EQi

[
1
2

∫ T

t
(vAis )T Ω̃

−1

i v
Ai
s ds

]
= EQ

[
1
2

∫ T

t
vTs Ω−1

i vs ds

]
,

so that (70) becomes

U(w,P, S, C, t) = sup
π∈A

inf
Q∼P

[
u(WT ) +

1
2

∫ T

t
vTs Φvs ds

]
.

Applying the same modification to this equation as in Maenhout (2004) then leads to the defi-

nition in (??).

To conclude this section we explain the choices of the matrix Φ0 and the scalar φ0 for the

plots in section 6.3. For Φ0 we chose all the weights αi to equal -1, i.e.

Φ0 = −
7∑
i=1

Ω−1
i .

5Example: Let Ai = {Pt, Ct}. If Ω̃i =

 σ2
1 ρσ1η

ρσ1η η2

 is the variance-covariance matrix of Pt and Ct, then

Ω̃
−1

i = 1
σ2
1η

2(1−ρ2)

 η2 −ρσ1η

−ρσ1η σ2
1

 and hence Ω−1
i = 1

σ2
1η

2(1−ρ2)


η2 0 −ρσ1η

0 0 0

−ρσ1η 0 σ2
1

.
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Furthermore, it is reasonable to assume that the level of uncertainty in the marginal distribution

of P does not change upon switching from the healthy to the distressed regime. Consequently,

if we assume that

Ω−1
1 =


σ−2

1 0 0

0 0 0

0 0 0

 ,

then a suitable choice for the scalar φ is

φ = α1σ
−2
1 .

Therefore we have chosen φ0 = −σ−2
1 for the plots in section 6.3.
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