$$
\phi \rightarrow \phi \sigma^{2}
$$

$$
d s_{t}=\sigma d w_{t}-b v_{t} d t
$$

$$
\begin{aligned}
& \hat{s}_{t}=S_{t}-a v_{t} \\
& d x_{t}=\hat{S}_{t} v_{t} d t ? \\
& u_{T}=x_{T}+Q_{T}\left(s_{T}-Q_{T}\right) \\
& \alpha_{0}=0.25
\end{aligned}
$$

$$
S_{0}=100, \quad \sigma=1
$$

$$
T=1
$$

several $6,+\alpha$

Optimal Liquidation with LOs

$$
l_{t}=v_{t} \Delta t
$$

M.O. arrive at rate λ

$$
N_{t}=\# \text { of M.0. by } t
$$

$$
\operatorname{IE}\left[\Delta M_{t}\right]=\lambda \Delta t
$$

$$
V=\operatorname{val} \text { of M.O. exp }(C)
$$

$$
\mathbb{E}[v]=\frac{1}{c}
$$

$$
V_{t}=\sum_{n=1}^{M_{t}} v_{n} \quad \Rightarrow \quad \mathbb{E}\left[\Delta v_{t}\right]=\frac{\lambda \Delta t}{c} \quad \text { if } \quad \frac{\lambda \Delta t}{c} \gg v_{t} \Delta t
$$

then can just port l_{t}

$$
\begin{aligned}
\text { es } \quad v_{t} \Delta t & \sim \frac{\lambda \Delta t}{C} \\
v_{t} \Delta t & >\frac{\lambda \Delta t}{C}
\end{aligned}
$$

Post ontimully LOs to Liquidente assets

M.O. M_{t} coucting proeess (Poisson process λ)

$$
\begin{gathered}
v_{t}=\sum_{n=1}^{M_{t}} v_{n}, \quad v_{1} \ldots \text { iid } \exp (C) \\
\mathbb{P}(\text { filled } \mid \text { M.0. })=\mathbb{P}\left(S_{t}^{*}>S_{t}+\delta_{t}\right)
\end{gathered}
$$

$L_{\text {max price }} M, O$. pays valune

$$
A\left(s_{t}^{*}-s_{t}\right)=v
$$

$$
\begin{aligned}
& \Rightarrow s_{t}^{*}=s_{t}+\frac{v}{A} \\
& \mathbb{P}\left(v>A \delta_{t}\right)=e^{-\left(\frac{A}{c}\right)^{\gamma} \delta_{t}}
\end{aligned}
$$

N_{t}^{δ} conuting proees for your filled L.O.S rate of arnival of N_{t} is $\lambda e^{-k \delta_{t}}$
M_{t} is a doubly stachastic Poisson prozens.

$$
\begin{aligned}
& d Q_{t}^{\delta}=-d N_{t}^{\delta} \text { ov } Q_{t}^{\delta}=Q_{0}-N_{t}^{\delta} \quad \text { invertory } \\
& d s_{t}=\sigma d w_{t} \text { best ask (Dest effer) } \\
& d x_{t}^{\delta}=\left(s_{t}+\delta_{t}\right) d N_{t}^{\delta}
\end{aligned}
$$

$$
\begin{gathered}
X_{T}=X_{T}+Q_{T}\left(S_{T}-\Delta-\alpha Q_{T}\right) \\
H(t, x, s, q)=\sup _{\delta \in t} \mathbb{E}_{t \times x, s, r}\left[X_{T}-\phi \sigma^{2} \int_{t}^{T} q_{s}^{2} d s\right] \\
\quad X_{t}=x, s_{t}=s, Q_{t}=q
\end{gathered}
$$

$\tau=\inf \{t: q t=0\} \wedge T$

$$
\begin{aligned}
& H^{\hat{\delta}}=\mid E_{t, x, s, q}\left[X_{T}^{\hat{\delta}}-\phi \sigma^{2} S_{t}^{T}\left(q_{s}\right)^{2} d s\right] \\
& =\mathbb{E}_{t, u, s, q}\left[\mathbb{E}\left[\chi_{T}^{\hat{\delta}}-\varnothing \sigma^{2} \int_{t}^{T}\left(q_{s}^{\delta}\right)^{2} d s \mid \mathcal{F}_{t+i}\right]\right] \\
& \rightarrow \int_{t}^{t+h}\left(q_{s}^{\hat{s}}\right)^{2} d s+\int_{t+h}^{T}\left(q \hat{q}^{\delta}\right)^{2} d s \\
& =\mathbb{E}_{t, x, s, q}\left[\underline{E}\left[X_{T}^{\hat{\delta}}-\phi \sigma^{2} \int_{t+h}^{T}\left(q \hat{\delta}_{s}\right)^{2} d s \mid \mathcal{F}_{t+h}\right]\right. \\
& \left.-\phi \sigma^{2} \int_{t}^{t+h}\left(\hat{q}_{s}^{\hat{\delta}}\right)^{\delta} d s\right] \frac{L\left(t+h, x_{t+h}^{\delta}, s_{t+h}, q_{t+h}^{\delta}\right)}{D}
\end{aligned}
$$

$$
\begin{aligned}
d H= & \left(\partial_{t}+\frac{1}{2} \sigma^{2} \partial_{s}\right) H a t+\sigma \partial_{s} H d w_{t} \\
+ & {\left[H\left(t, X_{t^{-}}+\left(s_{t}+\delta_{t}\right), s_{t}, q_{t^{-}}-1\right)\right.} \\
& \left.-H\left(t, X_{t^{-}}, s_{t}, q_{t^{-}}\right)\right] d N_{t}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow H^{\hat{\delta}}=\mathbb{T}_{t u s q q}^{E}\left[\int_{t}^{t+\eta}\left[\left(\partial_{t}+\frac{1}{2} \sigma^{2} \partial_{s}\right) H_{u}+K\left(H\left(u, x_{u}+\left(s_{u}+\delta_{u}\right), s_{u}-q_{u}-1\right)-H_{u}\right)\right] d u\right. \\
&\left.-\phi \sigma^{2} \int_{t}^{t+n}\left(q_{u}^{\delta}\right)^{2} d u+\mu_{t}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \sup \delta, \frac{1}{h}, \quad \operatorname{lin} M d 0 \\
& 0=\sup _{\delta}\left\{\left(\partial_{t}+\frac{1}{2} \sigma^{2} \partial s s\right) H(t, x, s, q)\right. \\
& +\lambda e^{-k \delta}[H(t, x+(s+\delta), s, q-1)-H(t, x, s, q)] \\
& \left.-4 \sigma^{2} q^{2}\right\} \\
& \left(x_{t^{-}}=u, \quad s_{t}=s, \quad q_{t-}=q\right) \\
& H(T, x, s, q)=x+q(S-\Delta-\alpha q)
\end{aligned}
$$

y $T \rightarrow \tau=\operatorname{imf}\left(t: q_{t}=0\right)$ 人 T then we add the condition $H(t, x, s, 0)=x$

So for $q=1 \ldots$

$$
\begin{aligned}
& \left(\partial t+\frac{1}{2} \sigma^{2} \partial s s\right) H+\sup _{\delta}\left[\lambda e^{-k \delta}(x+s+\delta-H(t, x, s, 1))\right]=0 \sigma^{2} 1^{2} \\
& \partial_{\delta}\left(e^{-4 \delta}(\delta+A)\right) \\
& =-k e^{-k \delta}(\delta+A)+e^{-k \delta}(1)=0 \\
& \Rightarrow \quad \delta=\frac{1}{4}-A \\
& A=s+x-H(t, x, s, 1) \\
& H(T, x, s, q)=x+q(S-\Delta-\alpha q) \\
& H(t, x, s, q)=x+q(s-\Delta)+h(t, q) \\
& \rightarrow \quad H(t, x+(s+\partial), s, q-1)-M(t, x, s, q) \\
& =x+s+\delta+(q-1)(s-\Delta)+M(t, q-1) \\
& -[x+q(s-\Delta)+M(t, q)] \\
& =\delta-(q-1) \Delta+q \Delta+h(t, q-1)-M(t, q) \\
& =\delta+\Delta+h(t, q-1)-h(t, q) \\
& M(t, 0)=0
\end{aligned}
$$

$$
M(T, q)=-\alpha q^{2}
$$

$$
\begin{aligned}
& M_{t} \text { - Prisson procerses } \\
& \mathbb{E}\left[M_{t+\Delta t}-M_{t}\right]=\lambda \Delta t \\
& E_{t}\left[M_{t+\Delta t}-M_{t}-\lambda(\stackrel{t}{t}(t+\Delta t))\right]=0 \\
& \hat{M}_{t}=M_{t}-\lambda t \text { is a natg. } \\
& \int_{0}^{t} a_{s} d N_{s} \text { detemeninistir }=\sum_{n=1}^{N_{t}} a_{t_{n}}
\end{aligned}
$$

4 jump times of M_{t}.

$$
\begin{aligned}
& \begin{array}{ll}
g_{t+\Delta t}\left(N_{t+\Delta t}\right)-\underset{4}{g}\left(N_{t-}\right) \quad, \quad g_{t}=g\left(N_{t}\right) \\
g_{t}
\end{array} \\
& =\left(g\left(M_{t-}+1\right)-g\left(N_{t^{-}}\right)\right) \Delta N_{t} \\
& d g_{t}=\left(g\left(N_{t}-+1\right)-g\left(N_{t^{-}}\right)\right) d N_{t} \\
& d g\left(t, N_{t^{-}}\right)=\quad \partial_{t} g\left(N_{t^{-}}\right) d t+\left(g\left(N_{t}-1\right)-g\left(N_{t}\right)\right) d N_{t} \\
& g\left(t, M_{t}, w_{t}\right) \\
& d g=\left(\partial_{t}+\mathcal{L}\right) g d t+\partial \omega g d w_{t}+\left(g_{t, w_{t}}^{\left(w_{t^{-}}+1\right)}-\underset{l, w_{t}}{g\left(v_{t}-\right)}\right) d v_{t}
\end{aligned}
$$

$N_{t}, N_{t}-$ - doenn' + metter!

$$
\int_{0}^{t} a_{s} d l_{s}=\int_{0}^{t} a_{s} d l_{s}
$$

suppose g is a rutz $0=E_{t}[d g]$

$$
\Rightarrow \quad 0=\left(\partial_{t}+f\right) g_{d t}+(g\left(t, \mu_{t}+1, w_{t}\right)-g\left(t, \mu_{t}-, w_{t}\right) \underbrace{\mathbb{E}_{t}\left[d N_{t}\right]}_{\lambda d t}
$$

Partial Integoo-Differential Eser (PIDE)

$$
\begin{aligned}
\left(\partial_{t}+f\right) g(t, n, w)+\lambda(& g(t, n+1, w)-g(t, M, w))=0 \\
& \left(\begin{array}{l}
\text { 位 }
\end{array}\right. \\
& \int(g(t, n+m, w)-g(t, r, w)) D_{m}(1)
\end{aligned}
$$

doly stecmurtic Poisson procem. λ_{t} then $\mathbb{E}_{t}\left[d N_{t}\right]=\lambda_{t} d t$

$$
\Rightarrow \lambda e^{-k \delta_{t}}
$$

