$d S_{t}=\sigma d W_{t} \quad$ Fumdarnectul on mid-price

$$
\begin{aligned}
& \hat{S}_{t}^{\nu}=S_{t}-\underbrace{a v_{t}}_{\text {temprovary impact }} \quad \text { ext } \\
& d X_{t}^{\nu}=\hat{S}_{t}^{v} v_{t} d t \quad \text { cash proces }
\end{aligned}
$$

$V^{\nu}=X_{T}^{\nu}+Q_{T}^{\nu}\left(S_{T}-\propto Q_{T}^{\nu}\right) \quad$ total weattr at T
value of termined tisuidation

$$
H(x, q, s)=\sup _{v \in t} \mathbb{E}\left[X_{T}^{v}+Q_{T}^{v}\left(s_{T}-\alpha Q_{T}^{v}\right) \mid X_{0}=x, Q_{0}=q\right]
$$

performame criteria

$$
\begin{aligned}
& H^{\nu}(t, x, q, s)=\operatorname{IE}\left[X_{T}^{v}+Q_{T}^{\nu}\left(s_{T}-\alpha Q_{T}^{\sim}\right)\left(X_{t}=x, Q_{t}=q, s_{t}=s\right]\right. \\
& H(t, x, q, s)=\sup _{v \in A} H^{\nu}(t, x, q, s) \\
& \text { value } F r .
\end{aligned}
$$

$$
\begin{aligned}
= & \mathbb{E E}[\underbrace{\left.\operatorname{IE} v^{\bar{v}} \mid \mathcal{F}_{t+h}\right]}_{H^{\nu^{*}}\left(t+h, X_{t+h}^{v}, Q_{t+h}^{v}, S_{t+h}^{v}\right)} \text {, }] \\
H^{\bar{v}}(t, x, q, s) & =\mathbb{E}\left[H^{v / 1}\left(t+h, X_{t+h}^{v}, Q_{t+h}^{v}, S_{t+h}^{v}\right) \mid X_{t}=x, Q_{t}=q, S_{t}=5\right]
\end{aligned}
$$

(1)

$$
H\left(t+h, w_{t+h}\right)=H\left(t, w_{t}\right)+\int_{+}^{t+h}\left(\partial_{t}+\frac{1}{2} \partial w w\right) H\left(s, w_{s}\right) d s
$$

$$
\begin{aligned}
& H\left(t+M, w_{t+h}\right)=H\left(t, w_{t}\right)+\int_{t}^{\cdots}\left(\partial_{t}+\frac{1}{2} \partial_{w w}\right) H\left(s, w_{s}\right) d s \\
& +\int_{t}^{t+h} \partial \omega H\left(s, w_{s}\right) d w_{s} \\
& d H\left(t, w_{t}\right)=\left(\partial_{t}+\frac{1}{2} \partial_{\omega \omega}\right) H\left(t, w_{t}\right) d t+\partial \omega H\left(t, w_{t}\right) d w_{t} \\
& 0 \\
& d y_{t}=\mu\left(t, y_{t}\right) d t+\sigma\left(t, y_{t}\right) d W_{t} \\
& M\left(t+h, Y_{t+h}\right)=H\left(t, Y_{t}\right)+\int_{t}^{t+h}\left(\partial_{t}+\mu\left(s, y_{s}\right) \partial_{y}+\frac{1}{2} \sigma^{2}\left(s, y_{s}\right) \partial_{y y}\right) H\left(s, Y_{s}\right) d s \\
& +\int_{t}^{t+h} \sigma\left(s, y_{s}\right) \partial_{y} H\left(s, y_{s}\right) d w_{s}
\end{aligned}
$$

$$
\begin{aligned}
& H\left(t+h, Y_{t+M}, w_{t+m}\right)=H\left(t, y_{t}, w_{t}\right) \\
& +\int_{t}^{t+h}\left\{\partial_{t}+\mu\left(s, y_{s}\right) \partial_{y}+0 \partial_{w}\right. \\
& \left.\quad+\frac{1}{2} \sigma^{2}\left(s, y_{s}\right) \partial_{y y}+\frac{1}{2} \partial w w+\sigma\left(s, y_{s}\right) \partial_{w y}\right\} H\left(s, y_{s}, w_{s}\right) d_{s} \\
& +\int_{t}^{t+h} \sigma(s, y,) \partial_{y} H\left(s, y_{s}, w_{s}\right) d w_{s}+\int_{t}^{t+M} \partial w H\left(s, Y_{s}, w_{s}\right) d w_{s}
\end{aligned}
$$

$H\left(t+h, X_{t+h}^{u}, Q_{t+h}^{v}, s_{t+h}^{v}\right)=H\left(t, X_{t}, Q_{t}, s_{t}\right)$

$$
\begin{aligned}
& +\int_{t+m}^{t+n}\left(\partial_{t}+\hat{S}_{s} \nu_{s} \partial_{x}-v_{s} \partial_{q}+\frac{1}{2} \sigma^{2} \partial_{s}\right) H\left(s, X_{s}^{v}, Q_{s}^{v}, s_{s}^{v}\right) d s \\
& +\int_{t}^{t+h} \sigma \partial_{s} H\left(S, X_{s}^{v}, Q_{s}^{v}, S_{s}^{v}\right) d W_{s} \\
& \Rightarrow M^{\bar{v}}(t, x, q, s)=H(t, x, q, s) \\
& +E_{t, x q / s}\left[\int_{t}^{t+h}\left(\partial_{t}+\left(s_{s}-a v_{s}\right) v_{s} \partial_{x}+\frac{1}{2} \sigma^{2} \partial_{s s}\right) H\left(s, X_{s}^{v}, Q_{s}^{v}, s_{s}^{v}\right) d s\right] \\
& \text { tahe } \sup _{v \in t_{[t, t+h]}}[()=()) \\
& \Rightarrow \quad H(t, x, q, s)=M(t, x, q, s)+\sup _{v \in A[t, t+4]} \mathbb{E}_{t, u, q, s}[-] \\
& \Rightarrow \quad 0=\sup _{v \in t_{(t+t+h]}} \left\lvert\, E_{t, x, q, s}\left[\frac{1}{4} \int_{t}^{t+h} x_{s} d s\right]\right.
\end{aligned}
$$

n lo

$$
\begin{aligned}
& \Rightarrow \quad 0=\sup _{v \in f_{t}} E_{t, n, q, s}\left[e_{t}\right] \\
& =\sup _{v \in A_{t}}(\partial_{t}+\underbrace{(s-a v) v \partial_{x}-v \partial_{q}+\frac{1}{2} \sigma^{2} \partial_{s}}_{0}) H(t, x, q, s) \\
& \mathcal{L}^{\nu, x_{t}, a_{t}, s_{c}} \\
& \text { suldiet to: } \\
& H(T, x, q, s)=x+q(s-\alpha q) \\
& \text { This is the HJB equation (DPE) }
\end{aligned}
$$

$$
\begin{aligned}
& H(t, x, q, s)=\sup _{v \in A}\left[E_{t, x, q, s}\left[X_{T}^{v}+Q_{T}^{v}\left(S_{T}-\alpha Q_{T}^{v}\right)\right]\right. \\
& \left\{\begin{array}{r}
\partial_{t} H+\sup _{v \in A_{t}}\left(\overline{\left.(s-a v) v \partial_{x}-v \partial_{q}+\frac{\sigma^{2}}{2} \partial_{s s}\right) H}=0\right. \\
H(T, x, q s)=x+q(s)
\end{array}\right. \\
& H(T, x, q, S)=x+q(s-\alpha q) \\
& v\left(S \partial_{x} H-\partial_{2} H\right)-a v^{2} \partial_{x} H \\
& =-a \partial x H\left[v^{2}-v \frac{\left(S \partial x^{H} H-\partial q H\right)}{a \partial x^{H} H}\right] \\
& =-\alpha \partial_{x} M\left[\left(V-\frac{S \partial_{x} M-\partial q M}{2 a \partial x M}\right)^{2}-\left(\frac{S \partial x H-\partial_{q} H}{2 a \partial x H}\right)^{2}\right] \\
& v^{*}=\frac{S \partial_{x} M-\partial_{q} H}{2 a \partial_{x} H} \\
& \sup ()=\frac{\left(S \partial_{n} H-\partial_{q} M\right)^{2}}{4 a_{x} H} \\
& \Rightarrow\left\{\begin{aligned}
\partial_{t} M+\frac{\left(S \partial_{x} M-\partial_{q} M\right)^{2}}{4 a \partial x M}+\frac{1}{2} \sigma^{2} \partial_{s s} H & =0 \\
& H(T, x, q, s)=x+q(s-\alpha q)
\end{aligned}\right. \\
& H(t, x, q, s)=x+q s+h(t, q) \\
& h(T, q)=-\alpha q^{2} \\
& \partial_{t} M+\frac{(S-(S+\partial q M))^{2}}{4 a}+0=0 \\
& \Rightarrow \partial_{t} r+\frac{(\partial q r)^{2}}{4 a}=0 \\
& M(t, q)=\eta(t)\left(-\alpha q^{2}\right), \quad \eta(T)=1 \\
& -\alpha q^{2} \partial_{t} \eta+\frac{(-2 \alpha q \eta)^{2}}{1,}=0
\end{aligned}
$$

$$
\begin{aligned}
& -\alpha q^{2} \partial_{t} \eta+\frac{(-2 \alpha q \eta)^{2}}{4 a}=0 \\
& \left(-\alpha q^{2}\right)(\underbrace{\partial_{t \eta}-\frac{\alpha}{9} \eta^{2}}_{=0})=0 \\
& \left\{\begin{aligned}
\dot{\eta}-\frac{\alpha}{a} \eta^{2} & =0 \\
\eta(T) & =1
\end{aligned}\right. \\
& \frac{\dot{n}}{n^{2}}=\frac{\alpha}{q} \Rightarrow-\left(\frac{1}{n(T)}-\frac{1}{n(t)}\right)=\frac{\alpha}{a}(T-t) \\
& \Rightarrow \quad \eta(t)=\left(1+\frac{\alpha}{a}(T-t)\right)^{-1} \\
& H(t, u, q, s)=x+q s-\alpha q^{2}\left(1+\frac{\alpha}{a}(T-t)\right)^{-1} \\
& v^{*}=\frac{s \partial_{x} H-\partial_{q} H}{2 a \partial_{x} H}=\frac{s-(s-2 \alpha q \eta(t))}{2 a} \\
& =\frac{\alpha}{a} q\left(1+\frac{\alpha}{a}(T-t)\right)^{-1} \\
& =q\left(\frac{a}{\alpha}+(T-t)\right)^{-1} \\
& d Q_{t}=-v_{t}^{*} d t=-Q_{t}\left(\frac{a}{\alpha}+(T-t)\right)^{-1} d t \\
& \frac{d Q_{t}}{Q_{t}}=-\left(\frac{a}{a}+(T-t)\right)^{-1} d t \\
& \ln Q_{t}-\ln Q_{0}=-\int_{0}^{t}\left(\frac{\alpha}{\alpha}+(T-s)\right)^{-1} d s \\
& =-\int_{0}^{t}\left(\left(\frac{a}{\alpha}+T\right)-s\right)^{-1} d s \\
& =m \frac{\left(\left(\frac{a}{\alpha}+T\right)-t\right)}{\left(\frac{a}{\alpha}+T\right)}
\end{aligned}
$$

$$
\begin{aligned}
& =\ln \left(1-\frac{t}{\left(\frac{a}{\alpha}+T\right)}\right) \\
Q_{t} & =Q_{0}\left(1-\frac{t}{\frac{a}{\alpha}+T}\right) \\
v_{t} & =\frac{Q_{0}}{\frac{a}{\alpha}+T}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{NE}\left[x_{T}+Q_{T}\left(s_{T}-\alpha Q_{T}\right)\right] \\
& \left.\rightarrow \operatorname{NE} u\left(x_{T}+Q_{T}\left(s_{T}-\alpha Q_{T}\right)\right)\right] \quad \text { stilits on } \\
& \rightarrow \mathbb{N}\left[x_{T}+Q_{T}\left(s_{T}-\alpha Q_{T}\right)-\phi \int_{0}^{T} a_{S}^{2} d s\right] \\
& \quad \int_{0}^{T}\left(Q_{S}-\left(1-\frac{s}{T}\right) Q_{0}\right)^{2} d s
\end{aligned}
$$

(1) $\quad Y_{t}=Q_{t} S_{t}$ beok value of irverting

$$
\begin{aligned}
& {[y, y]_{t}=\cdots} \\
& d y_{t}=\frac{d Q_{t} S_{t}+Q_{t} \frac{d S_{t}}{L}+d\left[Q_{1} s\right]_{\downarrow}}{L-v_{t} d t}{ }_{\sigma} d w_{t} \\
& {[y, y]_{t}=\sigma^{2} \int_{0}^{t} Q_{s}^{2} d s}
\end{aligned}
$$

0

$$
d S_{t}=\sigma d w_{t}
$$

$$
\begin{aligned}
& H(\mathbb{Q} \mid \mathbb{P})=\mathbb{E}^{\mathbb{Q}}\left[\ln \frac{d \mathbb{Q}}{d \mathbb{P}}\right] \\
& \text { rclatice entrong }
\end{aligned}
$$

$$
\operatorname{inp}_{\mathbb{Q} \in Q} \sup _{v \in A} \mathbb{E}^{\mathbb{Q}}\left[x_{T}+Q_{T}\left(S_{T}-\alpha Q_{T}\right)-\phi \ln \frac{d Q}{d \mathbb{Q}}\right]
$$

Ampiguity Aversiar

$$
\begin{aligned}
& H(t, x, q, s)=\sup _{v \in A} \mathbb{E} \underset{t, x, q, s}{ } \overbrace{X_{T}^{v}+Q_{T}^{v}\left(s_{T}^{v}-\alpha Q_{T}^{v}\right)}^{v^{v}}-\phi \int_{t}^{T}\left(Q_{s}^{v}\right)^{2} d s] \\
& H^{\bar{v}}=\underset{t, n, q, s}{ } \mathbb{E}[\mathbb{E}[V^{\bar{v}}-\underbrace{\left.\int_{t}^{\top}\left(Q_{s}^{\bar{v}}\right)^{2} d s \mid \mathcal{F}_{t+n}\right]}_{S_{t+m}^{t+}+S_{t+h}^{\top}}] \\
& =\mathbb{E}_{t, x, q, s}\left[\mathbb{E}\left[V^{\bar{\nu}}-\phi \int_{t+\pi}^{T}\left(Q_{v}{ }^{\bar{\nu}}\right)^{2} d s\right) \mathcal{F}_{t+\pi}\right] \\
& -\phi s_{t}^{t+h} \frac{\left.\left(Q_{s}^{\bar{v}}\right)^{2} d s\right]}{L_{s}^{v}} \quad \frac{H\left(t+h, x_{t+h}^{v}, Q_{t+m}^{v}, s_{t+h}^{v}\right)}{4 \int_{t}^{t+h}\left(\partial_{t}+\mathcal{J}^{u}\right) H_{s} d s}
\end{aligned}
$$

tape $\sup _{v}, \frac{1}{m}, \lim _{\text {Moo }}$

$$
\begin{aligned}
& \Rightarrow \quad 0=\sup _{v \in A_{t}}\left(\left(\partial_{t}+\mathcal{L}^{\nu}\right) H-\phi q^{2}\right) \\
& H(T, n, q, s)=x+q(s-\alpha q)
\end{aligned}
$$

$$
\left\{\begin{aligned}
& H(t, y)=\sup _{v \in A} \mathbb{E}\left[G\left(y_{T}^{v}\right)\right.\left.+\int_{t}^{T} F\left(s, y_{s}^{u}\right) d s\right] \\
&\left\{\begin{aligned}
\partial_{t} H+\sup _{v}\left(y^{v} H\right)+F(t, y) & =0 \\
H(T, y) & =G(y)
\end{aligned}\right.
\end{aligned}\right.
$$

$$
\begin{aligned}
& d x_{t}=k\left(\theta-x_{t}\right) d t+\sigma d w_{t} \\
& {[x, x]_{t}=\sigma^{2} t} \\
& V\left[x_{T}\right]=\mathbb{E}\left[J_{0}^{T}\left(e^{-k(T-s)}\right)^{2} d s\right] \sigma^{2}
\end{aligned}
$$

$$
\begin{aligned}
& V\left[x_{T}\right]=\mathbb{E}\left[\int_{0}^{T}\left(e^{-k(T-s)}\right)^{2} d s\right] \sigma^{2} \\
& x_{T}=x_{0} e^{-k(T-t)}+\theta\left(1-e^{-k\left(T-t_{1}\right.}\right) \\
& +\sigma \int_{t}^{+} e^{-4(T-s)} d w_{s} \\
& \Rightarrow \mathbb{V}\left[x_{t}\right)=\frac{\sigma^{2}}{24}\left(1-e^{-24 t}\right) \underset{t \rightarrow+6}{\rightarrow} \frac{\sigma^{2}}{24} \\
& d S_{t}=\sigma d w_{t}-b v_{t} d t
\end{aligned}
$$

permarat impact.

