Inisalence

$$
\begin{aligned}
& P_{t}=\frac{P_{t}^{A} V_{t}^{B}+P_{t}^{B} v_{t}^{A}}{V_{t}^{A}+v_{t}^{B}} \\
& =P_{t}^{A} \omega_{t}+P_{t}^{B}\left(1-\omega_{t}\right) \\
& \frac{v_{t}^{B}}{v_{t}^{A}+v_{t}^{B}} \\
& \in[0,1] \\
& \in[-1,1] \\
& d x_{t}=-k x_{t} d t+\sigma d w_{t} \\
& x_{t}=x_{0} e^{-k t}+\sigma \int_{0}^{t} e^{-n u} d w_{u} \\
& \left.x_{t}\right|_{\sigma_{0}} \sim N(x_{0} e^{-k t}, \sigma^{2} \underbrace{\int_{0}^{t} e^{-2 k u}}_{\frac{1-e^{-2 u t}}{2 u}} d u) \\
& \left.x_{\infty}\right|_{F_{0}} \sim N\left(0, \frac{\sigma^{2}}{2 n}\right) \\
& y_{t}=\frac{e^{x_{t}}}{1+e^{x_{t}}}=\frac{1}{1+e^{-x_{t}}} \\
& z_{t}=1-2 y_{t}
\end{aligned}
$$

order
iniraluce:

$$
\begin{aligned}
& \operatorname{Pt}_{t} \in\left\{\left[0, a_{1}\right],\left[a_{1}, a_{2}\right),\left[a_{8}, a_{3}\right), \ldots,\left[a_{n}, 1\right]\right\} \\
& z_{t} \in\{1, \ldots, n+1\}
\end{aligned}
$$

L markow chain appronimatian of ρ
rate of arrival of MO conditiand or $Z_{t} \in k$
$T_{k}=\int_{0}^{T} \mathbb{1} z_{s}=k$ ds time spect in regive k

$$
\lambda_{k}^{b}=\frac{M_{k}^{D}}{T_{k}}, \quad M_{k}^{\triangleright}=\sum_{m=1}^{M_{T}^{b}} \mathbb{1}_{z_{\tau_{m}}=k}
$$

z_{t} is a e.g., Martiou chuin (Continceores tiwe, discocte siccue)
A - transitian matrik
recall $\mathbb{P}\left(z_{t+\Delta t}=k \mid z_{t}=j\right)=\left(e^{A \Delta T}\right)_{j k}$

$$
\mathcal{L} f(3)=\sum_{k=1}^{k}(f(k)-f(z)) A_{3 k}
$$

instantaneous profit"

