

$$
\begin{aligned}
& a_{t}=\bar{a}_{t} e^{\varepsilon_{t}} \\
& d \varepsilon_{t}=-k \varepsilon_{t} d t+\sigma d w_{t}
\end{aligned}
$$

$$
\begin{aligned}
& \left.N_{t}-\text { Paislon process }(\lambda) \quad \sum_{t}\left(f\left(N_{t_{n}}\right)-f\left(N_{t_{k-1}}\right)\right)+f\left(N_{t}\right)=N_{0}\right) \\
& d x_{t}=\left[f\left(N_{t}\right)-f\left(N_{t^{-}}\right)\right] d N_{t} \quad N_{t}=\lim _{s i t} N_{s} \\
& x_{t-} x_{0}=\int_{0}^{t}\left(f\left(N_{n}\right)-f\left(N_{n^{-}}\right)\right) d N_{n} \\
& =\sum_{n=1}^{N_{t}} \Delta f \underbrace{}_{\tau_{n}} f\left(N_{\tau_{n}}\right)-f\left(N_{\tau_{n}-}\right)
\end{aligned}
$$

$\hat{N}_{t}=N_{t}-\lambda t$ is a mtg.
$\hat{N}_{t}=N_{t}-\int_{0}^{t} \lambda_{s} d s$ is ants.
Le. . if λ_{t} is stemastic

$$
H^{\lambda}(t, \mu)=\mathbb{E} \underbrace{}_{E, M}\left[g\left(N_{T}^{\lambda}\right)+\int_{t}^{T} f\left(N_{u}^{\lambda}\right) d \mu\right]
$$

N_{t} is a counting process intensity λ_{t} λ_{t} arsituavg f_{t}^{N} - predictable bacerded by $\bar{\lambda}$

$$
H(t, M)=\operatorname{suf}_{\lambda \in A} H^{\lambda}(t, M)
$$

$$
\begin{aligned}
H^{\lambda}(t, n) & =\mathbb{E}_{t, M}[g\left(N_{T}^{\lambda}\right)+\int_{t}^{t+m} F\left(N_{u}^{\lambda}\right) d u+\underbrace{\left.\int_{t+m}^{t} F\left(N_{u}^{\lambda}\right) d u\right]}_{\text {real } \lambda_{t u}=\lambda_{u}^{*},} \\
& =\mathbb{E}_{t, M}[\int_{t}^{t+h} f\left(N_{u}^{\lambda}\right) d u+\underbrace{\mathbb{E}_{t+m, N_{t+m}^{\lambda}}\left[g\left(N_{T}^{\lambda}\right)+\int_{t+m}^{\top} f\left(N_{u}^{\lambda}\right) d u\right]}_{H\left(t+m, N_{t+m}^{\lambda}\right)}]
\end{aligned}
$$

but we have that:

$$
\begin{aligned}
& M\left(t+\pi, N_{t+m}^{\lambda}\right)=M(t, n)+\int_{t}^{t+\pi} \partial_{t} H\left(u, N_{u}^{\lambda}\right) d u \\
& +\int_{t}^{t^{t h}}\left(H\left(u, N_{u}^{\lambda}\right)-H\left(u, N_{u}^{\lambda}-\right)\right) d \hat{N}_{u} \\
& \text { + } \int_{t}^{\text {eth }}\left(H\left(u, N_{u}^{\lambda}\right)-M\left(u, N_{u^{-}}^{\lambda}\right)\right) \lambda_{u} d u \\
& \Rightarrow H^{\lambda}(t, m)=H(t, n)+\mathbb{E}_{t, m}\left[\int _ { t } ^ { t h m } \left(\partial_{t} H_{u}+\frac{\left.\left.\Delta H_{u} \lambda_{u}+F_{u}\right) d u\right]}{\left(H\left(u, M_{u}^{\lambda}\right)-H\left(u, N_{u^{-}}\right)\right.}\right.\right. \\
& \lim _{h \downarrow 0} \sup _{\lambda} \frac{1}{4} \times(-0=,) \\
& 0=\partial_{t} H(t, n)+\sup _{\lambda \in A_{t}}\{(H(t, n+1)-H(t, m)) \lambda\}+F(n) \quad D P E \\
& H(T, n)=g(n)
\end{aligned}
$$

Let $l_{t} \in\{0,1\}$ which represents ubuther we are posted or mot.
contraked counting pores, N_{t}^{l} has intensity

$$
\Delta_{t}=\rho \lambda l_{t}
$$

* F_{t} is a B.entr
* Δ - the spread is constant

$$
\begin{aligned}
& \quad x_{t}-\text { cush process } \\
& d x_{t}^{l}=\left(F_{t}+\Delta / 2\right) d N_{t}^{l}=l_{t} d N_{t} \\
& \left(F_{t}-a v_{t}\right) v_{t} d t
\end{aligned}
$$

DPE:

$$
\begin{aligned}
& \partial_{t} M+\sup _{l \in\{0,1\}}\{(M(t, x+(f+\Delta / 2), q-1, f) \\
& -M(t, x, q, f)) \rho \lambda l\} \\
& +\frac{1}{2} \sigma^{2} \partial_{F F} H-\phi q^{2} \\
& H(T, x, q, f)=x+q\left(f-\frac{\Delta}{2}-\alpha q\right)
\end{aligned}
$$

$$
\begin{aligned}
& H=x+q f+h(t, q) \\
& \text { sit. } \quad h(t, q)=-L\left(\frac{\Delta}{2}+\alpha q\right)
\end{aligned}
$$

$$
\begin{aligned}
\Delta M & =(x+f+\Delta / 2)+\underline{(q-1)}+\underline{r}+M(t, q-1) \\
& -[x+r(t, q)] \\
& =\frac{\Delta}{2}+h(t, q-1)-h(t, q)
\end{aligned}
$$

$$
\left.\Rightarrow \begin{array}{rl}
2_{t} h(t, q)+\lambda p\left(\frac{\Delta}{2}+h(t, q-1)-h(t, q)\right)_{+}-\phi q^{2} & =0 \\
h(T, q) & =-q\left(\frac{\Delta}{2}+\alpha q\right)
\end{array}\right] \begin{aligned}
& h(t, 0)=0 \\
& \text { notradins arue } q_{t}=0 .
\end{aligned}
$$

