

$$
\begin{gathered}
\Rightarrow \bar{F}_{t}=F_{t}-v_{t} \frac{\Delta t}{A} \\
S_{t}^{v}=\frac{1}{2}\left(F_{t}+\bar{F}_{t}\right)=F_{t}-v_{t}\left(\frac{\Delta t}{2 A}\right)^{=a}
\end{gathered}
$$

$$
\mathcal{L} f(x) \triangleq \lim _{n \downarrow 0} \frac{\mathbb{E}[\overbrace{\left.f\left(x_{t+r}\right)-f\left(x_{t}\right) \mid x_{t}=x\right]}^{m}}{m}
$$

mean cost / share?
std cost I share?

$$
\begin{aligned}
& \frac{\mathbb{E}\left[X_{T}^{\nu^{*}}\right]}{q_{0}}+\frac{V\left[X_{T}^{\nu^{*}}\right]}{q_{0}^{2}} \\
& d x_{t}^{v^{*}}=S_{t}^{v^{*}} \cdot v_{t}^{*} d t \\
& =\left(F_{t}-a v_{t}^{*}\right) v_{t}^{*} d t \\
& x_{T}^{v^{*}}=\int_{0}^{T}\left(F_{u}-a v_{u}^{*}\right) v_{u}^{0} d u \\
& \mathbb{E}\left[X_{T}^{v^{*}}\right]=\int_{0}^{T}\left(\mathbb{E}\left[F_{u}\right]-a{F_{u}^{*}}_{u}^{\alpha}\right) v_{u}^{*} d u \\
& =\int_{0}^{+}\left(F_{0}-a v_{u}^{\alpha}\right) v_{u}^{*} d u \\
& \mathbb{V}\left[X_{T}^{V^{*}}\right]=\mathbb{V}\left[\int_{0}^{T} F_{u} v_{u}^{*} d d u\right. \\
& \operatorname{IE}\left[\left(\int_{0}^{T} F_{u} v_{u}^{*} u\right)^{2}\right]=\mathbb{E}\left[\int_{0}^{T} \int_{\partial}^{T} F_{u} v_{u}^{*} F_{s} v_{s}^{*} d u d s\right] \\
& =\int_{0}^{4} \int_{0}^{T} v_{u}^{*} v_{s}^{*} \underbrace{\mid E\left[F_{u} F_{s}\right]} d u d s \\
& \operatorname{IE}\left[\begin{array}{l}
\left(\left(F_{u}-F_{0}\right)+F_{0}\right) \\
\left.\left(\left(F_{s}-F_{0}\right)+F_{0}\right)\right]
\end{array}\right. \\
& =\sigma^{2} \min (u, s)+F_{0}^{2} \\
& I=\int_{0}^{T} F_{u} v_{u}^{*} d u \\
& v_{t}=S_{0}^{t} v_{u}^{t} d u
\end{aligned}
$$

$$
\begin{aligned}
& d\left(F_{t} V_{t}^{*}\right)=d F_{t} V_{t}^{*}+F_{t} v_{t}^{*} d t \\
& \Rightarrow I=\left(F_{T} V_{T}^{*}-F_{0} V_{0}^{*}\right)-\int_{0}^{T} V_{u}^{*} d F_{u}
\end{aligned}
$$


$x$ when to post as a limit order (pays $\Delta / 2$ )

- a market order (costs $\Delta / 2$ )

Basic Model:
MOs arrive at Poisson times $\tau_{1}, \tau_{2}, \ldots$
$M_{t}$ - counting process (rate $\lambda$ )


$$
V_{1} V_{2} \quad V_{3} \text { volume of MO }
$$

$\longrightarrow \mathbb{P}\left(\Delta N_{\tau_{k}}=1\right)=\rho \longleftarrow$ incorporates volume riv. a position in queue

- $N_{t}$ - counting process of your filled LOs

$$
\Delta N_{t} \triangleq N_{t}-N_{t}
$$

$N_{t}$ u indeed a Poise on process with intensity $\rho \lambda$.
Let $l_{t} \in\{0,1\}$ which represents whither we are posted or not.
controlled counting process $N_{t}^{l}$ has intensity

$$
\Delta_{t}=\rho \lambda l_{t}
$$

* $F_{t}$ is a B.entr
* $\Delta$ - the spread is constant
- $X_{t}$ - cush process $=l_{t} d N_{t}$

$$
d X_{t}^{l}=\frac{\left(F_{t}+\Delta / 2\right) d N_{t}^{l}}{\left(F_{t}-a v_{t}\right) v_{t} d t}
$$

$$
d q_{t}=-d N_{t}^{l}=-l_{t} d N_{t}
$$

$$
H^{l}(t, x, q, f)=\mathbb{E}_{t, x, q, F}\left[X_{T}^{l}+q_{T}^{l}\left(F_{T}-\frac{\Delta}{2}-\alpha q_{T}^{l}\right)-\phi \int_{t}^{T}\left(q_{s}^{l}\right)^{2} d s\right]
$$

controlled
$N_{t}^{\delta}$ - controlled counting process for your filled LOS intensity $\quad \Delta_{t}=\lambda g\left(\delta_{t}\right)$
decreasing in $\delta$

$$
e \cdot g \cdot e^{-k \delta_{t}}
$$

$$
\begin{aligned}
& d x_{t}^{\delta}=\left(F_{t}+\delta_{t}\right) d N_{t}^{\delta} \\
& d q_{t}^{\delta}=-d N_{t}^{\delta}
\end{aligned}
$$

