$$
\begin{aligned}
& \text { performance criteria: terminal } \downarrow \text { rewadpenalty } \\
& M^{v}(t, x)=\mathbb{E}_{t, x}\left[G\left(x_{T}^{\nu}\right)+S_{t}^{\top} g\left(X_{u}^{v}\right) d u\right] \\
& d X^{v}=\mu_{t}^{v} d t+\bar{\sigma}_{t}^{v} d w_{t}^{\sigma\left(t, x_{t}, v_{t}\right)} \\
& \rightarrow \mu\left(t, x_{t}, v_{t}\right) \\
& \nu \text { - control } \\
& x \text { - controlled process }
\end{aligned}
$$

Value function:

$$
H(t, x)=\sup _{v \in A} H^{v}(t, x)
$$

Find the value Function Find v which attains the sup

Bellman (HIB)
Hamilton Jacobi Bellman Esfection
Dynamic Programming Equertian

$$
v_{t}= \begin{cases}v_{u}, & u \in t t, t+m] \\ v_{u}^{*}, & u \in(t+m, T]\end{cases}
$$

$$
x_{t+h}^{0}
$$

$$
\begin{aligned}
& H^{\nu}(t, x)=\mathbb{E}_{t, x}\left[\quad G\left(x_{t}^{\nu}\right)+S_{t}^{\top} g\left(\tilde{x}_{u}^{\nu}\right) d u\right] \\
& =\mathbb{E}_{t, x}\left[G\left(x_{T}\right)+\int_{t}^{t+m} g\left(x_{u}^{v}\right) d u+\int_{t+m}^{\top} g\left(x_{u}^{v_{u}^{*}}\right) d u\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\mathbb{E}_{t, x}[\int_{t}^{t+m} g\left(x_{u}^{v}\right) d u+\underbrace{\mathbb{E}_{t+m, x_{t+m}^{v}}\left[G\left(x_{T}^{v}\right)+\int_{t+m}^{\top} g\left(x_{u}^{v^{*}}\right) d u\right]}_{H^{v^{*}}\left(t+m, x_{t+m}^{v}\right)}] \\
& 4^{x} \\
& =H\left(t+M, x_{t+m}^{v}\right) \\
& M\left(t+h, X_{t+h}^{u}\right)=M\left(t, X_{t}^{v}\right)+\int_{t}^{t+m}\left(\partial_{t}+\mathcal{L}^{v}\right) H\left(u, X_{u}^{\nu}\right) d u \\
& \mathcal{L}^{v}=\mu(t, x, v) \partial x+\frac{1}{2} \sigma^{2}(t, x, v) \partial x x \\
& \Rightarrow M^{v}(t, x)=\mathbb{E}_{t, x}\left[\int_{t}^{t+h}\left[g\left(X_{u}^{v}\right)+\left(\partial_{t}+\mathcal{L}^{v}\right) H\left(u, X_{u}^{v}\right)\right] d u\right]+M(t, x) \\
& \sup _{(v)_{(t, t+i)}}(\square) \\
& \Rightarrow \quad M(t, x)=\sup _{(v)(t, t+n)} \mid E_{t, x}\left[\int_{t}^{t+M}\left(y\left(X_{u}^{v}\right)+\left(\partial_{t}+\mathcal{L}^{v}\right) H\left(u_{1} X_{u}^{v}\right)\right) d u\right]+M(t, i v) \\
& \left(x \frac{1}{h}\right) \\
& \Rightarrow 0=\sup _{(v)_{(t, t+h)}} \mid E_{t, x}[\underbrace{\left.\lim _{t}^{1}\left(g\left(x_{u}^{\nu}\right)+\left(\partial_{t}+\mathcal{L}^{\nu}\right) H\left(u, x_{u}^{\nu}\right)\right) d u\right]}_{\lim _{n \dot{ }}(\square)} \\
& 0=g(x)+\partial_{t} H(t, x)+\sup _{v_{t}} \mathcal{L}^{v} H(t, x) \\
& \partial_{t} H+\sup _{v} \mathscr{L}^{v} H+g(x)=0 \\
& \text { MJB equation } \\
& H(T, x)=G(x)
\end{aligned}
$$

$$
\begin{aligned}
& W_{t} \text { - B.min } \\
& F\left(w_{t}\right) \\
& d f=\frac{1}{2} \partial_{x x} f\left(w_{t}\right) d t+\partial_{x} f\left(w_{t}\right) d w_{t} \\
& f\left(w_{t}+d w_{t}\right)-f\left(w_{t}\right) \\
& =\partial_{x} f\left(w_{t}\right) d w_{t}+\frac{1}{2} \partial_{x x} f\left(w_{t}\right)\left(d w_{t}\right)^{2} \\
& \Delta W_{t} \sim M(0, \Delta t) \\
& d x_{t}=\mu\left(t, x_{t}\right) d t+\sigma\left(t, x_{t}\right) d W_{t} \\
& F\left(x_{t}\right) \partial_{t} F_{t} \\
& d f=\left(\mu\left(t, x_{t}\right) \partial x f_{t}+\frac{1}{2} \sigma^{2}\left(t, x_{t}\right) \partial_{x x} f_{t}\right) d t \\
& +\sigma\left(t, x_{t}\right) \partial x f_{t} d w_{t} \\
& f\left(t, X_{t}\right) \\
& d x_{t}=\mu_{t}^{x} d t+\sigma_{t}^{x} d w_{t}^{x} \\
& d y_{t}=\mu_{t}^{y} d t+\sigma_{t}^{y} d w_{t}^{y}> \\
& f\left(x_{t}, y_{t}\right) \\
& d F_{t}=\left(\mu_{t}^{x} \partial_{x} F_{t}+\frac{1}{2}\left(\sigma_{t}^{x}\right)^{2} \partial_{x x} F_{t}\right. \\
& \left.+\mu_{t}^{y} \partial_{y} f_{t}+\frac{1}{2}\left(\sigma_{t}^{y}\right)^{2} \partial_{y y} f_{t}+\rho \sigma_{t}^{x} \sigma_{t}^{y} \partial_{y x} f_{t}\right) d t
\end{aligned}
$$

$$
+\sigma_{t}^{x} \partial_{x} f_{t} d \omega_{t}^{x}+\sigma_{t}^{x} \partial_{y} f_{t} d \omega_{t}^{y}
$$

$$
\begin{aligned}
& d F_{t}=\sigma d \omega_{t} \\
& S_{t}^{\nu}=F_{t}-a v_{t} \\
& d x_{t}^{v}=S_{t}^{v} \cdot v_{t} d t=\left(F_{t}-a v_{t}\right) v_{t} d t \\
& d q_{t}=-v_{t} d t \\
& H^{\nu}(t, x, q, f)=\mathbb{E}_{t, x, q, f}\left[X_{T}^{\nu}+\left(q_{T}^{\nu} F_{T}-\varphi\left(q_{t}^{\nu}\right)^{2}\right)-\phi \int_{t}^{T}\left(q_{s}\right)^{2} d s\right] \\
& H(t, x, q, f)=\sup _{v} H^{\nu}(t, x, q, f) \\
& \text { terminal penalty } \\
& \partial_{t} H+\sup _{v} \mathcal{L}^{2} H-\phi q^{2}=0, \quad H(T, \cdot)=x+\left(q f-\varphi q^{2}\right) \\
& y^{\prime}=\frac{1}{2} \sigma^{2} \partial_{f f}+(f-q v) v \partial_{x}-v \partial_{q} \\
& \sup _{v} \mathcal{L}^{v} H=\frac{1}{2} \partial^{2} \partial_{f f} H+\sup _{v}(\underbrace{(f-q v) v \partial_{x} H-v \partial_{q} H}_{A}) \\
& A=-a \partial_{x} M v^{2}+\left(f \partial_{x} M-\partial_{q} M\right) v \\
& =-a \partial_{x} H\left[\left(V-\left(\frac{f \partial_{x H}-\partial_{2} H}{2 a \partial \partial^{H}}\right)\right)^{2}\right. \\
& \left.-\left(\frac{f \partial_{x} M-\partial_{q} M}{2 a \partial_{x} M}\right)^{2}\right] \\
& v^{*}=\frac{f \partial_{x} H-\partial_{q} M}{2 a a_{x} M} \text { optimal centred in } \\
& \text { "feedback" control form. } \\
& \Rightarrow \sup _{\nu} \mathcal{L}^{v} H=\frac{\left(f \partial_{x} M-\partial q M\right)^{2}}{4 a \partial_{x} H}+\frac{1}{2} \sigma^{2} \partial_{f f} M
\end{aligned}
$$

put all together:

$$
\begin{aligned}
H & =x+q f-Q q^{2} \alpha(t) \\
v^{*} & =\frac{f \partial_{n} M-\partial q H}{2 a \partial n H}=\frac{f-(f+\partial q M)}{2 a} \\
& =-\frac{\partial q \beta \cdot \alpha}{2 a}=\frac{Q}{a} \cdot q^{*} \cdot \alpha(t)
\end{aligned}
$$

$$
\lambda n^{\nu^{x}}=\quad n^{*} d t
$$

$$
\begin{aligned}
& \left\{\begin{array}{r}
\partial_{t} H+\frac{\left(f \partial_{x} M-\partial_{q} M\right)^{2}}{4 a \partial_{x} M}+\frac{1}{2} \sigma^{2} \partial_{f f} H-\phi q^{2}=0 \\
M\left(T_{1} \cdot\right)=x+q f-\varphi q^{2}
\end{array}\right. \\
& M(t, x, q, f)=x+q F+h(t, q), \quad h(T, q)=-Q q^{2} \\
& \partial_{f} M=\partial_{f} M, \partial_{x} M=1, \partial_{f} M=q_{1}, \partial_{f f} M=0, \partial_{q} M=f+\partial_{q} K \\
& \Rightarrow \partial_{t h}+\frac{\left(f \cdot 1-(f+\partial q h 1)^{2}\right.}{4 a \cdot 1}+0-\phi q^{2}=0 \\
& \left\{\begin{aligned}
\partial \psi^{M}+\frac{(\partial q h)^{2}}{4 a}-\phi q^{2} & =0 \\
h(T, q) & =-\varphi q^{2}
\end{aligned}\right. \\
& h(t, q)=\alpha(t) \beta(q), \quad \alpha(T)=1, \beta(q)=-\varphi q^{2} \\
& \Rightarrow\left(-\varphi q^{2}\right) \cdot \partial_{t} \alpha+4 \frac{\varphi^{2} q^{2}}{4 q^{2}} \cdot \alpha^{2}-\phi q^{2}=0 \\
& \Rightarrow \quad \partial_{t} \alpha-\frac{Q}{a} \alpha^{2}+\frac{\phi}{Q}=0, \quad \alpha(T)=1
\end{aligned}
$$

$$
\begin{aligned}
d q^{\nu^{*}} & =-\nu^{*} d t \\
& =-\frac{c}{a} \alpha(t) q^{\nu^{*}} d t \\
\ln \left(\frac{q(t)}{q(0)}\right) & =-\frac{a}{a} \int_{0}^{t} \alpha(u) d u \\
q(t) & =q(0) \cdot e^{-\frac{a}{a} \int_{0}^{t} \alpha(u) d u}
\end{aligned}
$$

