
spread

walk the soot
M.O. buy lift offer
M.O. sell hit sid

Limit orders
\rightarrow Rectient
\rightarrow Price sensitive.

Market orders
\rightarrow impatient
Cimmediate execution)
\rightarrow "best" price

bid $=\mathbb{E}[V \mid$ Buy order arriving $]$
ask $=\mathbb{E}[V$ | seel order arriving]

$$
\begin{aligned}
& \operatorname{bid}=\mathbb{E}[V \mid B]=\bar{V} \mathbb{P}(V=\bar{V} \mid B)+\underline{V} \mathbb{P}(V=\underline{V} \mid B) \\
& \mathbb{P}(V=\bar{V} \mid B)=\frac{\mathbb{P}(V=\bar{V}, B)}{\mathbb{P}(B)}=\frac{\frac{1}{s}\left(\alpha+(1-\alpha) \frac{1}{2}\right)}{1 / 2}=\frac{1+\alpha}{2} \\
& \mathbb{P}(V=\bar{V}, B)=\mathbb{P}(B \mid V=\bar{V}) \cdot \mathbb{P}(V=\bar{V}) \\
& =\left(\alpha \cdot 1+(1-\alpha) \frac{1}{2}\right) \frac{1}{2} \\
& \mathbb{P}(B)=\mathbb{P}(V=\bar{V}, B)+\mathbb{P}(V=\underline{V}, B) \\
& =\mathbb{P}(B(V=\bar{V}) \mathbb{P}(V=\bar{v})+\mathbb{P}(B(V=\underline{v}) \mathbb{P}(V=\underline{v}) \\
& =\left(\alpha \cdot 1+(1-\alpha) \frac{1}{2}\right) \frac{1}{2}+\left(\alpha \cdot 0+(1-\alpha) \frac{1}{2}\right) \frac{1}{2} \\
& =\frac{\alpha}{2}+\frac{(1-\alpha)}{2}=\frac{1}{2} \\
& \text { bid }=\mathbb{E}[V]+\frac{\alpha}{2}(\bar{V}-\underline{v})\{\text { spread }=\alpha(\bar{V}-\underline{v})
\end{aligned}
$$

$$
\left.\begin{array}{l}
\text { bi 火 }=\mathbb{E}[V]+\frac{\alpha}{2}(V-\underline{v}) \\
\text { ask }=\operatorname{EE}[V]-\frac{\alpha}{2}(\bar{v}-\underline{v})
\end{array}\right\} \begin{gathered}
\text { spread }=\alpha(\bar{v}-\underline{v}) \\
\uparrow
\end{gathered}
$$ adverse selection

optimal hiquidection / $1 c$

TWAP - tine weighted average price

$$
\begin{aligned}
& =\frac{1}{T} \int_{0}^{T} s_{u} d u \\
d F_{t}^{\nu} & =\sigma d w_{t}+\underbrace{b v_{t} d t}
\end{aligned}
$$

Fundamatul or mid price
permanent prise impact

$$
S_{t}^{\sim}=F_{t}^{\nu}+\underbrace{a v_{t}} \quad \text { execution price }
$$

temporary impact

$$
d X_{t}^{\nu}=-S_{t}^{\nu} \quad \sim_{t} d t \quad \text { cash process }
$$

performance criteria:

$$
\begin{aligned}
& H^{\prime}(t, x, F, q)=\underbrace{\mathbb{E}_{t, x, F, q}\left[X_{T}^{v}+? ?\right]} \\
& \text { Valuo furction. } \mid E\left[\cdot \mid X_{t}=u, F_{t}=F, q_{t}=q\right]
\end{aligned}
$$

Value function:

$$
M(t, x, F, q)=\sup _{v \in A} M^{\nu}(t, x, F, q)
$$

L Ft-predictulle Dounded porcesses

$$
f_{t}=\sigma\left(\left(w_{s}\right)_{0 \leq s \leq t}\right)
$$

peralije variauce:

$$
-\varnothing \mathbb{V}\left[x_{T}^{v}\right]
$$

quadoiatic variaction

$$
\begin{gathered}
{\left[x^{v}\right]_{T} d x_{t}^{v}=-s_{t} v_{t} d t} \\
d g_{t}=g\left(t, w_{t}\right) d t+h\left(t, w_{t}\right) d w_{t} \\
{[y]_{T}=\int_{0}^{+} h^{2}\left(t, w_{s}\right) d s} \\
\phi \int_{t}^{T}\left(q_{u}-Q\right)^{2} d u \\
\underbrace{}_{i} \text { isventory at u}
\end{gathered}
$$

