Brownian Motion: W_{t}
(Wiener process)
$\alpha \omega_{0}=0$

* $w_{t} \sim N(0, t)$
* increments are stationary t independat

$$
-W_{t+s}-w_{t} \stackrel{d}{=} w_{s} \text { stationary }
$$

$$
-W_{T_{2}}-W_{T_{1}}
$$

independence
i) L
$w_{T_{4}}-w_{T_{3}}$
whenever

$$
T_{1}<T_{2}<T_{3}<T_{4}
$$

* Patters are continuous

$$
\begin{aligned}
& T V(W)_{t}=+\infty \\
& {[W, W]_{t}=t \quad \text { a.s. }}
\end{aligned}
$$

$$
\sigma w_{t} \tilde{p} N\left(0, \sigma^{2} t\right)
$$

$$
S_{t}=S_{0} e^{\left(\mu-\frac{1}{2} \sigma^{2}\right) t+\sigma W_{t}}
$$

W_{t} is \mathbb{P}-Broumian motion
from CRR as $m \rightarrow+\infty .$.

$$
\rightarrow \quad S_{t} \stackrel{d}{=} S_{0} e^{\left(u-\frac{1}{2} \sigma^{2}\right) t+\underline{\sigma \sqrt{t}}}, \quad z \sim \tilde{p} N(0,1)
$$

i What is the joint distribution of $S_{T_{1}} \& S_{T_{2}}$?

$$
\begin{aligned}
& S_{T_{1}}=S_{b} e^{\left(\mu-\frac{1}{2} \sigma^{2}\right) T_{1}+\sigma W_{T_{1}} \leftarrow \text { normal }} \\
& S_{T_{2}}=S_{0} e^{\left(\mu-\frac{1}{2} \sigma^{2}\right) T_{2}+\sigma W_{T_{2}} \leftarrow \text { normal }}
\end{aligned}
$$

$$
\begin{aligned}
&\binom{\operatorname{m}\left(S_{T_{1}} / S_{0}\right)}{\ln \left(S_{\left.T_{2} / S_{0}\right)}\right.} \sim N\left(\binom{m_{1}}{m_{2}} ;\left(\begin{array}{cc}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{21} & \Sigma_{2_{2}}
\end{array}\right)\right) \\
& m_{1}=\left(\mu-\frac{1}{2} \sigma^{2}\right) T_{1}, m_{2}=\left(\mu-\frac{1}{2} \sigma^{2}\right) T_{2} \\
& \Sigma_{11}=\mathbb{V}\left[\sigma W_{T_{1}}\right]=\sigma^{2} T_{1} \\
& \Sigma_{22}=\mathbb{V}\left[\sigma W_{T_{2}}\right]=\sigma^{2} T_{2} \\
& \Sigma_{12}=\Sigma_{2_{1}}=\mathbb{C}\left[\sigma W_{T_{1}}, \sigma W_{T_{2}}\right] \\
&=\sigma^{2}\left(\mathbb { E } \left[W_{11} W_{\left.T_{2}\right]}-\mathbb{E}\left[W_{T_{1}}\right] \cdot \mathbb{E}\left[W_{\left.T_{2}\right]}\right)\right.\right. \\
&\left\lfloor\mathbb{E}\left[W_{T_{1}}\left(W_{T_{1}}-\left(W_{T_{2}}-W_{T_{1}}\right)\right)\right]\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.=T_{1}-\operatorname{EE[} W_{T_{1}}\left(W_{T_{2}}-W_{1,}\right)\right] \\
& \begin{array}{c}
\operatorname{VE}\left[W_{T_{1}}\right] \operatorname{IE}\left[W_{T_{2}}-W_{4}\right] \\
\because 0
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \Sigma_{21}=\Sigma_{12}=\sigma^{2} T_{1} \\
& \binom{\ln \left(S_{T} \mid S_{1}\right)}{\ln \left(S_{T_{2}} / S_{2}\right)} \sim N\left(\binom{\left(\mu-\frac{1}{\Sigma} \sigma^{2}\right) T_{1}}{\left(a_{1}-\frac{1}{2} \sigma^{2}\right) T_{2}}:\left(\begin{array}{cc}
\sigma^{2} T_{1} & \sigma^{2} T_{1} \\
\sigma^{2} T_{1} & \sigma^{2} T_{2}
\end{array}\right)\right) \\
& \rho=\frac{\sigma^{2} T_{1}}{\sqrt{\sigma^{2} T_{1} \cdot \sigma^{2} T_{2}}}=\sqrt{\frac{T_{1}}{T_{2}}}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{E}\left[W_{T_{1}} W_{T_{2}}\right]=\operatorname{IE}\left[\mathbb { E } \left[\underline{\left.\left.\underline{W_{T_{1}}} W_{T_{2}} \mid \underline{W_{T_{1}}}\right]\right]}\right.\right. \\
&=\mathbb{E}[W_{T_{1}} \underbrace{\mid E\left[W_{T_{2}} \mid W_{T_{1}}\right]}]=W_{1} \\
& W_{T_{1}}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{W}\left[w_{t} w_{t+s}\right]=\mathbb{E}\left[\left(w_{t} w_{t+s}\right)^{2}\right]-\frac{\left(\mathbb{E}\left[w_{t} w_{t+s}\right]\right)^{2}}{L t} \\
& \operatorname{EE}\left[\left(w_{t}\left(w_{t}+\left(w_{t+s}-w_{t}\right)\right)\right)^{2}\right] \\
& =E\left[w_{t}^{2}\left(w_{t}^{2}+2 w_{t}\left(w_{t+s}-w_{t}\right)+\left(w_{t+5}-w_{t}\right)^{2}\right)\right] \\
& =3 t^{2}+2 \mathbb{E}\left[w_{t}^{3}\left(w_{t+s}-w_{t}\right)\right]+\operatorname{EE}\left[w_{t}^{2}\left(w_{t+s}-w_{t}\right)^{2}\right] \\
& \operatorname{le}_{0}^{1 E}\left[W_{t}^{3}\right] \underset{0}{\operatorname{EE}}\left[W_{t+s}-w_{t}\right] \\
& \begin{array}{l}
\operatorname{EE}\left[w_{t}^{2}\right] \operatorname{IE}\left[\left(w_{t y s}-w_{t}\right)^{2}\right] \\
{ }_{t} "_{s}
\end{array} \\
& =3 t^{2}+t s
\end{aligned}
$$

Correluted Bromian Mations
W_{t} and w_{t}^{\perp} are imdependent B.motas.

$$
\begin{aligned}
& \quad \begin{array}{l}
w_{0}=0 \\
w_{0}^{L}=0 \\
\cdot \\
\binom{w_{t}}{w_{t}^{1}} \sim N\left(\binom{0}{0} ;\left(\begin{array}{ll}
t & 0 \\
0 & t
\end{array}\right)\right)
\end{array},=\text {, }
\end{aligned}
$$

- $w_{t}+w_{t}^{2}$ have ind. I stationay increments

$$
\begin{aligned}
& w_{t} \\
& w_{t}^{1}
\end{aligned}
$$

puthes are consimuons

$$
\left.0 \int_{1 / 2}^{1 / 2}-\sqrt{\sqrt{\Delta} t} \quad \Delta t \sqrt{\sqrt{2}} \quad\right\} \rightarrow B \cdot m+4 .
$$

Z, Z^{1} ind std. normal riv. how to define

$$
a=\rho
$$

$+b=\sqrt{1-\rho^{2}}$ actretives the soul.
create correlated Bantus $X_{t}+X_{t}$ ont

$$
\begin{aligned}
& x \not+y \text { set. } \\
& \left.\binom{x}{y} \sim N\binom{0}{0} ;\left(\begin{array}{ll}
1 & \rho \\
p & 1
\end{array}\right)\right) \\
& x=z \\
& y=a z+b z^{\perp} \\
& \mathbb{E}[y]=0, \quad \mathbb{V}[y]=a^{2}+b^{2}=1 \\
& \mathbb{C}[x, y]=\mathbb{C}\left[z, \quad a z+b z^{\perp}\right] \\
& =a \mathbb{C}[z, z]+b \mathbb{C}\left[z, z^{1}\right] \\
& =a
\end{aligned}
$$

of uncorrelated B. notus $W_{t} \neq W_{t}^{1}$

$$
\begin{aligned}
& x_{t}=w_{t} \\
& y_{t}=\rho w_{t}+\sqrt{1-\rho^{2}} w_{t}^{1} \\
&\binom{x_{t}}{y_{t}} \sim N\left(\binom{0}{0} ;\left(\begin{array}{cc}
t & \rho t \\
\rho t & t
\end{array}\right)\right)
\end{aligned}
$$

ρ - correlation

- X_{t} has stationary α independent increments

$$
x_{t}
$$

$$
y_{t}
$$

$$
\left.c=\mathbb{C}\left[\left(x_{t+s}-x_{t}\right) ; L y_{t+u}-y_{t}\right)\right]=\rho s
$$

$$
\begin{aligned}
C & =\mathbb{C}\left[\left(x_{t+s}-x_{t}\right) ;\left(y_{t+4}-y_{t+s}\right)+\left(y_{t+s}-y_{4}\right)\right] \\
& =\mathbb{C}\left[\left(x_{t+s}-x_{t}\right) ;\left(y_{t+u}-y_{t+s}\right)\right]
\end{aligned}
$$

$$
+C\left[\left(x_{t t s}-x_{t}\right) ;\left(y_{t+s}-y_{t}\right)\right]
$$

stationers L

$$
\begin{aligned}
\mathbb{C}\left[x_{s} ; y_{s}\right] & =\mathbb{C}\left[W_{s} ; \rho W_{s}+\sqrt{1-\rho^{2}} W_{s}^{\perp}\right] \\
& =\delta \mathbb{C}\left[W_{s} ; W_{s}\right]+\sqrt{1-\delta^{2}} \mathbb{C}\left[W_{s}, W_{s}^{1}\right]
\end{aligned}
$$

$$
=\rho 5 \quad+\quad 0
$$

Lecture 8 Page 8

$$
\begin{aligned}
\mathbb{V}\left[x_{t} y_{t}\right] & =\mathbb{E}\left[x_{t}^{2} y_{t}^{2}\right]-\left(\mathbb{E}\left[x_{t} y_{t}\right]\right)^{2} \\
\mathbb{E}\left[x_{t} y_{t}\right] & =\mathbb{E}\left[w_{t}\left(\rho w_{t}+\sqrt{1-\rho^{2}} w_{t}^{1}\right)\right] \\
& =\rho \mathbb{E}\left[w_{t}^{2}\right]+\sqrt{1-\rho^{2}} \mathbb{E}\left[w_{t} w_{t}^{1}\right] \\
& =\rho t \\
\mathbb{E}\left[x_{t}^{2} y_{t}^{2}\right] & =\mathbb{E}\left[w_{t}^{2}\left(\rho w_{t}+\sqrt{1-\rho^{2}} w_{t}^{1}\right)^{2}\right] \\
& =\rho^{2} \mathbb{E}\left[w_{t}^{4}\right]+2 \rho \sqrt{1-\rho^{2}} \mathbb{E}\left[w_{t}^{3} w_{t}^{2}\right] \\
0 & \left.=3 w_{t}^{1}\right] \\
& =\left(1-\rho^{2}\right) \mathbb{E}\left[w_{t}^{2} \cdot\left(w_{t}^{1}\right)^{2}\right] \\
& =\left(1+2 \rho^{2}\right) t^{2} \\
\Rightarrow \mathbb{V}\left[x_{t} y_{t}\right] & =\left(1+\rho^{2}\right) t^{2}
\end{aligned}
$$

$X_{t}+y_{t}$ are correl. B.note corad $=8$.

$$
\begin{aligned}
& \mathbb{V}\left[\begin{array}{ll}
x_{t} & y_{t+s}
\end{array}\right]=\text { ? } \\
& \mathbb{E}\left[\begin{array}{ll}
x_{t} & y_{t+s}
\end{array}\right]=\mathbb{E}\left[x_{t}\left(y_{t}+\left(y_{t+s}-y_{t}\right)\right)\right] \\
& =\operatorname{EE}\left[x_{t} y_{t}\right]+\operatorname{IE}\left[x_{t}\left[y_{t+s}-x_{t}\right)\right] \\
& \operatorname{EE}\left[x_{t}\right] \operatorname{IE}\left[x_{t+s}-y_{t}\right]=0 \\
& =\rho t \\
& \operatorname{IE}\left[x_{t}^{2} y_{t+s}^{2}\right]=\mathbb{E}\left[x_{t}^{2}\left(y_{t}+\left(y_{t+s}-y_{t}\right)\right)^{2}\right] \\
& =\mathbb{E}\left[x_{t}^{2}\left(y_{t}^{2}+2 y_{t}\left(y_{t+s}-y_{t}\right)+\left(y_{t+s}-y_{t}\right)^{2}\right)\right] \\
& =\operatorname{IE}\left[X_{t}^{2} Y_{t}^{2}\right]+2 \mathbb{E}\left[X_{t}^{2} y_{t}\left(y_{t+s^{-}} y_{t}\right)\right] \\
& \left(1+2 \rho^{2}\right) t^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { fromprecious }+\operatorname{EE}\left[X_{t}^{2}\left(y_{t+5}-y_{t}\right)^{2}\right] \\
& \text { cale. } \\
& \overrightarrow{i n s}=\operatorname{EE}\left[x_{t}^{2}\right] \operatorname{IE}\left[\left(y_{t+s}-y_{t}\right)^{2}\right] \\
& =\operatorname{st} . \operatorname{ED}\left[x_{t}^{2}\right] \operatorname{IE}\left[y_{s}^{2}\right] \\
& =\left(1+2 \rho^{2}\right) t^{2}+t s \\
& \Rightarrow \mathbb{N}\left[x_{t} y_{t+s}\right]=\left(1 t \rho^{2}\right) t^{2}+t s
\end{aligned}
$$

Tuesday, November 02, 2010

$$
[X, y]_{t}=\lim _{\|\pi\| \downarrow 0} \sum_{k}\left(x_{t_{k}}-x_{t_{k-1}}\right)\left(y_{t_{k}}-y_{t_{k-1}}\right)=\rho t \text { as. }
$$

Covariation κ

$$
\begin{aligned}
& \int_{0}^{t} w_{s} d w_{s}=\lim _{\|\Pi\| \downarrow D} \sum_{k} W_{t_{k-1}}\left(w_{t_{k}}-w_{t_{k-1}}\right) \\
& \stackrel{?}{=} \frac{1}{2}\left(w_{t}^{2}-t\right) \text { a.s. } \quad \sum_{n}\left(X_{t_{k}}-x_{t_{b-1}}\right) X_{t} \\
& R^{\pi}=\sum_{k} W_{t_{k-1}}\left(W_{t_{k}}-W_{t_{k-1}}\right)-\frac{1}{2}\left(w_{t}^{2}-t\right), \\
& =\sum_{k}\left(w_{t_{k-1}}\left(w_{z_{k}}-w_{t_{k-1}}\right)-\frac{1}{2}\left(\left(w_{t_{k}}^{2}-\underline{t_{k}}\right)\right.\right. \\
& \left.-\left(w_{t_{k-1}}^{2}-t_{k-1}\right)\right) \\
& =-\frac{1}{2} \sum_{k}\left[\Delta W_{t_{k}}^{2}-\left(t_{k}-t_{k-1}\right)\right] \\
& \left(w_{t_{n}}-w_{t_{n-1}}\right)^{2} \\
& =w_{t_{k}}^{2}-2 w_{t_{k}} w_{t_{k-1}}+w_{t_{k-1}}^{2} \\
& \operatorname{IE}\left[R^{n}\right]=0 \\
& \mathbb{V}\left[R^{n}\right]=\frac{1}{4} \sum_{k} \mathbb{V}\left[\Delta W_{t_{k}}^{2}\right] \\
& \operatorname{IE}\left[\Delta w_{t_{n}}^{4}\right]-\left(\mathbb{E}\left[\Delta w_{t_{n}}^{2}\right]\right)^{2} \\
& =3 \Delta t_{k}^{2}-\Delta t_{k}^{2}=2 \Delta t_{k}^{2} \\
& =\frac{1}{2} \sum_{k} \Delta t_{k}^{2} \\
& \leq \frac{1}{2}\left(\sum_{k} \Delta t_{k}\right)_{u_{t}}\|\pi\| \underset{\|\pi\| \perp 0}{\longrightarrow} 0
\end{aligned}
$$

$$
\int_{0}^{t} w_{s} d w_{s} \triangleq \lim _{\left\|\prod\right\| l 0} \sum_{k} w_{t_{b-1}} \Delta W_{t_{k}}=\frac{1}{2}\left(w_{t}^{2}-t\right) \text { a.s. }
$$

$$
\begin{aligned}
" w_{t} d w_{t} & =\frac{1}{2} d\left(w_{t}^{2}\right)-\frac{1}{2} d t \\
\Rightarrow \quad " \quad d\left(w_{t}^{2}\right) & =2 w_{t} d w_{t}+d t
\end{aligned}
$$

Ito correction

$$
\begin{aligned}
W_{t} \longmapsto & g\left(W_{t}\right)=x_{t} \\
& g \in c^{2} \quad \text { (tuice differentiolle) }
\end{aligned}
$$

Ito's Lemma:

$$
\begin{aligned}
& d g\left(w_{t}\right)=\frac{g^{\prime}\left(w_{t}\right) d w_{t}}{{ }^{s} \text { std. calc" }}+\frac{\frac{1}{2} g^{\prime \prime}\left(w_{t}\right)}{\text { Ito correction }} d t \\
& g\left(w_{t}\right)-g\left(w_{0}\right)=\underbrace{\int_{0}^{t} g^{\prime}\left(w_{s}\right) d w_{s}}_{\text {Stoch Intogral }}+\underbrace{\frac{1}{2} \int_{0}^{\int_{0}^{t} g^{\prime \prime}\left(W_{s}\right) d s}}_{\text {Riemarm-Integral }} \\
& \int_{0}^{t} h\left(w_{s}\right) d w_{s} \triangleq \lim _{\|\eta\| \downarrow 0} \sum_{k} h\left(w_{t_{k-1}}\right)\left(w_{t_{k}}-w_{t_{k-1}}\right) \\
& \int_{0}^{t} h\left(w_{s}\right) d s \triangleq \lim _{\|n\| \omega_{0}} \sum_{k} h\left(w_{t_{k}^{*}}\right) \Delta t_{k}
\end{aligned}
$$

$$
\int_{0}^{t} \underline{w_{s}^{2} d w_{s}}=?
$$

consider a fin $g(x)=x^{3}$
Ito's lemma \Rightarrow

$$
\begin{aligned}
d g\left(w_{t}\right) & =g^{\prime}\left(w_{t}\right) d w_{t}+\frac{1}{2} g^{\prime \prime}\left(w_{t}\right) d t \\
& =3 w_{t}^{2} d w_{t}+\frac{1}{2} 3 \cdot 2 \cdot w_{t} d t
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow w_{t}^{2} d w_{t} & =\frac{1}{3} d g\left(w_{t}\right)-w_{t} d t \\
\int_{0}^{t} w_{s}^{2} d w_{s} & =\frac{1}{3} \int_{0}^{t} d g\left(w_{s}\right)-\int_{0}^{t} w_{s} d s \\
& =\frac{1}{3}\left(g\left(w_{t}\right)-g\left(w_{0}\right)\right)-\int_{0}^{t} w_{s} d s \\
\int_{0}^{t} w_{s}^{2} d w_{s} & =\frac{1}{3} w_{t}^{3}-\int_{0}^{t} w_{s} d s
\end{aligned}
$$

