$$
\tau=\inf \left\{t: S_{t} \notin(L, u)\right\}
$$

$$
Q=\mathbb{1}_{\tau \leq T}\left(S_{T}-k\right)_{T}
$$

$$
\begin{aligned}
& \tau_{L}=\inf \left\{t: s_{t} \geq u\right\} \\
& \tau_{L}=\inf \left\{t: s_{t} \leq L\right\} \\
& \tau=\tau_{u} V \tau_{L}=\max \left(\tau_{U}, \tau_{L}\right) \\
& Q=\mathbb{I} \tau \leq T\left(s_{T}-K\right)_{t}
\end{aligned}
$$

$$
\begin{gathered}
S_{t} \stackrel{d}{=} S_{0} e^{\left(\sigma-\frac{1}{2} \sigma^{2}\right) T+\sigma \sqrt{T} Z}, \quad Z \sim N(0,1) \\
S_{n}=S_{n-1} e^{\left(r-\frac{1}{2} \sigma^{2}\right) \Delta T+\sigma \sqrt{\Delta t} Z_{n}} \\
\text { sample patin y } S \text { generated under } \mathbb{Q}, Z_{2}, \ldots, Z_{n} \text { id } \sim N(0,1)
\end{gathered}
$$

$$
\begin{aligned}
& \left\{\max \left(S_{n}\right) \geq u\right. \\
& \left.\cap \min \left(S_{n}\right) \leq L\right\}=\omega \\
& \mathbb{I}_{\tau \leq T}=\mathbb{1}_{\omega}
\end{aligned}
$$

$$
\begin{aligned}
& v_{0}=e^{-r^{T}} E^{a}\left[\mathbb{I}_{\tau \leq T}\left(S_{T}-K\right)_{+}\right] \\
& \sim e^{-r^{T}} \frac{1}{M} \sum_{m=1}^{M} \mathbb{1}_{m}\left(s_{T}^{(m)}-K\right)_{+} \\
& \operatorname{IE}[x] \sim \frac{1}{M} \sum_{m=1}^{M} x^{(m)} \\
& x^{(1)}, x^{(2)}, \ldots, x^{(m)} \text { id } \sim x .
\end{aligned}
$$

Stactiostic Int rest Rate Models

$$
\begin{aligned}
& A_{0}\left\{\begin{array}{l}
A_{\mu} \\
=A_{0} e^{\sigma \sqrt{\Delta t}} \\
A_{\Delta}
\end{array}=A_{0} e^{-\sigma \sqrt{\Delta t}}\right. \\
& r_{0} e^{\sigma \sqrt{\Delta t}}, r_{0}+\sigma \sqrt{\Delta t}
\end{aligned}
$$

is mot a tree cissocicted witt a traded asset!

$$
\frac{r_{d}}{\pi} r_{0} e^{-\sigma \sqrt{\Delta t}}, \quad r_{0}-\sigma \sqrt{\Delta t}
$$

strow t rates of interest

time

$$
P_{0}(1)=\frac{100}{14 r_{0}}=\frac{\mathbb{E}^{a r}[160]}{1+r_{0} \leftarrow}
$$

\longrightarrow car use to "calibrate" to 1 year baud price (IR tree)

Lecture 5 Page 3
\uparrow cam be calibrated from historical data,

$$
\begin{aligned}
r_{n}= & r_{n-1}+\sigma \sqrt{\Delta t} x_{m} \\
& \left(r_{n-1} e^{\sigma \sqrt{\Delta t} x_{n}}\right)
\end{aligned}
$$

$$
p=\frac{1}{2}\left(1+\frac{(2)-\frac{1}{2} \sigma^{2}}{\sigma} \sqrt{\Delta t}\right)+\cdots
$$

ζ real-mould prod

$$
A_{0}=\frac{1}{1+r} \mathbb{E}^{Q}\left[A_{1}\right]
$$

$$
q=\frac{1}{2}\left(1+\frac{\Gamma-\frac{1}{2} \sigma^{2}}{\sigma} \sqrt{\Delta z}\right)+\cdots
$$

$$
\begin{aligned}
& \operatorname{IE}^{\mathbb{Q}}\left[A_{T}\right]=e^{r^{T}} A_{0} \\
& \operatorname{IE}^{\mathbb{P}}\left[A_{T}\right]=e^{\mu T} A_{0}
\end{aligned}
$$

\rightarrow risb-neudral prod coot actual movement of asset prices)

$$
\mathbb{V}^{\mathbb{P}}\left[\operatorname{br}\left(A_{T} \mid A_{0}\right)\right]=\mathbb{V}^{Q}\left[\operatorname{dn}\left(A_{T} / A_{0}\right)\right]=\sigma^{2} T
$$

instead of $r_{n}=r_{n n} \pm \sigma \sqrt{\Delta t}$ wad finding a $\left\{q_{1}, q_{2}, q_{3}, \ldots\right\}$

fix $q^{\prime} s$ in particular $\quad q=\frac{1}{2}$

$$
r_{n}=r_{n-1} \pm \sigma \sqrt{\Delta t}+\underbrace{\theta_{n-1} \Delta t}_{d_{n-1} \Delta t}
$$

$$
\begin{aligned}
& r_{n}=r_{n-1}+\theta_{m-1} \Delta t \pm \sigma \sqrt{\Delta t} \\
& r_{0}<\underbrace{r_{0}+\theta_{0} \Delta t+\sigma \sqrt{\Delta t}}_{r_{a}}<\frac{\underbrace{r_{0}+\left(\theta_{0}+\theta_{1}\right) \Delta t+2 \sigma \sqrt{\Delta t}}}{r_{0}+\theta_{0}+\left(\theta_{0}+\theta_{1}\right) \Delta t,}\} \begin{array}{l}
r_{0}+\left(\theta_{0}+\theta_{1}\right) \Delta t-2 \sigma \sqrt{\Delta t}
\end{array} \\
& P \cdot(1)=\frac{100}{1+r_{0}} \Rightarrow r_{0}=\nless \not \\
& P_{0}(2)=\frac{1}{1+r_{0}}\left(\frac{100}{1+r_{4}} \frac{1}{2}+\frac{160}{1+r_{2}} \frac{1}{2}\right) \Rightarrow \theta_{0}=\$ \\
& P_{0}(3)=f\left(\theta_{1}\right) \quad \Rightarrow \quad \theta_{1}=\nRightarrow
\end{aligned}
$$

call option on 3 -with be, $k=98.99, \quad T=1-$ moth

$$
\begin{aligned}
& \left\{\begin{array}{l}
P_{14}(3) \\
P_{1 d}(3)
\end{array}\right. \\
& c_{0}\left\langle\left(P_{1 n}(3)-k\right)_{+}\right. \\
& {\left[P_{1 \mu}(3)-K\right)_{+}} \\
& c_{0}=e^{-r_{0} \Delta t}\left[\mathbb{E}^{a}\left[C_{1}\right]\right.
\end{aligned}
$$

care $\quad 4=98.99, T=2$ bane $T=3$

