Trinomial trees exotic options
interest rate models.

A

$$
A \ll_{A}^{A} e^{-\sigma \sqrt{\lambda \Delta t}} \quad 1<e_{e^{r \Delta t}}^{e^{r \Delta t}}
$$

al is not unique... but we can pink one... such that

$$
A_{T} \stackrel{d}{=} A_{0} e^{\left(r-\frac{1}{2} \sigma^{2}\right) T+\sigma \sqrt{ } z}
$$

\Rightarrow
where $Z \widetilde{\mathbb{E}} \sim(0,1)$
(1) $\mathbb{E}^{\mathbb{Q}}\left[\operatorname{len}\left(A_{t+\Delta t} / A_{t}\right)\right]=\left(r-\frac{1}{2} \sigma^{2}\right) \Delta t$ Force
(2) $\mathbb{V}^{a}\left[\ln \left(A_{t+\Delta t} / A_{t}\right)\right]=\sigma^{2} \Delta t$ these equalities
(1)

$$
\begin{gather*}
\Rightarrow \quad \sigma \sqrt{\lambda \Delta t} q_{u}+0 q_{u}+(-\sigma \sqrt{\lambda \Delta t}) q_{d}=\left(r-\frac{1}{2} \sigma^{2}\right) \Delta t \\
\Rightarrow \quad q_{u}-q_{d}=\frac{r-\frac{1}{2} \sigma^{2}}{\sigma} \sqrt{\frac{\Delta t}{\lambda}} \tag{3}
\end{gather*}
$$

(2) \Rightarrow

$$
\begin{align*}
\Rightarrow & \mathbb{V}^{\mathbb{Q}}\left[\ln \left(A_{t+\Delta t} / A_{t}\right)\right]=\mathbb{E}^{Q Q}\left[\left(\ln \left(A_{t+\Delta t} / A_{t}\right)\right)^{2}\right]-\left(\mathbb{E}\left[\ln \left(A_{t+\Delta t} / A_{t}\right)\right]\right)^{2} \\
& \left(\sigma^{2} \lambda \Delta t q_{u}+0 q_{\mu}+\sigma^{2} \lambda \Delta t q_{\alpha}\right)-\left(r-\frac{1}{2} \sigma^{2}\right)^{2} \Delta t^{2}=\sigma^{2} \Delta t \\
\Rightarrow & q_{u}+q_{a}=\frac{1}{\lambda}+\left(\frac{r-\frac{1}{2} \sigma^{2}}{\sigma}\right)^{2}\left(\frac{\Delta t}{\lambda}\right) \tag{4}
\end{align*}
$$

$\frac{(3)+(4)}{2} \Rightarrow$

$$
q_{u}=\frac{1}{2}(\frac{1}{\lambda}+\frac{r-\frac{1}{2} \sigma^{2}}{\sigma} \sqrt{\frac{\Delta t}{\lambda}}+\underbrace{\left(\frac{r-\frac{1}{2} \sigma^{2}}{\sigma}\right)^{2}\left(\frac{\Delta t}{\lambda}\right)}_{l})
$$

$O(\sqrt{\Delta t})$ can be thrown whey for

$$
\begin{aligned}
\frac{(9)-(1)}{2} & \Rightarrow \\
q_{\alpha} & =\frac{1}{2}\left(\frac{1}{\lambda}-\frac{r-\frac{1}{2} \sigma^{2}}{\sigma} \sqrt{\frac{\Delta t}{\lambda}}+\left(\frac{\left.\left.r-\frac{1}{2} \sigma^{2}\right)^{2}\left(\frac{\Delta t}{\lambda}\right)\right)}{\Delta t<c)}{ }^{v}\right.\right. \\
\text { and } \quad q_{m} & =1-\left(q_{u}+q_{d}\right) \\
& =1-\frac{1}{\lambda}+\left(\frac{r-\frac{1}{2} \sigma^{2}}{\sigma}\right)^{2}\left(\frac{\Delta t}{\lambda}\right)
\end{aligned}
$$

Lecture 4 Page 4

$$
\int f(s-\Delta s)=\overbrace{2 f(s)-4(s+\Delta s)}
$$

Lecture 4 Page 5

Barrier options: knock-in and knork-out

Krock-in Faro call:

pay off $e T$

$$
\begin{aligned}
& Q=\mathbb{I}_{\tau \in(0, i\}}\left(s_{T}-K\right)_{+} \\
& \tau=\inf \left\{t: s_{t} \geq u\right\}
\end{aligned}
$$

double hnock-in Euro call:

u

$$
\bar{c}=\inf \left\{t: S_{t} \notin(L, U)\right\}
$$

A onion barrier options..
get 1 if: (1) S first rises a Dove 2 © T
(2) S Lien drops below 1

$$
\begin{aligned}
& r=0 \\
& q=1 / 2
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{N}{ }^{Q}\left[e^{-r^{T}} Q\right] \\
& =\left[\left(\frac{1}{2}\right)^{6} \times 1+\left(1-\left(\frac{1}{2}\right)^{6}\right) \cdot 0\right] \\
& =\frac{1}{26}
\end{aligned}
$$

Lecture 4 Page 9

Forucuding-starliry optior...

$$
V_{t}=e^{-r\left(T_{1}-t\right)} \mid E^{a l}\left[\left(s_{T_{1}}-\alpha S_{T_{0}}\right)_{t}\right]
$$

$$
\begin{aligned}
& S_{T_{0}} \stackrel{d}{=} S_{0} e^{\left(\Gamma-\frac{1}{2} \sigma^{2}\right) T_{0}+\sigma \sqrt{T_{0}} Z} \\
& S_{T_{1}} \stackrel{d}{=} S_{0} e^{\left(\Gamma-\frac{1}{2} \sigma^{2}\right) T_{1}+\sigma \sqrt{T_{1}} Z} \\
& z \underset{\mathbb{Q}_{2}}{\sim} \sim(0,1)
\end{aligned}
$$

$$
\begin{aligned}
& S_{T_{0}} \stackrel{d}{=} S_{0} e^{\left(r-\frac{1}{2} \sigma^{2}\right) T_{0}+\sigma \sqrt{T_{0}} Z_{1}} \\
& S_{T_{1}} \stackrel{d}{=} S_{T_{0}} e^{\left(r-\frac{1}{2} \sigma^{2}\right)\left(T_{1}-T_{0}\right)+\sigma \sqrt{T_{1}-T_{0}} Z_{2}}
\end{aligned}
$$

$$
z_{1}, z_{2} \text { iid. } \underset{\alpha}{\sim} N(0,1)
$$

$$
S_{T}=S_{0} \exp \left\{\sigma \sqrt{\Delta t} \sum_{m=1}^{N} x_{m}\right\}
$$

$$
\begin{aligned}
& \mathbb{E}^{\mathbb{Q}}\left[\left(S_{T_{1}}-\alpha S_{r_{0}}\right)_{+}\right] \\
& =\mathbb{E}^{Q}\left[\pi^{Q}\left[\left(S_{T,}-\alpha S_{r_{0}}\right\rangle_{+} \mid S_{T_{0}}\right]\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { / } \underbrace{\underbrace{n}}_{\text {" } r^{\prime \prime}} \\
& e^{r\left(t_{1}-T_{0}\right)}\left(S_{I_{0}} \Phi\left(d_{4}\right)-\alpha S_{T_{0}} e^{-r\left(T_{1}-T_{0}\right)} \Phi\left(d_{1}\right)\right) \\
& d_{ \pm}=\frac{\ln \left(\alpha S_{T_{0}} / S_{T_{0}}\right)+\left(r \pm \frac{1}{2} \sigma^{2}\right)\left(T_{1}-T_{0}\right)}{\sigma \sqrt{T_{1}-T_{0}}} \\
& =\text { const. } \\
& =e^{\left(T_{T}, T_{0}\right)} C S_{T_{0}} \\
& c=\Phi\left(d_{1}\right)-\alpha e^{-r\left(T_{1}-T_{0}\right)} \Phi\left(d_{-}\right) \\
& =e^{r\left(T_{1}-T_{0}\right)} \subset \mathbb{E}^{Q Q}\left[S_{T_{0}}\right] \\
& =e^{r\left(T_{1}-T_{0}\right)} c e^{r T_{0}} S_{0} \\
& \Rightarrow v_{0}=c S_{0}
\end{aligned}
$$

