Value a call an un asset S, stribe K, mat T.

$$
\begin{aligned}
& V_{0}=e^{-r T} \mathbb{E}^{\mathbb{Q}}\left[\left(S_{T}-K\right)_{+}\right] \\
& S_{T} \stackrel{\alpha}{=} S_{0} e^{\left(r-\frac{1}{2} \sigma^{2}\right) T+\sigma \sqrt{T} Z} \quad, \quad Z_{Q_{Q}} N(0,1)
\end{aligned}
$$

$$
\mathbb{E}^{\mathbb{Q}}\left[\left(S_{T}-K\right) \mathbb{1}_{S_{T}>K}\right] \quad \mathbb{1}_{A}= \begin{cases}1 & \text { if } 1 \text { ozurs } \\ 0, & \text { iteroice }\end{cases}
$$

$$
=\mathbb{E}^{\mathbb{Q}}\left[S_{7} \mathbb{1}_{s_{r}>k}\right]-4 \mathbb{E}^{\mathbb{Q}}\left[\mathbb{1}_{\left.s_{r}>k\right]}\right.
$$

$$
\begin{aligned}
& \rightarrow \quad a_{2}\left(s_{T}>k\right) \\
&=a_{e}(z)-\underbrace{\left.\frac{\ln (s / K)+\left(r-\frac{1}{2} \sigma^{2}\right) T}{\sigma \sqrt{T}}\right)}_{b} \\
&=\Phi\left(\frac{d r(s / 4)+\left(r-\frac{1}{2} \sigma^{2}\right) T}{\sigma \sqrt{T}}\right)
\end{aligned}
$$

$$
\begin{aligned}
\mathbb{E}^{\mathbb{Q}}\left[S_{T} \mathbb{1}_{S_{r}>K}\right] & =\int_{-\omega}^{-3 \pi} S_{0} e^{\left(r-\frac{1}{2} \sigma^{2}\right) T+\sigma \sqrt{\top} 3} \mathbb{I}_{3>3^{*}} \frac{e^{-\frac{1}{2} J^{2}}}{\sqrt{2 \pi}} d 3 \\
& =S_{0} e^{\left(r-\frac{1}{2} \sigma^{2}\right) T} \int_{3^{\infty}}^{\infty} e^{\sigma \sqrt{T} 3-\frac{1}{2} J^{2}} \frac{d_{3}}{\sqrt{2 \pi}} \\
I & =\int_{3^{\prime}}^{\infty} e^{-\frac{1}{2}(\underbrace{3-\sigma \sqrt{4})^{2}+\frac{1}{2} \sigma^{2} T}_{3^{\prime}}} \frac{d_{3}}{\sqrt{2 \pi}}
\end{aligned}
$$

$$
\begin{aligned}
& =e^{\frac{1}{2} \sigma^{2} T} \int_{3^{*}-\sigma T}^{\infty} e^{-\frac{1}{2}\left(3^{\prime}\right)^{2}} \frac{d_{3}{ }^{\prime}}{\sqrt{2 \pi}} \\
& =e^{\frac{1}{2} \sigma^{2} T} \Phi\left(\sigma \sqrt{T}-3^{*}\right) \\
& =e^{\frac{1}{2} \sigma^{2}+} \Phi\left(\frac{\operatorname{ms} / n+\left(r+\frac{1}{2} \sigma^{2}\right) T}{\sigma \pi T}\right)
\end{aligned}
$$

$$
\begin{array}{r}
V_{0}^{c}=S_{0} \Phi\left(d_{+}\right)-k e^{-r T} \Phi\left(d_{-}\right) \\
d \pm=\frac{\ln \left(s_{0} / h\right)+\left(r \pm \frac{1}{2} \sigma^{2}\right) T}{\sigma \delta T}
\end{array}
$$

Block-Sctroles Formula for a cull option.

$$
\left.V_{0}^{p}=k e^{-r^{T}} \Phi\left(-d_{-}\right)-s_{0} \Phi\left(-d_{+}\right) \quad\right)
$$

v

Lecture3 Page 4

Tuesday, September 28, 2010
3:29 PM

$$
s-k e^{-r t}
$$

$$
\begin{array}{ll}
\text { put } k \\
\text { care } n
\end{array}
$$

Lecture3 Page 6

American styped claims: can evercise at ay tine. in principle can nave black-ont periods.

(1) Holl or (2) epercise E。

$$
C_{0}=\max \left(H_{0}, E_{0}\right)
$$

(Put) $\quad E_{0}=\left(k-S_{0}\right)_{t}$

$$
H_{0}=e^{-r \Delta t}\left(q c_{u}+(1-q) c_{d}\right)
$$

Lecture3 Page 8

Q: Sthom Hut it is never optimal to exercise a call option early. [no dividendr]
(1) $\quad \operatorname{IE}^{\mathbb{G}}\left[S_{T}\right]=S_{0} e^{r T}$
(2) $\quad \mathbb{E}[f(x)] \geq F(\mathbb{E}[x])$亿? ?

$$
\begin{aligned}
& \left.M_{0}=e^{-r T} \mid E^{Q}\left[C S_{T}-V\right)_{4}\right] \quad F(x)=(x-N)_{+} \text {is conver. } \\
& \therefore \quad \mathbb{E}^{a}\left[F\left(S_{T}\right)\right] \geq f\left(E^{Q_{Q}}\left[S_{T}\right]\right)=f\left(s_{0} e^{r T}\right) \\
& L \text { Jenser's ineguerlits } \\
& =\left(S_{0} e^{r T}-n\right)_{+} \\
& \Rightarrow H_{0} \geq e^{-r T}\left(S_{0} e^{r T}-k\right)_{+}=\left(S_{0}-k e^{-r T}\right)_{+} \\
& \geq\left(s_{0}-r\right)_{+}=E_{0}
\end{aligned}
$$

\therefore never optimal to esercibe.

