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What will you learn today?

Spot Models

Implied Forward Prices

Options on Spots

Options on Forwards
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Schwartz’s One-Factor Spot Model

Scwartz(1997) introduced a mean-reverting spot model:

dSt = κ(θ − ln St) St dt + σ St dWt

Wt is a Wiener process under the real-world measure P.
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Schwartz’s One-Factor Spot Model

In this model, prices are log-normal

St+∆t = exp
{
θ′ + (ln(St)− θ′)e−κ∆t

+ σ

∫ t+∆t

t
e−κ(t+∆t−u)dWu

}
where θ′ = θ − 1

2σ
2.
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Schwartz’s One-Factor Spot Model

The mean of log-spot prices is

EP
t [ln(St+∆t/St)] = θ′ + (ln(St)− θ′)e−κ∆t

The variance of log-spot prices is

VarP
t [ln(St+∆t/St)] =

σ2

2κ

(
1− e−2κ∆t

)
Notice that the mean and variance are bounded for all time

Invariant distribution of log-prices is normal with
mean= θ′ & variance= σ2/2κ
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One-Factor Spot Model: Induced Forward Prices

Forward prices with stock underliers are given by
Ft(T ) = EQ

t [ST ] where drift of St under Q is r

Forward prices with commodity underliers must
incorporate:

P.V. of storage costs C in the Forward price for the buyer:

Ft(T ) ≤ (St + C ) er(T−t)

P.V. of premium (or convenience yield) for giving up the
commodity in the Forward price for the seller:

Ft(T ) ≥ (St + C ) er(T−t) − Y
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One-Factor Spot Model: Induced Forward Prices

Can satisfy bounds by writing

Ft(T ) = St exp

{∫ T

t
(r + ct(s)− yt(s)) ds

}
In general, introduce a new measure Q induced by the
Radon-Nikodym derivative process:(

dQ
dP

)
t

, exp

{
−1

2

∫ t

0
λs ds +

∫ t

0
λs dWs

}
Then W t ,

∫ T
t λsds + Wt is a Q Wiener process and

dSt = [µt − σ λt ] St dt + σ St dW t

λs is the market price of risk
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One-Factor Spot Model: Induced Forward Prices

For Schwartz model, choosing λs = λ0 + λ1 ln St , maintains
mean-reverting model class with new parameters

dSt = κ(θ − ln St) St dt + σ St dW t

Forward prices are then easily obtained

Ft(T ) , EQ
t [ST ]

= exp

{
θ
′

+ (ln(St)− θ′)e−κ (T−t) +
σ2

4κ

(
1− e−2κ(T−t)

)}
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One-Factor Spot Model: Induced Forward Prices

Sample path of forward price curves:
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One-Factor Spot Model: Induced Forward Prices

Forward curves at quarterly time intervals:
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One-Factor Spot Model: Induced Forward Prices

For a fixed maturity date, forward prices are exponential
martingales:

dFt(T )

Ft(T )
= σ e−κ(T−t) dW t

For a fixed term, forward prices (i.e. Xt , Ft(t + τ)) are
mean-reverting:

dXt = κ(ht − Xt) dt + σ e−κ τ dW t

where ht is a deterministic function of time.

Notice as T (or τ) →∞ the vol tends to zero
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One-Factor Spot Model: Options on Spot

Call Option on Spot:

Ct = EQ
t

[
e−rτ (ST − K )+

]
= St e(µ−r)τ Φ(d∗+)− K e−rτ Φ(d∗−)

where d± =
ln(S/K ) + (µ± 1

2σ
2)τ

√
σ2 τ

σ2 =
σ2

2κ τ
(1− e−2κτ )

µ =
1

τ

{
(θ
′ − ln(St))(1− e−κτ ) + 1

2σ
2
}
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One-Factor Spot Model: Options on Spot

Call Option on Spot:
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One-Factor Spot Model: Options on Forwards

Call Option on Forward:

Ct = EQ
t

[
e−rτ (FT (U)− K )+

]
= e−r τ

{
Ft(U) Φ(d∗+)− K Φ(d∗−)

}
where d∗± =

ln(Ft(U)/K )± 1
2 (σ∗)2τ√

(σ∗)2 τ

(σ∗)2 =
σ2

2κ τ
(e−2κ(U−T ) − e−2κ(U−t))

Sebastian Jaimungal sebastian.jaimungal@utoronto.ca IMPA Commodities Course : Spot Models



One-Factor Spot Models
Two Factor Spot Models

Stochastic Convenience Yield Models

Induced Forward Prices
Option Prices

One-Factor Spot Model: Options on Forwards

Call Option on Forward:
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One-Factor Spot Model: Options on Forwards

Calender Spread Option on Forward:

Ct = EQ
t

[
e−rτ (FT (U1)− FT (U2))+

]
= e−r τ

{
Ft(U1) Φ(d†+)− Ft(U2) Φ(d†−)

}

where d†± =
ln(Ft(U1)/Ft(U2))± 1

2 (σ†)2τ√
(σ†)2 τ

(σ†)2 =
σ2

2κ τ
(e−κ(U2−T ) − e−κ(U1−T ))2(1− e−2κ(T−t))
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One-Factor Spot Model: Options on Forwards

Calender Spread Option on Forward with cost:

Ct = EQ
t

[
e−rτ (FT (U1)− FT (U2)− K )+

]
Try it!
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Two-Factor Spot Models: Pilipovic

One-factor models are only useful in the short term and do
not match forward curves well

Pilipovic(1997) introduced the following model to correct for
this

dSt = κ(θt − St) dt + σ St dW
(1)
t

dθt = θt

(
µ dt + η dW

(2)
t

)
with W

(1)
t and W

(2)
t uncorrelated Wiener processes

Xu(2004) generalized this model by incorporating seasonality,
making σ time dependent and θt an OU process
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Two-Factor Spot Models: Pilipovic

Sample paths in the Pilipovic model:
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Two-Factor Spot Models: Pilipovic

Can solve the system of SDEs to find

St = ht

(
S0 e−κt + κ

∫ t

0
θu e−κ(t−u)h−1

u du

)
ht = exp

{
−1

2σ
2t + σW

(1)
t

}
θt = θ0 exp

{
(µ− 1

2η
2)t + ηW

(2)
t

}
Can obtain Forward Prices, but distribution of St is not
known
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Two-Factor Spot Models: HJ

Barlow, Gusev, and Lai(2004) and Hikspoors &
Jaimungal(2007) introduced a more tractable generalization
as follows

St = exp{gt + Xt}

dXt = α (Yt − Xt) dt + σ dW
(1)
t

dYt = β (φ− Yt) dt + η dW
(2)
t

W
(1)
t and W

(2)
t are correlated Wiener processes, gt

incorporates seasonality, and σ can easily be made
deterministic
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Two-Factor Spot Models: HJ

Sample paths in the HJ model:
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Two-Factor Spot Models: HJ

Can show that

Yt = φ+ (Y0 − φ) e−β t + η

∫ t

0
e−β (t−u) dW

(2)
u ;

Xt = G0,t + e−αtX0 + M0,tY0

+ σ

∫ t

0
e−αt dW

(1)
u + η

∫ t

0
Mu,t dW

(2)
u ,

where

Ms,t =
α

α− β

(
e−β (t−s) − e−α (t−s)

)
Gs,t = φ(1− e−α(t−s))− φMs,t

Distribution of St is log-normal
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Two-Factor Spot Model: Induced Forward Prices

Forward prices Ft(T ) in the HJ model satisfy the PDE{
(∂t + L) F = 0 ,

FT (T ) = ex .

L is the infinitesimal generator of the processes (Xt ,Yt):

L = α(y − x)∂x + β(φ− y)∂y + 1
2σ

2∂xx + 1
2η

2∂yy + ρησ∂xy
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Two-Factor Spot Model: Induced Forward Prices

This is an affine model so that

Ft(T ) = exp{at(T ) + bt(T ) Xt + ct(T ) Yt}

for deterministic functions at(T ), bt(T ) and ct(T ) of t.
Subject to

aT (T ) = 0 , bT (T ) = 1 , cT (T ) = 0

These functions satisfy the coupled ODEs
∂tb − α b = 0 ,

∂tc − β c + α b = 0 ,

∂ta + φβ c + 1
2σ

2 b2 + 1
2η

2 c2 + σηρ b c = 0 .
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Two-Factor Spot Model: Induced Forward Prices

Sample path of forward price curves in the 2-factor HJ model
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Two-Factor Spot Model: Induced Forward Prices

forward price curves in the 2-factor HJ model
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Two-Factor Spot Model: Option Prices

Forward prices for fixed maturity Ft(T ) are once again
exponential martingales

dFt(T )

Ft(T )
= σ bt dW

(1)
t + η ct dW

(2)
t

Of course, both risk factors feed into the dynamics
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Two-Factor Spot Model: Option Prices

Call option on Forward

Ct = e−r τ
{
Ft(U) Φ(d∗+)− K Φ(d∗−)

}
where

d∗± =
ln(Ft(U)/K )± 1

2 (σ∗)2τ√
(σ∗)2 τ

(σ∗)2 =
1

τ

{(
σ2 + η2 − 2ρση

)
g(t,T ,U, 2α)

+η2g(t,T ,U, 2β)− 2η (η + ρσ) g(t,T ,U, α + β)
}

and

g(t,T ,U, a) ,
1

a
(e−a(U−T ) − e−a(U−t)) , η =

α

α− β
η
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Stochastic Convenience Yield Models

Gibson & Schwartz (1990) introduced a stochastic
convenience yield mode to correct one-factor models

Spot price St is (conditionally) GBM with an OU process
driving convenience yield δt

dSt = St

(
(r − δt) dt + σ1 dW

(1)
t

)
dδt = [κ(α− δt)− λ] dt + σ2 dW

(2)
t

where W
(1)
t and W

(2)
t correlated Wiener processes.
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Stochastic Convenience Yield Models

Jamshidian & Fein (1990) demonstrated that forward prices
are affine:

Ft(T ) = St exp{at(T )− bt(T ) δt}

where

at(T ) =
(
r − α + λ

κ + 1
2
σ2

2
κ2 − σ1σ2ρ

κ

)
(T − t)

+ 1
4σ

2
2

1−e−2κ(T−t)

κ3

+
(

(α− λ
κ)κ+ σ1σ2ρ−

σ2
2
κ

)
1−e−κ(T−t)

κ2

bt(T ) =
1− e−κ(T−t)

κ
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Stochastic Interest Rates

Schwartz (1997) also extended the model to incorporate
stochastic interest rates

dSt = St

(
(r − δt) dt + σS dW

(1)
t

)
dδt = [κ(α− δt)− λ] dt + σδ dW

(2)
t

drt = β(θ − rt) dt + σr dW
(3)
t

This model is also affine and it is possible to solve for forward
prices and European option prices explicitly

For commodities, there is no significant advantage gained by
incorporating stochastic interest rates
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