IMPA Commodities Course : Electricity Models

Sebastian Jaimungal

February 25, 2008

Sebastian Jaimungal IMPA Commodities Course : Electricity Models

- - 4 回 ト - 4 回 ト

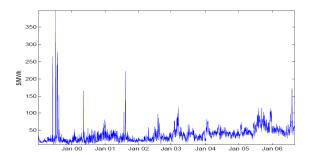
Table of contents

- 2 Jump-Diffusion Models
 - One-Factor Model
 - Two-Factor Models
 - Forward Prices
- 3 Regime Switching Models
 - Basic Model
 - Independent Processes
- 4 Threshold Models
 - Price Level Threshold

▲ 문 ▶ | ▲ 문 ▶

Data

PJM spot prices Jan 1999 - Aug 2006

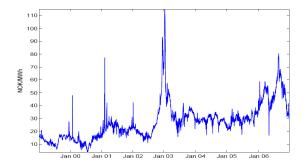


Thanks to Álvaro Cartea

・ロト ・日本 ・モート ・モート

Data

Nord Pool spot prices Jan 1999 - Dec 2006



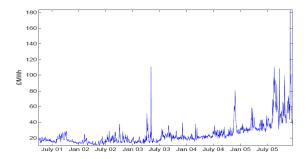
Thanks to Álvaro Cartea

< ≣⇒

< ≣ >

Data

England & Whales spot prices Mar 2001 - Mar 2006

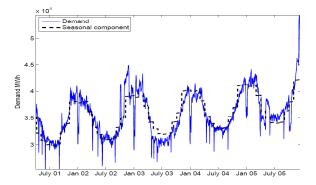


Thanks to Álvaro Cartea

< ≣⇒

Data

England & Whales demand Mar 2001 - Mar 2006



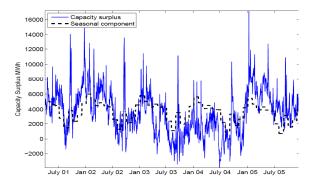
Thanks to Álvaro Cartea

< ∃⇒

< ≣ >

Data

England & Whales excess capacity Mar 2001 - Mar 2006



Thanks to Álvaro Cartea

-∢ ≣ ≯

One-Factor Model Two-Factor Models Forward Prices

One-Factor Model

- Electricity prices contain large spikes which revert to normal levels quickly
- Clewlow & Strickland (2001) and Cartea & Figueroa (2005) simple extension of Gaussian OU process:

$$S_t = \exp\{X_t\}$$

$$dX_t = \kappa(\theta - X_{t-}) dt + \sigma dW_t + dJ_t$$

where J_t is a pure jump process – such as **compound Poisson**

$$J_t = \sum_{n=1}^{N_t} j_i$$

with N_t a Poisson process with activity rate λ and $\{j_1, j_2, ...\}$ i.i.d. random variables.

One-Factor Model Two-Factor Models Forward Prices

• Can easily solve the SDE to find

$$S_{T} = \exp\left\{\theta + (\ln S_{t} - \theta)e^{-\kappa(T-t)} + \int_{t}^{T} e^{-\kappa(T-u)}dW_{u} + \sum_{i=1}^{N_{t}} e^{-\kappa(T-t_{i})}j_{i}\right\}$$

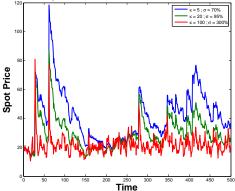
Here, {t₁, t₂,...} are the arrival times of the Poisson process.
Notice that both diffusions and jumps decay at rate of κ

・ロト ・回ト ・ヨト ・ヨト

One-Factor Model Two-Factor Models Forward Prices

One-factor Model

Sample path from simple model



Notice that as reversion rate increases, need to increase volatility to compensate – otherwise diffusion will be washed out

(4回) (4回) (4回)

One-Factor Model Two-Factor Models Forward Prices

Two-factor Model

• Hikspoors & Jaimungal (2007) propose instead

$$S_t = \exp\{X_t + Y_t\}$$

$$dX_t = \kappa(\theta - X_t) dt + \sigma dW_t$$

$$dY_t = -\alpha Y_{t-} dt + dJ_t$$

where J_t is a pure jump process – such as compound Poisson

$$J_t = \sum_{n=1}^{N_t} j_i$$

with N_t a Poisson process with activity rate λ and $\{j_1, j_2, ...\}$ i.i.d. random variables.

イロン イヨン イヨン イヨン

One-Factor Model Two-Factor Models Forward Prices

• Can easily solve the SDE to find

$$S_{T} = \exp\left\{\theta + (\ln S_{t} - \theta)e^{-\kappa(T-t)} + \int_{t}^{T} e^{-\kappa(T-u)}dW_{u} + \sum_{i=1}^{N_{t}} e^{-\alpha(T-t_{i})}j_{i}\right\}$$

Here, $\{t_1, t_2, \dots\}$ are the arrival times of the Poisson process.

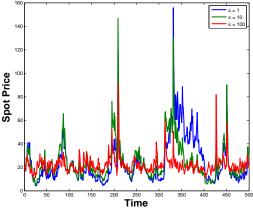
Notice that diffusions and jumps have two separate rates of decay

イロト イポト イヨト イヨト

One-Factor Model Two-Factor Models Forward Prices

Two-factor Model

Sample path from HJ model



Notice that diffusion and jumps are uncoupled

< 67 ▶

∢ ≣ ≯

One-Factor Model Two-Factor Models Forward Prices

Two-factor Model

• Can also incorporate frequent small jumps

$$S_t = \exp\{X_t + Y_t\}$$

$$dX_t = \kappa(\theta - X_{t-}) dt + \sigma dW_t + dQ_t$$

$$dY_t = -\alpha Y_{t-} dt + dJ_t$$

- Q_t contains the small frequent jumps reverting at same rate as diffusion
- J_t contains the large infrequent fast mean-reverting jumps

イロト イポト イヨト イヨト

One-Factor Model Two-Factor Models Forward Prices

Forward Prices

• Single factor model Forward prices $F_t(T)$ satisfy the PDE

$$\begin{cases} (\partial_t + \mathcal{L})F = 0\\ F_T(T) = e^x \end{cases}$$

where \mathcal{L} is the infinitesimal generator of the process X_t :

$$\mathcal{L}g = \kappa(\theta - x)\partial_{x}g + \frac{1}{2}\sigma^{2}\partial_{xx}g + \lambda \int_{-\infty}^{\infty} [g(x+j) - g(x)]dF(j)$$

and F(j) is the cdf of the iid jumps.

イロト イポト イヨト イヨト

One-Factor Model Two-Factor Models Forward Prices

Forward Prices

• This can be solved by assuming the ansatz

$$F_t(T) = \exp\{a_t(T) + b_t(T)x\}$$

where a and b are deterministic functions of time only
Then solve the system of ODEs:

$$\begin{cases} \partial_t a + \theta \kappa b + \frac{1}{2} \sigma^2 b^2 + \lambda \int_{-\infty}^{\infty} \left[e^{bj} - 1 \right] dF(j) &= 0\\ a_T(T) &= 0\\ b_T(T) &= 1 \end{cases}$$

• These are exactly integrable

イロン イヨン イヨン イヨン

One-Factor Model Two-Factor Models Forward Prices

Forward Prices

• Two factor model Forward prices $F_t(T)$ satisfy the PDE

$$\begin{cases} (\partial_t + \mathcal{L})F &= 0\\ F_T(T) &= e^{x+y} \end{cases}$$

where \mathcal{L} is the infinitesimal generator of the process (X_t, Y_t) :

$$\mathcal{L}g = \kappa(\theta - x)\partial_x g + \frac{1}{2}\sigma^2 \partial_{xx}g - \alpha y \partial_y g + \lambda \int_{-\infty}^{\infty} [g(x, y + j) - g(x, y)] dF(j)$$

and F(j) is the cdf of the iid jumps.

イロト イポト イヨト イヨト

One-Factor Model Two-Factor Models Forward Prices

Forward Prices

• This can be solved by assuming the ansatz

$$F_t(T) = \exp\{a_t(T) + b_t(T)x + c_t(T)y\}$$

where a, b and c are deterministic functions of time only
Then solve the system of ODEs:

$$\begin{array}{rcl} \partial_t b - \kappa b &= 0 \ , \\ \partial_t c - \alpha c &= 0 \ , \\ \partial_t a + \theta \kappa \, b + \frac{1}{2} \sigma^2 \, b^2 + \lambda \int_{-\infty}^{\infty} \begin{bmatrix} e^{cj} - 1 \end{bmatrix} \, dF(j) &= 0 \ , \\ a_T(T) &= 0 \ , \\ b_T(T) &= 1 \ , \\ c_T(T) &= 1 \end{array}$$

• These are exactly integrable as well

イロト イヨト イヨト イヨト

One-Factor Model Two-Factor Models Forward Prices

- European option prices can be determined using transform methods
- In two-factor model, since jumps decay extremely quickly and are uncoupled, can ignore them in European option pricing
- For path-dependent options, jumps are important use Monte Carlo or Fourier Space Time-Stepping method

イロト イポト イヨト イヨト

Basic Model Independent Processes

Regime Switching Models

- **Regime switching models** take into account the structural change which occurs during a price spike
 - outages
 - excess demand unpredicted weather
 - poor rain fall to meet regular base demand
- Basic idea two (or more regimes) exists in which
 - regime I : normal price levels diffusive behavior
 - regime II : high price levels spiky behavior

イロト イポト イヨト イヨト

Basic Model Independent Processes

Regime Switching Models

- Write as usual $S_t = e^{g_t + X_t}$, g_t contains predictable effects
- $Z_t \in \{0,1\}$ denotes the "world-state"
- Z_t evolves according to a continuous time Markov chain with generator matrix **A**, i.e.

$$\mathbb{P}(Z_T = i | Z_t = j) = (\exp{\{\mathbf{A}(T - t)\}})_{ji}$$

• X_t satisfies SDE:

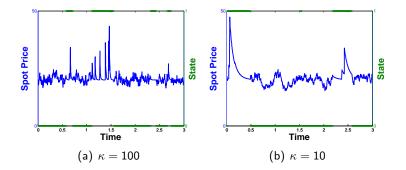
$$dX_t = (1 - Z_t) \left[-\kappa X_t dt + \sigma dW_t \right] \\ + Z_t \left[-\kappa X_{t-} dt + dJ_t \right]$$

where W_t is a Brownian motion and J_t is a compound Poisson process

Basic Model Independent Processes

Regime Switching Models

Sample paths from basic regime switching model

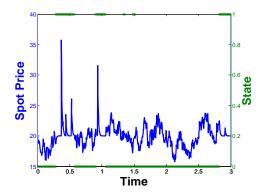


向下 イヨト イヨト

Basic Model Independent Processes

Regime Switching Models

Sample paths from regime switching model with $\kappa_1 = 100$ and $\kappa_0 = 10$:



< ≣⇒

A (1) > A (1) > A

Basic Model Independent Processes

Regime Switching Models

De Jong & Huisman (2003) model

• In this model, the price switches between two independent processes $X_t = (1 - Z_t)X_t^D + Z_t X_t^J$

$$dX_t^D = -\kappa_D X_t^D dt + \sigma dW_t$$
$$dX_t^J = -\kappa_J X_{t-}^J + dJ_t$$

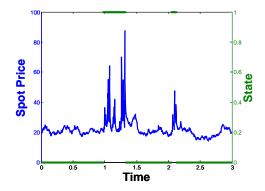
- Both processes are always evolving; however, only one is observed at any point in time
- Price spikes may be generated by plant going down and upon recovery prices return to normal

イロト イポト イラト イラト 一日

Basic Model Independent Processes

Regime Switching Models

De Jong & Huisman (2003) model



< ≣ >

Price Level Threshold

Threshold Models

Geman & Roncoroni (2006) model – not a regime model

• In this model, spikes are affected when prices cross a threshold

$$dX_t = -\kappa X_{t-} dt + \sigma dW_t + h_t dJ_t$$

$$h_t = \left\{egin{array}{cc} +1 &, X_t \geq \overline{X} \ -1 &, X_t < \overline{X} \end{array}
ight.$$

- When prices cross from below, spikes are positive
- When prices cross from above, spikes are negative
- Mean-reversion is calibrated from data to be high around 50.

イロト イポト イヨト イヨト

Price Level Threshold

Threshold Models

