
Derivatives you know and love already 
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Explicit Differentiation 

Maybe z is an explicit function: 
 
z=f(x,y).   
 
Then if the f consists of polynomials and other differentiable 

functions  of x, y it’s easy to calculate fx(x,y), (same as  
డ௭

డ௫
 ) 

for constant y. 

Example: 
 
z=10y + 6x + 3xy 
 

డ௭

డ௫
 = 6 + 3y         (imagine holding y constant) 

 
డ௭

డ௬
 = 10 + 3x         (imagine holding x constant) 

 
 

 

  



Implicit Differentiation 

Maybe z it’s tough to get z alone on the left hand side. 
 
 

Example: 
 
xyz +  x+4y+2z = 0 
 

Keep y constant, take  
డ௭

డ௫
 

 

yz + +xy
డ௭

డ௫
   +1+2 

డ௭

డ௫
   ൌ 0	
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Heat Loss from Skin in cold wind 

H = (10.45 + 10√w –w)(33-t) 
 
w=wind speed (metres/second) 
s=wind speed (km/hr); s=3.6w 
t=temperature (Celsius) 
H= heat loss of skin (kilocaries per sq metre per hr) 
 
H = (10.45 + 10√(s/3.6) –s/3.6)(33-t) 
 
= (10.45 + 5.27 √s  - 0.278s)(33-t) 
 
Example Heat01 
How many times more heat loss on Monday (s=40 km/h, t=-
8) than last week (s= 10 km/h, t=0)? 
 
H(last week)=H(s,t)=H(10,0) 
= (10.45 + 5.27 √10  - 0.278*10)(33- (-8)) = 803.0617 

H(Monday)=H(40,-8) =1339.077 
 
Monday heat loss was 1339/803=1.67 times as fast. 

  



Example Heat02 

Starting at s=20 km/hr and t= -10C, what is the proportional 
increase in heat loss per extra km/hr? 
 
H= (10.45 + 5.27 √s  - 0.278s)(33-t) 
 
H(20, -10)=1223.7 
 
 
డு

డ௦
=(0.5*5.27/ √s    - 0.278)(33-t) 

 
= (0.5*5.27/√20    - 0.278)(33+10)=13.382 
 
Proportional % increase for extra 1 
km/hr=13.382/1223.7=1.1% 
 
 

  



Question: Is this H formula believable? 
 
H= (10.45 + 5.27 √s  - 0.278s)(33-t) 
 

Note that 
ௗு

ௗ௦
=(0.5*5.27/ √s    - 0.278)(33-t) takes the value  

 

0=
ௗு

ௗ௦
 at (s,t)=((0.5*5.27/0.278)2  ,t)=(90, t) 

 

0>
ௗு

ௗ௦
  for s>90 

 
So above 90 km/hour, (25 metres/sec)     higher wind speed 
reduces the heat loss? Clearly wrong, so the formula is 
probably an approximation which works only for low wind 
speeds.  
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Marginal Costs: 

 
How much extra does it cost Huang Industries to 
manufacture one more car, n+1, rather than n, while 
continuing to make m motorcycles? ‘Marginal’, depending 
on interpretation, doesn’t usually include the fact that the 
extra car makes building a second factory a little more 
desirable. And it probably doesn’t include paying the 
company president any more.  Cost C(n, m) is unlikely to be 
exactly an addition of  kg of materials and hours: what about 
overcrowding, quantity discounts on materials, overtime 
shifts?  

We define the derivate 
	

	
   
డ

డ
as the marginal cost.  Economic 

theory says that under ‘perfect competition’ the price 
charged is driven down to the marginal cost.  McDonalds 
will undercut Burger King by a couple of cents if it brings a 
profitable customer in, and then BK reduces its prices etc. Or 
the Toronto Star lets us view their sites for the cost of seeing 
a 15 second candy ad. (So we click on the Globe site instead, 
and watch their 10 second candy ad. But how to pay the 
journalists?? And for most of us the ad is wasted time – we 
would prefer to pay one cent, but how to do that?). 
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Demand functions 

Quantity sold qA  Android phones and qB Blackberries with 
prices pA and pB. 

 

qA = f(pA, pB) 
 
qB = g(pA, pB) 
 
Marginal demand functions are partial derivatives with 
respect to one of the prices. 
 
Almost always, we buy less of something expensive: 
 

	ݍ߲
߲

	൏ 0	

	
	ݍ߲
߲

	൏ 0 

(``Almost always` but e.g. lager beer marketers in Britain 
found that charging an extra few pennies actually increased 
purchases – probably people trying to impress their mates!) 

  



Demand Functions: Competitive Products (Substitutes) 
 
Androids and Blackberries 

Butter and margarine 
Tea and coffee 
Wine and beer 
 
డ	ಲ
డಳ

	 0 (switch to cheap tea from expensive coffee) 

 
డ	ಳ
డಲ

	 0  

 
Example: 

qA =1000
ಳ
	ಲ

  (hamburgers vs subs; each about $5) 

డ	ಲ
డಳ

ൌ 1000 ଵ

	ಲ
 0   (substitutes) 

  



Demand Functions: Complementary Products  
Cars and gasoline 
BluRay discs and BluRay players 
Itunes tracks and IPods 
Pirated tracks and IPods (Apple`s route to success maybe) 
 
డ	ಲ
డಲ

	൏ 0 (buy ebook reader if cheap or ebooks available) 

 
డ	ಳ
డಳ

	൏ 0  

 
Example: 

qA =10,000
	ଵ

	ಳ					ಲ
  ($2 sausages and $1 buns) 

డ	ಲ
డಳ

ൌ െ10,000 ଵ

	ಳ	మ			ಲ
൏ 0 (complements) 

  



Haeussler Example 1 on Marginal Costs 

A company manufactures two types of skis, the Lightning 
and the Alpine models. Suppose the joint-cost function for 
producing x pairs of the Lightning model and y pairs of the 
Alpine model per week is 
 
 
 
 

where c is expressed in dollars. Determine the marginal costs 
∂c/∂x and ∂c/∂y when x = 100 and y = 50, and interpret the 
results. 
 
 

Solution: The marginal costs are 
 

 

 

 

 

  

  2, 0.07 75 85 6000c f x y x x y    

( 100,50) 0.14 75 $89    and

        ( 100,50) $85
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Haeussler 17.4: Higher-Order Partial Derivatives 

• We obtain second-order partial derivatives 
of f as  

 

 

 

  

means ( )    and   means ( )

means ( )    and   means ( )

xx x x xy x y

yx y x yy y y

f f f  f

f f f  f



Example 1 – Second-Order Partial Derivatives 

Find the four second-order partial derivatives of 

 

 

Solution 
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Haeussler 17.5: Chain Rule 

 

• If f, x, and y have continuous partial 
derivatives, then z is a function of r and s, 
and 
 
 

 

 

 

 

  

  

and   

z z x z y

r x r y r

z z x z y

s x s y s

    
 

    
    

 
    



Example 1 – Rate of Change of Cost 

For a manufacturer of cameras and film, the total cost c 
of producing q

C
 cameras and q

F
 units of film is given by 

 

The demand functions for the cameras and film are 
given by  
 
 
 
 
where p

C
 is the price per camera and p

F
 is the price per 

unit of film. Find the rate of change of total cost with 
respect to the camera price when p

C
 = 50 & p

F
 = 2. 

Solution (Use the chain rule) 
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Example 3a – Chain Rule 

 

Determine ∂y/∂r if  
 
 

Solution (chain rule) 
 

 

 

 

 

 

  

   62 4ln 6   and  3 .y x x x r s   

   
4

5 4
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2
12 3 ln 6
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Example 3b – Chain Rule 

Given that z = e
xy

, x = r − 4s, and y = r − s, find ∂z/∂r in 
terms of r and s. 
 

Solution (chain rule) 

 

 

  

 

  

  xyz z x z y
x y e

r x r y r

    
   

    

  2 25 42 5 r rs sr s e   
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Haeussler 17.6: Extrema for Functions of two 
variables 

Relative maximum at the point (a, b) is shown as 

 

 

RULE 1 

Find relative maximum or minimum when 

 

 

 

 
  

   , ,f a b f x y
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RULE 2  Second-Derivative Test for Functions of Two 
Variables 

Let D be the function defined by 

 

 

(call this the determinant of the Hessian matrix if you 
like. If you don’t like, that’s fine too) 

 
1. If D(a, b) > 0 and f

xx
(a, b) < 0, relative maximum at (a, b); 

 
2. If D(a, b) > 0 and f

xx
(a, b) > 0, relative minimum at (a, b); 

 
3. If D(a, b) < 0, then f has a saddle point at (a, b); 

 
4. If D(a, b) = 0, no conclusion. 

 

 

  

        2
, , , , .xx yy xyD x y f x y f x y f x y 



Example 1: Critical Points 

a. 

Solution: Find critical points:  
 

 
 

 
we solve the system and get 
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b. 
Solution: Find critical points: 
 
 
 
we solve the system and get 
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c. 
Solution: Find critical points: 

 

 

 

 

we solve the system and get 
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Example 3 – Applying the Second-Deriv Test 

Examine f(x,y) = x
3
 + y

3
 − xy for relative maxima or 

minima by using the second derivative test. 

Solution: We find critical points, 
 

 

which gives (0, 0) and (1/3, 1/3). 
 

Calculate our test function D: 

 

 

 

 

 

D(0,0)<0, hence no relative extremum at (0,0) 
 

D(1/3, 1/3)>0,  f
xx

(1/3,1/3)>0, so minimum at(1/3,1/3) 
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Value of the function is: 

 

Example 5 – Finding Relative Extrema 

Examine f(x, y) = x
4
 + (x − y)

4
 for relative extrema. 

Solution: We find critical points at (0,0) through 

 

 

 

 

 

 

D(0, 0) = 0  no information. 

f has a relative (and absolute) minimum at (0, 0). 
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Example 7 – Profit Maximization 

A candy company produces two types of candy, A and 
B, for which the average costs of production are 
constant at $2 and $3 per pound, respectively. The 
quantities q

A
, q

B
 (in pounds) of A and B that can be sold 

each week are given by the joint-demand functions 

 

 

 

 

where p
A
 and p

B
 are the selling prices (in dollars per 

pound) of A and B, respectively. Determine the selling 
prices that will maximize the company’s profit P. 
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Critical point (x=2, y=1): 
D(2, 1) = 0*4 – (-4)2=-16 <0 
so   (2,1) is a saddle 
 
 
Critical point (x=-2, y=1): 
D(-2, 1) = 0 – (4)2=-16  
so   (-2,1) is a saddle 
 

(note that f(x,y) only involves x through a x2 term so it 
must be symmetric about the vertical axis) 
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Example with n=3 

 

f(x,y,z) = x2y  + yz + x2  - 4z 
 
Critical points: 
0=fx  = 2xy   + 2x 
0=fy= x2 + z  
0=fz = y-4 

 

Hence y=4,  x=0, z=0 
 
Matrix of second derivatives, A: 
 

A=     
ݕ2  2 ݔ2 0
ݔ2 0 1
0 1 0

൩ 

 
Det(A)=-2y-2 =- 10 <0    at (0,4,0) 
 
A1 = [2y+2] 
Det(A1) = 10 >0  
 



A2 = ቂ2ݕ  2 ݔ2
ݔ2 0

ቃ 

 

Det(A2 )= -4x2 =0 at (0,4,0) 
 
So (0,4,0) is neither a maximum nor a minimum. 

 



Haeussler 17.7: Lagrange Multipliers 

• Lagrange multipliers allow us to obtain critical 
points. 

• The number λ
0
 is called a Lagrange multiplier. 

 
Example 1 – Method of Lagrange Multipliers 

Find the critical points for  
z = f(x,y) = 3x − y + 6,  
subject to the constraint  

x
2
 + y

2
 = 4. 

 

Solution:  

 
Constraint    g(x,y)=x2 + y2 -4=0 

 
Construct the function: 
 
F(x,y,λ)=f(x,y) – λg(x,y) 
 
= 3x – y +6 – λ(x2 + y2 -4) 
 
Setting                                       ,gives 0x yF F F  



 
0= 3 - 2xλ 
 
0= -1 -2yλ 
 
0= -x2  -y2 + 4 
 
 
Solve: 
x=3/2λ 
 
y= - 1/2λ 
 
λ= ±0.25√10 

Critical points are   
a1= (6/√10, -2/√10, √10/4) 

a2= (-6/√10, 2/√10, -√10/4) 
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Lagrange had more coffee and then… 
Think of change in your height as you climb up the hill 
from the maximum point.  Walking parallel to the path 
we increase neither g nor f.  If walking at right angles to 
the path, you are increasing your g and your f as fast as 
possible, but f is increasing λ times faster than g.  . If at 
an angle, both f and g are increasing at a lower rate, but 
the ratio λ is the same. Think of the plane tangent to the 
hill at the maximum point.   Could choose the angle to 
take you parallel to the x axis,  
 
ങ
ങ
ങ
ങ

= λ 

 
and then one taking you parallel to the y axis.   
 
ങ
ങೣ
ങ
ങೣ

= λ, same λ.  

 
Actually the ‘same ratio any direction’ behavior applies 
anywhere, not just at the extremum.  



Lagrange multiplier 
He gave the ratio of the rates a name, probably ‘that 
quotient I made up on Tuesday’, but in French, and then 
got a friend to start calling it ‘Lagrange multiple’ λ 
ങ
ങೣ
ങ
ങೣ

 = 
ങ
	ങ
ങ
ങ

	= λ 

 
So that gave him the idea to set up a function 
F(x,y,λ)=f(x,y) – λg(x,y) 
 
so that if we take its derivatives we get back to his 
quotient: 

0=
డி

డ௫
	ݏ݁ݒ݅݃	 డ

డ௫
ൌ ߣ డ

డ௫
 

0=
డி

డ௬
	ݏ݁ݒ݅݃	 డ

డ௬
ൌ ߣ డ

డ௬
 

0=
డி

డఒ
  .݊݅ݐܽݑݍ݁	݀ݎ݄݅ݐ	ݕݎܽݏݏ݁ܿ݁݊	݄݁ݐ	ݏ݁ݒ݅݃	

We solve for critical point x,y,λ but rarely use λ. But λ 

has to be maximized so that we are indeed at the 

extremum point on the path. 
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0= x2 – λ(24x)   (hence x=24λ since x=0 is a minimum) 

0= 4xz+3x2-K2 

Substituting λ=x/24 

0=xz – zx/2 – 3x2/4 

0=4xz+3x2-K2 

and rewriting 

0=x (2z-3x), hence z=3x/2 

0=9x2-K2 

x=K/3,  y=K/3, Z = K/2  



  



Example from MATA33 Final W08 

Use the method of Lagrange multipliers to find the 
maximum value of f(x; y) = xy + 2x subject to the 
constraint 2x+y = 30 (You may assume that the critical 
point obtained does correspond to a maximum). [7 
points] 
 
Solution 
F(x,y)=xy+2x – λ(2x+y-30) 

0 2 2

0

0 2 30

F
y

x
F

x
y

F
x y








   



  



    


 

Eqn(1) and (2) give:  0=y+2-2x 
Solve: y=14, x=8, maximum f is 8*14+2*8=128 

  



Example 3 – Minimizing Costs 

Suppose a firm has an order for 200 units of its product 
and wishes to distribute its manufacture between two of 
its plants, plant 1 and plant 2. Let q

1
 and q

2
 denote the 

outputs of plants 1 and 2, respectively, and suppose the 
total-cost function is given by  
 

How should the output be distributed in order to 
minimize costs? 

Solution: We minimize c = f(q
1
, q

2
), given the constraint 

q
1
 + q

2 
= 200. 

 
 

 

 

 

Solve to get q1 = 50,  q2 =150  

  2 2
1 2 1 1 2 2, 2 200.c f q q q q q q    

   2 2
1 2 1 1 2 2 1 2, , 2 200 200F q q q q q q q q       

1 2
1

1 2
2

1 2

4 0

2 0

200 0

F
q q

q

F
q q

q

F
q q







     


    


    




Example 5 – Method of Lagrange Multipliers 
with Two Constraints 

Find critical points for f(x, y, z) = xy+ yz, subject to the 

constraints x
2
 + y

2
 = 8 and  yz = 8. 

Solution:  
 
 

 

 

 

 

 

We obtain 4 critical points: 

(2, 2, 4)   (2,−2,−4)   (−2, 2, 4)   (−2,−2,−4) 

     2 2
1 2 1 2, , , , 8 8F x y z xy yz x y yz         

1

2

1

1 2

2
2 2

2 0

2 0

0

8 0

8 0

x

y

z

F y x

F x z y z

F y y

F x y

F yz






 



  
        
     


   

1

1 2

2
2 2

2
2 0

1

8

8

y

x
x z y z

x y

z
y



 


 


   
 
  

 



Haussler Ch 17.9 Multiple Integrals 

Definite integrals of functions of two variables are 
called (definite) double integrals, which involve 
integration over a region in the plane. 

Example 1 – Evaluating a Double Integral 
Find  

Solution: 

 

 

  

 
1 1

1 0

2 1   .
x

x dy dx




 

 

 

 

1 1

1 0

1
1

0
1

1
1

0
1

13 2

1

2 1   

2

2 (1 ) 1

2 2

3 2 3

x

x

x

x dy dx

xy y dx

x x x dx

x x
x

















 

   

 
     
 

 







Example 3 – Evaluating a Triple Integral 

Find  

Solution: 
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0 0 0
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x yx

x dz dy dx


  

 

 

1 1

0
0 0 0 0 0
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