$$
\text { ACT240, NOV. } 10 / 08
$$

Note Title

$$
\begin{aligned}
& \text { TEST 2-FRI.NOV.14, 10-\|AM } \\
& \text { INC/DEC ANNUITIES, LOAN AMORTIZATION } \\
& \text { RBC EXAMPLE 100,000 LUAN, } 25 \text { YR } \\
& (1+j)^{6}=1,04 \\
& j=1 \text { MO. EFFINT RATE } \\
& =.086558 \\
& \text { MONTHLY PMTS, LOAN RATE } 8 \% \\
& \text { NOMINAL } \\
& \text { CONV. SEMI-ANN }
\end{aligned}
$$

$$
\begin{aligned}
& 24 y \\
& 254 \\
& \square \\
& 38161 \\
& 100000=K a{ }_{j}
\end{aligned}
$$

$$
\begin{aligned}
& \underbrace{1.032^{19} \cdot 12 \ldots} \\
& \rho_{0}^{0} i_{i}^{1} \quad \imath_{n} 1+r-\frac{2}{(1+r)^{n-1}} \\
& \frac{1-\left(\frac{1+r}{1+i}\right)^{n}}{i-r}
\end{aligned}
$$

TOTAL AMT./YR RELUVIRCD BY BORRJWER

$$
\begin{aligned}
& \left.\bigcup_{-i}^{i}+\frac{1}{\left.s_{n}\right]_{j}}\right] \quad(1+j)^{k}<(1+\underline{i})^{k} \\
& \text { SUPPOSE } j<i \rightarrow S_{n T_{j}}<S_{n T_{i}} \rightarrow \frac{1}{S_{n} T_{j}}>\frac{1}{S_{n} J_{i}}
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
O B_{5}=100,000-6903 S_{5}^{5} .08 \\
I_{5}=10,000- \\
\quad S F_{4} \times j \\
6403 S_{47.08} \times(.08)
\end{array}\right.
\end{aligned}
$$

$$
\begin{array}{ll}
0 \\
x & x+A
\end{array} 1+\frac{A^{\prime}}{x}=1+i
$$

DOLLAR-wElGHTES RATE OF RETURN (INTERNALRATE of RETURN)

1000

$$
\begin{aligned}
& +100 \\
& 1000(1+i)+100(1+i)^{516}+\operatorname{lo0}(1+i)^{1 / 4}-50(1+i)^{1 / 6}=1300 \\
& \rightarrow \text { LSES SIMPLE NTEREST }
\end{aligned}
$$

$$
1000(1+i)+100\left(1+\frac{5}{6} i\right)+100\left(1+\frac{1}{4} i\right)-50\left(1+\frac{1}{6} i\right)=1300
$$

TIME-WELGHTED RETURN

$$
\left(1+j_{1}\right)\left(1+j_{2}\right) \cdot\left(1+j_{5}\right)
$$

$$
\begin{aligned}
& \left(1+j_{1}\right)\left(1+j_{2}\right)\left(i+j_{3}\right)(1+j y)=1+i^{\top} \\
& \left(\frac{1020}{1000}\right)\left(\frac{1150}{1120}\right)\left(\frac{1230}{1250}\right)\left(\frac{1300}{1180}\right)^{\top}=1.1354
\end{aligned}
$$

Outstanding Mortgage Balance

6I＇608＇IE\＄	$S^{\prime} \angle S I^{\prime} \angle 6 \$$	SO＇ $2 S I \prime \angle 6 \$$	S．1人 6．6I	I8＊06I\＄	
SガSカカ＇İ\＄	$6 L^{\prime} 0 Z S^{\prime} \angle 6 \$$	6 ${ }^{\prime}$＇0ZS＇${ }^{\prime} 6 \$$	S．$\chi^{6} 6.6$ I	L9＇188\＄	
$\downarrow L^{\prime} \mathrm{Z} 6 \varepsilon^{\prime} \varepsilon \$$		OS＇ $\mathrm{E}^{\prime} \mathrm{SS}^{\prime}$ S乙I\＄	s．ı人 $9^{\prime \prime} \downarrow \tau$	عI＇9くI\＄	
乙と＇S $\angle 8^{\prime}$ 乙\＄	26＊060＾9てI\＄	こ6．060＇9てI\＄	s．ı人 L＇ضz		
99＊S9I＇I		8S＇008＇LてI\＄		L9＇188\＄	
00\％ 0	I6＇6S6 ${ }^{\prime}$ 8てI\＄	I6．6S6 ${ }^{\prime}$ 82I ${ }^{\text {d }}$	S．AN 0＇sz	乙て＇と9く\＄	राप7บ0W
```quәu^ed Кןч%uow '5^ sбu!neS łsәләךuI uo!ұez!!_\|ouv```		$\begin{gathered} 150\rangle \\ \text { 75əләұuI } \\ \text { u.sәl } \end{gathered}$	uolyez！fiouv	ұunouv ұurußed	Kフuanbe』』 ұuәuイе

 Update Your Calculation Interest Rate：
$8.000 \%$ 25 years 0 months Interest Term： Monthly Payment Frequency： 25 years 0 months Amortization Period： Payment Amount：
$\$ 763.22$ Interest Rate Type：
Fixed $\$ 100,000.00$ Mortgage Amount：
K．reuums słfnsay
34. An investor took out a loan of 150,000 at $8 \%$ compounded quarterly, to be repaid over 10 years with quarterly payments of 5483.36 at the end of each quarter. After 12 payments, the interest rate dropped to $6 \%$ compounded quarterly. The new quarterly payment dropped to 5134.62 .

After 20 payments in total, the interest rate on the loan increased to $7 \%$ compounded quarterly. The investor decided to make an additional payment of $X$ at the time of his 20th payment. After the additional payment was made, the new quarterly payment was calculated to be 4265.73, payable for five more years.

Determine $X$.
(A) 11,047
(B) 13,369
(C) 16,691
(D) 20,152
(E) 23,614


## Variable Rate Mortgages ${ }^{\dagger}$

Closed

Term	Posted Rate	Special Offers ${ }^{\ddagger}$
5 year	$4.75 \%$	$4.75 \%^{5}$
5 year $\underline{\text { RateCapper }}^{\circledR}$	$4.75 \%$	--


RateCapper Maximum	$7.75 \%$
Rate	--

Open

Term	Posted Rate
5 year	$4.75 \%$

## RBC ${ }^{\text {® }}$ Plan to WIN* Sweepstakes

You could win $\$ 25,000$
just by completing a short survey.

## Enter Now >

## NOTES

* Interest rate compounded half-yearly, not in advance. Interest rates are subject to change without notice at any time.
† Interest rate is compounded monthly, not in advance. This rate may change at any time without notice. Royal Bank of Canada prime rate is an annual variable rate of interest announced by Royal Bank of Canada from time to time as its prime rate.
$\ddagger$ The annual percentage rate (APR) is based on a $\$ 100,000$ mortgage for the applicable term assuming certain cost of borrowing charges (for example, appraisal fees). If there are no cost of borrowing charges, the APR and the interest rate will be the same.

1. APR 5.62\% . Offer expires October 31, 2008.
2. APR 6.02\% . Offer expires October 31, 2008.
3. APR 6.17\% . Offer expires October 31, 2008.
4. APR 6.22\% . Offer expires October 31, 2008.
5. APR 4.75\% . Offer expires October 31, 2008.

For mortgages approved on or before October 31, 2008 funds must be advanced within 90 days of date of application in order to qualify for the Special Offer rate. Offer may be changed, withdrawn or extended at any time, without notice.

Applicable to residential mortgages only and subject to Royal Bank of Canada lending criteria for residential properties. Some conditions apply. Rates shown for the applicable term are Royal Bank of Canada's special discounted rates and are not the posted rates of Royal Bank of Canada. Offer may be changed, withdrawn or extended at any time, without notice.
${ }^{\circledR}$ Registered trade-mark of Royal Bank of Canada
back to top A

## SOLUTION

The APR will be $i^{\prime}$, with corresponding monthly rate $j^{\prime}=\frac{i^{\prime}}{12}$, satisfying the relationship $250,000-5,000=2,011.56 a_{360 j^{\prime}}$. Using a calculator unknown interest function, we get $j^{\prime}=.007689577$, so that the APR is $i^{\prime}=12 j^{\prime}=.0922749$ (nominal annual rate of interest compounded monthly).

### 3.3 THE SINKING-FUND METHOD OF LOAN REPAYMENT

The final comments in Section 3.1 considered the case of a loan which called for periodic payments of interest only during the term of the loan, along with repayment of the full principal amount at the end of the term. For such a loan of amount $L$ at periodic rate of interest $i$ for $n$ periods, the borrower would have to make a series of $n$ interest payments to the lender, each of amount $L \cdot i$, along with a payment of $L$ at time $n$. The borrower might offset the obligation to pay the single lump sum of amount $L$ at time $n$ by accumulating that amount during the term of the loan by means of $n$ periodic deposits into an interest-bearing savings account called a sinking fund. This method of loan repayment is called the sinking-fund method.

There is no guarantee that the rate earned in the sinking fund, say $j$, is the same as the periodic interest rate on the loan, $i$. In a practical situation it would usually be the case that the interest rate charged by the lender is larger than the rate that can be earned in a deposit account, so that $i>j$.

A standard way of accumulating the principal amount in the sinking fund is by using level deposits. If this is the case, then for the loan situation just described the borrower's payment would be $L \cdot i$, which is the interest payment to the lender, plus $\frac{L}{S_{\bar{n} j}}$, which is the level sinking fund deposit, producing a total periodic outlay of $L\left[i+\frac{1}{S_{\bar{n} j}}\right]$.

## EXAMPLE 3.4 (Sinking fund)

A loan of 100,000 is to be repaid by ten annual payments beginning one year after the loan is made. The lender wants annual payments of only
interest at a rate of $10 \%$ and repayment of the principal in a single lump sum at the end of 10 years. The borrower can accumulate the principal in a sinking fund earning an annual interest rate of $8 \%$, and decides to do this by means of 10 level deposits starting one year after the loan is made.
(a) Find the borrowers' total annual outlay and compare this to the level annual payment required by the amortization method at $10 \%$. Find the annual rate of interest $i^{\prime}$ for which the amortization method at rate $i$ results in the same total annual outlay as the borrower pays in the sinking fund method in this example.
(b) Suppose that the lender's rate is $8 \%$ and the sinking fund rate is $10 \%$. Repeat part (a), comparing this to the amortization method at $8 \%$.

## SOLUTION

(a) The total annual outlay under the sinking fund method is $100,000\left[.1+\frac{1}{S_{10.08}}\right]=16,902.95$, and the annual payment under amortization at $10 \%$ is $\frac{100,000}{a_{10.10}}=16,274.54$. To find $i^{\prime}$ we have $100,000=16,902.95 \cdot a_{\overline{10} i^{\prime}}$ which results in $i^{\prime}=.1089$.
(b) The total annual outlay under the sinking fund method is $100,000\left[.08+\frac{1}{s_{\overline{10} \cdot 10}}\right]=14,274.54$, and the annual payment under amortization at $8 \%$ is $\frac{100,000}{a_{\text {T0.08 }}}=14,902.95$. To find $i^{\prime}$ we have $100,000=14,274.54 \cdot a_{\overline{10 l i^{\prime}}}$ which results in $i^{\prime}=.0706$.

As deposits are made to the sinking fund, the fund balance grows toward the target value of $L$. For instance, in part (a) of Example 3.4, just after the fifth deposit into the sinking fund, the fund balance is $6902.95 \cdot s_{51.08}=40,496.85$. This is the accumulated value after five years in the fund that will eventually pay back the principal amount. The value of the net debt outstanding after 5 years can be regarded as the initial loan amount minus the amount for repayment of principal that has already been accumulated to that point. This is
48. A 12 -year loan of 8000 is to be repaid with payments to the lender of 800 at the end of each year and deposits of $X$ at the end of each year into a sinking fund.

Interest on the loan is charged at an $8 \%$ annual effective rate. The sinking fund annual effective interest rate is $4 \%$.

Calculate $X$.
(A) 298
(B) 330
(C) 361
(D) 385
(E) 411

