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APPENDIX C

Computational Issues

Revised and converted to R by Wei Lin and Nancy Reid, July 2010.

C.1 Introduction

In the published version of the book (Chapman & Hall, 2000),
Appendix C included code in S-PLUS for the examples discussed in
the text. In this addendum we provide an updated and corrected
version of this Appendix, with all the code converted to R. The
examples in this supplement were run under R version 2.11.1. For
ease of comparison with the original version we have kept the text
largely the same, except in this Introduction, or where R-specific
functions are introduced.
There is a wide selection of statistical computing packages, and

most of these provide the facility for analysis of variance and esti-
mation of treatment contrasts in one form or another. With small
data sets it is often straightforward, and very informative, to com-
pute the contrasts of interest by hand. In 2k factorial designs this
is easily done using Yates’s algorithm (Exercise 5.1).
R is an open-source statistical language and environment mod-

eled after S and its commercial implementation, S-PLUS. It is freely
available under a GNU General Public License. Originally created
by Robert Gentleman and Ross Ihaka at the University of Auck-
land in 1995, it is now maintained by the R Development Core
Team∗ through the R Foundation, and is very widely used in the
statistics community. A great strength of R is the large number
of packages that can be installed as add-ons to the basic distribu-
tions. Software and packages can be downloaded from the R project
website http://www.r-project.org/.
We give here a very brief overview of the analysis of the more

∗
R Development Core Team (2007). A Language and Environment for Sta-
tistical Computing, R Foundation for Statistical Computing; Vienna, Aus-
tria.

http://www.r-project.org/
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standard designs using R, by providing code sufficient for the anal-
ysis of the main examples in the text. The reader needing an in-
troduction to R or wishing to exploit its full capabilities will need
to consult one of the several books on the topic. We have found
Faraway,† Maindonald & Braun‡ and Venables & Ripley§ to be
good general references; see the Bibliographic Notes for references
explicitly for design of experiments. As with many statistical pack-
ages, the output from R is typically not in a form suitable for the
presentation of conclusions, an important aspect of analysis that
we do not discuss.

We assume the reader is familiar with running R on the system
being used and with the basic structure of R, including data ma-
nipulation and the use of functions, as well as the use of objects
and methods for objects. A dataset, a fitted regression model, and
a residual plot are all examples of objects. Examples of methods
for these objects are summary, plot and residuals. Many ob-
jects have several specific methods for them as well; for example
lm.influence computes diagnostics for a fitted linear model ob-
ject. The illustrations below use a command line version of R; a
menu-driven version, R-commander, is also available.¶

C.2 Overview

C.2.1 Data entry

The typical data from the types of experiments we describe in this
book takes a single response or dependent variable at a time, sev-
eral classification variables such as blocks, treatments, factors and
so on, and possibly one or more continuous explanatory variables,
such as baseline measurements. The dependent and explanatory
variables will typically be entered from a terminal or file, using
a version of the scan or read.table function. It will rarely be
the case that the data set will contain fields corresponding to the
various classification factors. These can usually be constructed us-

† Faraway, J.J. (2004). Linear Models with R, CRC Press, Boca Raton.
‡ Maindonald, J. and Braun, W.J. (2003). Data Analysis and Graphics Using
R: An Example-based Approach, Cambridge University Press, Cambridge

§ Venables, W.N. and Ripley, B.D. (2002). Modern Applied Statistics with S,
Springer-Verlag, New York.

¶ http://socserv.socsci.mcmaster.ca/jfox/Misc/Rcmdr/

 http://socserv.socsci.mcmaster.ca/jfox/Misc/Rcmdr/
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ing the rep function. All classification or factor variables must be
explicitly declared to be so using the factor function.
Classification variables for full factorial designs can be created

using fac.design in the package DoE.base, or for 2-level designs
using ffDesMatrix in the package BHH2.
The collection of explanatory, baseline, and classification vari-

ables can be referred to in a variety of ways. The simplest, though
in the long run most cumbersome, is to note that variables are
automatically saved in the current working directory by the names
they are assigned as they are read or created. In this case the data
variables relevant to a particular analysis will nearly always be vec-
tors with length equal to the number of responses. Alternatively,
when the data file has a spreadsheet format with one row per case
and one column per variable, it is often easy to store the dependent
and explanatory variables as a matrix. The most flexible and ulti-
mately powerful way to store the data is as a data.frame, which is
essentially a matrix with rows corresponding to observations and
columns corresponding to variables, and a provision for assigning
names to the individual columns and rows.
In the first example below we illustrate these three methods of

defining and referring to variables: as vectors, as a matrix, and
as a data frame. In subsequent examples we always combine the
variables in a data frame, using a design object for the explanatory
variables if available.
As will be clear from the first example, one disadvantage of

a data frame is that individual column must be accessed by the
slightly cumbersome form data.frame.name$variable.name. One
can refer to the variables in the data frame by their names alone
by using the function attach(data.frame).

C.2.2 Treatment means

The first step in an analysis is usually the construction of a table
of treatment means. These can be obtained using the tapply func-
tion, illustrated in Section C.3 below. To obtain the mean response
of y at each of several levels of x use tapply(y, x, mean). In most
of our applications x will be a factor variable, but in any case the
elements of x are used to define categories for the calculation of
the mean. If x is a list then cross-classified means are computed;
we use this in Section C.5. In Section C.3 we illustrate the use of
tapply on a variable, on a matrix, and on a data frame.
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A data frame that contains a design object or a number of factor
variables has several specialized plotting methods, the most useful
of which is interaction.plot. Curiously, a summary of means
of a design object does not seem to be available, although these
means are used by the plotting methods for design objects.
An analysis of variance will normally be used to provide es-

timated standard errors for the treatment means, using the aov

function described in the next subsection. If the design is com-
pletely balanced, the model.tables function can be used on the
result of an aov function to construct a table of means after an
analysis of variance, and this, while in principle not a good idea,
will sometimes be more convenient than constructing the table of
means before fitting the analysis of variance. For unbalanced or
incomplete designs, model.tables will give estimated effects, but
they are not always properly adjusted for lack of orthogonality.

C.2.3 Analysis of variance

Analysis of variance is carried out using the aov function, which
is a specialization of the lm function used to fit a linear model.
The summary and plot methods for aov are designed to provide
the information most often needed when analysing these kinds of
data.
The input to the aov function is a response variable and a model

formula. R has a powerful and flexible modelling language which we
will not discuss in any detail. The model formulae for most analyses
of variance for balanced designs are relatively straightforward. The
model formula takes the form y ~ model, where y is the response
or dependent variable. Covariates enter model by their names only
and an overall mean term (denoted 1) is always assumed to be
present unless explicitly deleted from the model formula. If A and
B are factors A + B represents an additive model with the main
effects of A and B, A:B represents their interaction, and A*B is
shorthand for A + B + A:B. Thus the linear model

E(Yjs) = µ+ βxjs + τAj + τBs + τAB
js

can be written

y~x+A*B

while

E(Yjs) = µ+ βjxjs + τAj + τBs + τAB
js
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can be written

y~x+x:A+A*B.

There is also a facility for specifying nested effects; for example
the model E(Ya;j) = µ+ τa + ηaj is specified as y ~ A+B/A.
Model formulae are discussed in detail by Chambers and Hastie

(1992, Chapter 2).
The analysis of variance table is printed by the summary func-

tion, which takes as its argument the name of the aov object. This
will show sums of squares corresponding to individual terms in the
model. The summary function does not show whether or not the
sums of squares are adjusted for other terms in the model. In bal-
anced cases the sums of squares are not affected by other terms
in the model but in unbalanced cases or in more general models
where the effects are not orthogonal, the interpretation of individ-
ual sums of squares depends crucially on the other terms in the
model.
R computes the sums of squares much in the manner of stagewise

fitting described in Appendix A, and it is also possible to update
a fitted model using special notation described in Chambers and
Hastie (1992, Chapter 2). The convention is that terms are entered
into the model in the order in which they appear on the right hand
side of the model statement, so that terms are adjusted for those
appearing above it in the summary of the aov object. For example,

unbalanced.aov <- aov(y ~ x1 + x2 + x3); summary(unbalanced.aov)

will fit the models

y = µ+ β1x1

y = µ+ β1x1 + β2x2

y = µ+ β1x1 + β2x2 + β3x3

and in the partitioning of the regression sum of squares the sum
of squares attributed to x1 will be unadjusted, that for x2 will be
adjusted for x1, and that for x3 adjusted for x1 and x2. Be warned
that this is not flagged in the output except by the order of the
terms:

> summary(unbalanced.aov)
Df Sum of Sq Mean Sq F Value Pr(F)

x1 (unadj.)
x2 (adj. for x1)
x3 (adj. for x1, x2)

residuals
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C.2.4 Contrasts and partitioning sums of squares

As outlined in Section 3.5, it is often of interest to partition the
sums of squares due to treatments using linear contrasts. In R
each factor variable has an associated set of linear contrasts, which
are used as parametrization constraints in the fitting of the model
specified in the aov function. These linear contrasts determine the
estimated values of the unknown parameters. They can also be
used to partition the associated sum of squares in the analysis of
variance table using the split option to summary(aov).
This dual use of contrasts for factor variables is very power-

ful, although somewhat confusing. We will first indicate the use of
contrasts in estimation, before using them to partition the sums of
squares.
The default contrasts for an unordered factor, which is created by

factor(x), are treatment contrasts, which are not strictly speaking
contrasts as the columns don’t sum to zero and are not orthogonal
to the vector of ones. Treatment contrasts do, however, give a com-
parison of each treatment level relative to the first. This would be
useful if, say, the first level were the control treatment. The default
contrasts for an unordered factor in S-PLUS are Helmert contrasts,
which compare the second level with the first, the third level with
the average of the first two, and so on. Default contrasts for an or-
dered factor, in both S-PLUS and R, are those determined by the
appropriate orthogonal polynomials. The contrasts used in fitting
can be changed before an analysis of variance is constructed, using
the options function, for example:

> options(contrasts = c("contr.sum", "contr.poly"))
> options(contrasts = c("contr.helmert", "contr.poly"))

imposes either the summation constraint Στj = 0, or the Helmert
constraints, respectively, for unordered factors, and orthogonal poly-
nomial contrasts for ordered factors.
It is possible to specify a different set of contrasts for ordered

factors from polynomial contrasts, but this will rarely be needed. In
Section C.3.3 below we estimate the treatment parameters under
each of the three constraints: Helmert, summation and τ1 = 0. If
individual estimates of the τj are to be used for any purpose, and
this should be avoided as far as feasible, it is essential to note the
constraints under which these estimates were obtained.
The contrasts used in fitting the model can also be used to par-

tition the sums of squares. The summation contrasts will rarely
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be of interest in this context, but the orthogonal polynomial con-
trasts will be useful for quantitative factors. Prespecified contrasts
may also be specified, using the function contrasts or C. Use of
the contrast matrix C is outlined in detail by Venables and Ripley
(2002, Chapter 6.2).

C.2.5 Plotting

There are some associated plotting methods that are often use-
ful. The function interaction.plot plots the mean response by
levels of two cross-classified factors, and is illustrated in Section
C.5 below. An optional argument fun= allows some other specified
function of the response, such as the median or the standard error,
to be plotted instead; see the help file for this function.
The function qqnorm.aov()/qqnorm() in package gplots, when

applied to an analysis of variance object created by the aov func-
tion, constructs a full or half-normal plot of the estimated ef-
fects (see Section 5.5). Two optional arguments are very useful:
qqnorm.aov(aov.example, label = T) allows interactive label-
ing of points in the plot by clicking on them, and qqnorm(aov.example,

full = T) will construct a full normal plot of the estimated effects.

C.2.6 Specialized functions for standard designs

There are a number of functions for constructing designs in the
packages BHH2, DoE.base, and conf.design; see the bibliographic
notes. In the package conf.design, the function conf.design con-
structs symmetric confounded factorial designs. The package BHH2
provides construction of fractional and full factorials for 2-level fac-
tors via ffDesMatrix. In the package DoE.base, fac.design and
oa.design, are particularly useful for constructing design objects.
Details on the use of these functions are given in the help files, as
well as in the package manuals available through cran.r-project.org.

C.2.7 Missing values

Missing values are generally assigned the special value NA. R func-
tions differ in their handling of missing values. Many of the plotting
functions, for example, will plot missing values as zeroes; the docu-
mentation for, for example, interaction.plot includes under the

cran.r-project.org
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description of the response variable the information “Missing val-
ues (NA) are allowed”. On the other hand, aov handles missing
values in the same way lm does, through the optional argument
na.action. The default value for na.action is na.omit, which
will omit any rows of the data frame that have missing values. An
alternative is na.fail, which halts further computation.
In some design and analysis textbooks there are formulae for

computing, by hand, treatment contrasts, standard errors, and
analysis of variance tables in the presence of a small number of
missing responses in randomized block designs; Cochran and Cox
(1958) provide details for a number of other more complex designs.
In general, procedures for arbitrarily unbalanced data may have to
be used.

C.3 Randomized block experiment from Chapter 3

C.3.1 Data entry

This is the randomized block experiment taken from Cochran and
Cox (1958), to compare five quantities of potash fertiliser on the
strength of cotton fiber. The data and analysis of variance are given
in Tables 3.1 and 3.2. The dependent variable is strength, and there
are two classification variables, treatment (amount of potash), and
block. The simplest way to enter the data is within R:

> potash.strength <- scan()
1: 762 814 776 717 746 800 815 773 757 768 793 787 774 780 721
16:
> potash.strength <- potash.strength/100
> potash.tmt <- factor(rep(1:5, 3))
> potash.blk <- factor(rep(1:3, each = 5))
> potash.tmt
[1] 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
Levels: 1 2 3 4 5
> potash.blk
[1] 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3
Levels: 1 2 3
> is.factor(potash.tmt)
[1] TRUE

We could also construct a 15 × 3 matrix to hold the response
variable and the explanatory variables, although the columns of
this matrix are all considered numeric, even if the variable entered
is a factor.

> potash.matrix <- matrix(c(potash.strength, potash.tmt, potash.blk),
+ nrow = 15, ncol = 3)
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> potash.matrix
[, 1] [, 2] [, 3]

[1, ] 7.62 1 1
[2, ] 8.14 2 1
[3, ] 7.76 3 1
[4, ] 7.17 4 1

.

.

.
[15, ] 7.21 5 3
> is.factor(potash.tmt)
[1] TRUE
> is.factor(potash.matrix[, 2])
[1] FALSE

Finally we can construct the factor levels by by using fac.design
in the package DoE.base, store the result in the design object
potash.design, and combine this with the dependent variable in
a data frame potash.df. In the illustration below we add names
for the factor levels, an option that is available (but not required)
in the fac.design function.

> library(DoE.base)
> fnames <- list (tmt=c("36","54","72","108","144"),
+ blk=c("I","II","III") )
> potash.design <- fac.design(factor.names=fnames,
+ nlevels=c(5,3),randomize=F)
creating full factorial with 15 runs ...
> potash.design

tmt blk
1 36 I
2 54 I
3 72 I
4 108 I

.

.

.
15 144 III
class=design, type= full factorial
>
> strength<-potash.strength #use a shorter name
> potash.df <- data.frame(strength,potash.design)
> rm(strength,fnames,potash.design) # remove un-needed objects
> potash.df

strength tmt blk
1 7.62 36 I
2 8.14 54 I
3 7.76 72 I
4 7.17 108 I

.

.

.
15 7.21 144 III
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> is.factor(potash.df$tmt)
[1] TRUE
> is.factor(potash.df$blk)
[1] TRUE

C.3.2 Table of treatment and block means

The simplest way to compute the treatment means is using the
tapply function. When used with an optional factor argument as
tapply(y, factor, mean) the calculation of the mean is strati-
fied by the level of the factor. This can be used on any of the data
structures outlined in the previous subsection:

> tapply(potash.strength, potash.tmt, mean)
1 2 3 4 5

7.85 8.0533 7.7433 7.5133 7.45

> tapply(potash.matrix[, 1], potash.matrix[, 2], mean)
1 2 3 4 5

7.85 8.0533 7.7433 7.5133 7.45

> tapply(potash.df$strength, potash.df$tmt, mean)
36 54 72 108 144

7.85 8.0533 7.7433 7.5133 7.45

As is apparent above, the tapply function is not terribly con-
venient when used on a data matrix or a data frame. There are
special plotting methods for data frames with factors that allow
easy plotting of the treatment means, but curiously there does not
seem to be a ready way to print the treatment means without first
constructing an analysis of variance.

C.3.3 Analysis of variance

We first form a two-way analysis of variance using aov. Note that
the summary method for the analysis of variance object gives more
useful output than printing the object itself.
In this example we illustrate the estimates τ̂j in the model yjs =

µ+τj+βs+ ǫjs under the default constraint specified by the treat-
ment contrasts in R, with constraint τ1 = 0, which contrasts each
level with the baseline level (specified by base), under the summa-
tion constraint

∑

τj = 0, and under the Helmert constraint which
contrasts the second level with the first, the third with the average
of the first two, and so on. If individual estimates of the τj are to
be used for any purpose, it is essential to note the constraints un-
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der which these estimates were obtained. The analysis of variance
table and estimated residual sum of squares are of course invariant
to the choice of parametrization constraint.

> potash.aov <- aov(strength~tmt+blk, data = potash.df)
> potash.aov
Call:

aov(formula = strength ~ tmt + blk, data = potash.df)

Terms:
tmt blk Residuals

Sum of Squares 0.73244 0.09712 0.34948
Deg. of Freedom 4 2 8

Residual standard error: 0.2090096 Estimated effects are balanced

> summary(potash.aov)
Df Sum Sq Mean Sq F value Pr(>F)

tmt 4 0.73244 0.18311 4.1916 0.04037 *
blk 2 0.09712 0.04856 1.1116 0.37499
Residuals 8 0.34948 0.04369
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

> coef(potash.aov) # same result as: potash.aov$coef

(Intercept) tmt54 tmt72 tmt108 tmt144 blkII blkIII
7.758 0.20333 -0.10667 -0.33667 -0.4 0.196 0.08

## default is contr.treatment; tmt36 and blkI set to 0

> options(contrasts = c("contr.sum", "contr.poly"))
> potash.aov <- aov(strength~tmt+blk, data = potash.df)
> coef(potash.aov)
(Intercept) tmt1 tmt2 tmt3 tmt4 blk1 blk2

7.722 0.128 0.33133 0.021333 -0.20867 -0.092 0.104

> options(contrasts = c("contr.helmert", "contr.poly"))
> potash.aov <- aov(strength~tmt+blk, data = potash.df)
> coef(potash.aov) # same result as: potash.aov$coef
(Intercept) tmt1 tmt2 tmt3 tmt4 blk1 blk2

7.722 0.10167 -0.069444 -0.092222 -0.068 0.098 -0.006

The estimated treatment effects under the summation constraint
can also be obtained using model.tables or dummy.coef, so it
is not necessary to change the default fitting constraint with the
options function, although it is probably advisable. Below we il-
lustrate this, assuming that the Helmert contrasts were used in the
aov function. We also illustrate how model.tables can be used to
obtain treatment means and their standard errors.

> options(contrasts = c("contr.helmert", "contr.poly"))
> options("contrasts")
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$contrasts [1] "contr.helmert" "contr.poly"

> dummy.coef(potash.aov)
Full coefficients are

(Intercept): 7.722
tmt: 36 54 72 108 144

0.128 0.33133 0.021333 -0.20867 -0.272
blk: I II III

-0.092 0.104 -0.012

> model.tables(potash.aov)
Tables of effects

tmt
tmt

36 54 72 108 144
0.1280 0.3313 0.0213 -0.2087 -0.2720

blk
blk

I II III
-0.092 0.104 -0.012

> model.tables(potash.aov, type = "means", se = T)
Tables of means Grand mean

7.722

tmt
tmt

36 54 72 108 144
7.850 8.053 7.743 7.513 7.450

blk
blk

I II III
7.630 7.826 7.710

Standard errors for differences of means
tmt blk

0.1707 0.1322
replic. 3 5

C.3.4 Partitioning sums of squares

For the potash experiment, the treatment was a quantitative factor,
and in Section 3.5.5 we discussed partitioning the treatment sums
of squares using the linear and quadratic polynomial contrasts for a
factor with five levels using (−2,−1, 0, 1, 2) and (2,−1,−2,−1, 2).
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Since orthogonal polynomials are the default for an ordered factor,
the simplest way to partition the sums of squares in R is to define
tmt as an ordered factor.

> otmt <- ordered(potash.df$tmt)
> is.ordered(otmt)
[1] TRUE
> is.factor(otmt)
[1] TRUE
> contrasts(otmt)

.L .Q .C ^4
[1,] -6.32456e-01 0.534522 -3.16228e-01 0.119523
[2,] -3.16228e-01 -0.267261 6.32456e-01 -0.478091
[3,] -3.28798e-17 -0.534522 1.59520e-16 0.717137
[4,] 3.16228e-01 -0.267261 -6.32456e-01 -0.478091
[5,] 6.32456e-01 0.534522 3.16228e-01 0.119523

> potash.df <- data.frame(potash.df, otmt)
> rm(otmt)
> potash.aov <- aov(strength~otmt+blk, potash.df)
> summary(potash.aov)

Df Sum Sq Mean Sq F value Pr(>F)
otmt 4 0.73244 0.18311 4.1916 0.04037 *
blk 2 0.09712 0.04856 1.1116 0.37499
Residuals 8 0.34948 0.04369
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

> summary(potash.aov, split = list(otmt = list(L = 1, Q = 2)))
Df Sum Sq Mean Sq F value Pr(>F)

otmt 4 0.73244 0.18311 4.1916 0.040368 *
otmt: L 1 0.53868 0.53868 12.3310 0.007943 **
otmt: Q 1 0.04404 0.04404 1.0081 0.344761

blk 2 0.09712 0.04856 1.1116 0.374985
Residuals 8 0.34948 0.04369
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

> summary(potash.aov, split =
+ list(otmt = list(L = 1, Q = 2, C = 3, QQ = 4)))

Df Sum Sq Mean Sq F value Pr(>F)
otmt 4 0.73244 0.18311 4.1916 0.040368 *

otmt: L 1 0.53868 0.53868 12.3310 0.007943 **
otmt: Q 1 0.04404 0.04404 1.0081 0.344761
otmt: C 1 0.13872 0.13872 3.1755 0.112609
otmt: QQ 1 0.01100 0.01100 0.2518 0.629296

blk 2 0.09712 0.04856 1.1116 0.374985
Residuals 8 0.34948 0.04369
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

It is possible to specify just one contrast of interest, and a set of
contrasts orthogonal to the first will be constructed automatically.
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This set will not necessarily correspond to orthogonal polynomials
however.
> contrasts(potash.tmt) <- c(-2, -1, 0, 1, 2)
> contrasts(potash.tmt) #these contrasts are orthogonal

#but not the usual polynomial contrasts
[, 1] [, 2] [, 3] [, 4]

1 -2 -0.41491 -0.3626 -0.3104
2 -1 0.06722 0.3996 0.7320
3 0 0.83771 -0.2013 -0.2403
4 1 -0.21744 0.6543 -0.4739
5 2 -0.27258 -0.4900 0.2925
> potash.aov <- aov(potash.strength~potash.tmt+potash.blk)
> summary(potash.aov, split = list(potash.tmt = list(1)))

Df Sum Sq Mean Sq F value Pr(>F)
potash.tmt 4 0.7324 0.1831 4.19 0.0404 *

potash.tmt: C1 1 0.5387 0.5387 12.33 0.0079 **
potash.blk 2 0.0971 0.0486 1.11 0.3750
Residuals 8 0.3495 0.0437
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Finally, in this example recall that the treatment levels are not
in fact equally spaced, so that the exact linear contrast is as given
in Section 3.5: (−2,−1.23,−0.46, 1.08, 2.6). This can be specified
using contrasts, as illustrated here.
> contrasts(potash.tmt) <- c(-2, -1.23, -0.46, 1.08, 2.6)
> contrasts(potash.tmt)

[, 1] [, 2] [, 3] [, 4]
1 -2.00 -0.44375 -0.4103 -0.3773
2 -1.23 -0.09398 0.3332 0.7548
3 -0.46 0.86128 -0.1438 -0.1488
4 1.08 -0.15416 0.6917 -0.4605
5 2.60 -0.16939 -0.4707 0.2318

# as above these are not the usual orthogonal contrasts

> potash.aov <- aov(potash.strength~potash.tmt+potash.blk)
> summary(potash.aov, split = list(potash.tmt = list(1, 2, 3, 4)))

Df Sum Sq Mean Sq F value Pr(>F)
potash.tmt 4 0.73244 0.18311 4.1916 0.040368 *

potash.tmt: C1 1 0.56677 0.56677 12.9740 0.006963 **
potash.tmt: C2 1 0.00023 0.00023 0.0052 0.944440
potash.tmt: C3 1 0.00445 0.00445 0.1019 0.757733
potash.tmt: C4 1 0.16100 0.16100 3.6854 0.091153 .

potash.blk 2 0.09712 0.04856 1.1116 0.374985
Residuals 8 0.34948 0.04369
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

The function poly() will generate orthonormal polynomial con-
trasts for unequally spaced factor levels.
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> tmtlev <- c(36, 54, 72, 108, 144)
>
> lincoef <- poly(tmtlev, degree = 1)
> lincoef

1
[1, ] -0.5397956
[2, ] -0.3321819
[3, ] -0.1245682
[4, ] 0.2906592
[5, ] 0.7058866

...
> lincoef <- 3.7*lincoef # scaling up
> print(lincoef, digits = 2) # round up to 2 digits for comparison with

# result from previous "contrasts"
1

[1, ] -2.00
[2, ] -1.23
[3, ] -0.46
[4, ] 1.08
[5, ] 2.61

...

C.4 Analysis of block designs in Chapter 4

C.4.1 Balanced incomplete block design

The first example in Section 4.2.6 is a balanced incomplete block
design with two treatments per block in each of 15 blocks. The
data are entered as follows:

> weight <- scan()
1: 251 215 249 223 254 226 258 215 265 241
11: 211 190 228 211 215 170 232 253 215 223
21: 234 215 230 249 220 218 226 243 228 256
31:
Read 30 items
> weight <- weight/100
> blk <- factor(rep(1:15, each = 2))
> blk
[1] 1 1 2 2 3 3 4 4 ...15 15
> tmt <- 0
> for (i in 1:5) for (j in (i+1):6) tmt <- c(tmt, i, j)
> tmt <- tmt[-1]
> tmt <- factor(tmt)
> tmt
[1] 1 2 1 3 1 4 1 5 1 6 2 3 2 4 2 5 2 6 3 4 3 5 3 6 4 5 4 6 5 6
Levels: 1 2 3 4 5 6
> fnames <- c("C", "His-", "Arg-", "Thr-", "Val-", "Lys-")
> for (i in 1:6) levels(tmt)[i] <- fnames[i]
> rm(fnames)
> tmt <- factor(tmt)
> chick.df <- data.frame(weight, tmt, blk)
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> chick.df
weight tmt blk

1 2.51 C 1
2 2.15 His- 1
3 2.49 C 2
4 2.23 Arg- 2
5 2.54 C 3
6 2.26 Thr- 3
.
.
.

We now compute treatment means, both adjusted and unad-
justed, and the analysis of variance table for their comparison. This
is our first example of an unbalanced design, in which for exam-
ple the sums of squares for treatments ignoring blocks is different
from the sums of squares adjusted for blocks. The convention in R
is that terms are added to the model in the order they are listed in
the model statement. Thus to construct the intrablock analysis of
variance, in which treatments are adjusted for blocks, we use the
model statement y ~ block + treatment.
We used tapply to obtain the unadjusted treatment means, and

obtained the adjusted means by adding τ̂j to the overall mean Ȳ...
The τ̂j were obtained under the summation constraint. Accord-
ing to its help file, model.tables (aov, type="means") returns
unadjusted means, but we do not recommend it; it seems to give
incorrect results for the mean as well as for the standard error. The
least squares estimates of τj under the summation constraint are
returned by dummy.coef, even if the summation constraint option
was not specified in fitting the model.

> tapply(weight, tmt, mean)
C His- Arg- Thr- Val- Lys-

2.554 2.202 2.184 2.212 2.092 2.484
> options(contrasts = c("contr.sum", "contr.poly"))
> chick.aov <- aov(weight~blk+tmt, data = chick.df)
> summary(chick.aov)

Df Sum Sq Mean Sq F value Pr(>F)
blk 14 0.75288 0.05378 8.1728 0.001025 **
tmt 5 0.44620 0.08924 13.5623
0.000347 *** Residuals 10 0.06580 0.00658
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

> coef(chick.aov)
(Intercept) blk1 blk2 blk3 blk4 blk5 blk6

2.288 -0.1105 -0.013 0.0245 0.060333 0.060333 -0.25883

blk7 blk8 blk9 blk10 blk11 blk12 blk13 blk14
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-0.071333 -0.2705 0.0645 -0.0088333 0.117 0.102 0.0595 0.0495

tmt1 tmt2 tmt3 tmt4 tmt5
0.26167 0.043333 -0.091667 -0.086667 -0.22833

> dummy.coef(chick.aov)
Full coefficients are (Intercept): 2.288
...
tmt: C His- Arg- Thr- Val- Lys-

0.26167 0.04333 -0.09167 -0.08667 -0.22833 0.10167

> tauhat <- .Last.value$tmt # same as tauhat <- dummy.coef(chick.aov)$tmt
> tauhat+mean(weight) # adjusted mean

C His- Arg- Thr- Val- Lys-
2.5497 2.3313 2.1963 2.2013 2.0597 2.3897

> model.tables(chick.aov, type = "means", se = T)
Tables of means Grand mean 2.288

...

tmt
C His- Arg- Thr- Val- Lys-

2.445 2.314 2.233 2.236 2.151 2.349

Standard errors for differences of means
blk tmt

0.08112 0.05130
replic. 2 5
## these do not seem to be correctly adjusted for block effects

We will now compute the interblock analysis of variance using re-
gression on the block totals. The most straightforward approach is
to compute the estimates directly from equations (4.32) and (4.33);
the estimated variance is obtained from the analysis of variance ta-
ble with blocks adjusted for treatments. To obtain this analysis of
variance table we specify treatment first in the right hand side of
the model statement that is the argument of the aov function.

> N <- matrix(0, nrow = 6, ncol = 15)
> ind <- 0
> for (i in 1:5) for (j in (i+1):6) ind <- c(ind, i, j)
> ind <- ind[-1]
> ind <- matrix(ind, ncol = 2, byrow = T)
> for (i in 1:15) N[ind[i, 1], i] <- N[ind[i, 2], i] <- 1
> B <- tapply(weight, blk, sum)
> B

1 2 3 4 5 6 7 8 9 10 11 12
4.66 4.72 4.8 4.73 5.06 4.01 4.39 3.85 4.85 4.38 4.49 4.79

13 14 15
4.38 4.69 4.84
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> tau <- (N%*%B-5*2*mean(weight))/4
> tau <- as.vector(tau)
> tau
[1] 0.2725 -0.2800 -0.1225 -0.0600 -0.1475 0.3375

> summary(aov(weight~tmt+blk, data = chick.df))

Df Sum Sq Mean Sq F value Pr(>F)
tmt 5 0.85788 0.17158 26.0754 1.963e-05 ***
blk 14 0.34120 0.02437
3.7039 0.02165 * Residuals 10 0.06580 0.00658
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

> sigmasq <- 0.00658
> sigmaBsq <- ((0.34120/14-0.00658)*14)/(6*4)
> sigmaBsq
[1] 0.01037833
> vartau1 <- sigmasq*2*5/(6*6)
> vartau2 <- (2*5*(sigmasq+2*sigmaBsq))/(6*4)
> (1/vartau1)+(1/vartau2)
[1] 634.9066
> (1/vartau1)/.Last.value
[1] 0.8617211

> dummy.coef(chick.aov)$tmt
C His- Arg- Thr- Val- Lys-

0.26167 0.04333 -0.09167 -0.08667 -0.22833 0.10167

> tauhat <- .Last.value
> taustar <- .86172*tauhat+(1-.86172)*tau

### these do not agree exactly with the text Table 4.12

> taustar
C His- Arg- Thr- Val- Lys-

0.26316 -0.0013772 -0.09593 -0.082979 -0.21716 0.13428

> sqrt(1/((1/vartau1)+(1/vartau2)))
[1] 0.03968671
> setaustar <- .Last.value
> sqrt(2)*setaustar
[1] 0.05612548

C.4.2 Unbalanced incomplete block experiment

The second example from Section 4.2.6 has all treatment effects
highly aliased with blocks. The data is given in Table 4.13 and
the analysis summarized in Tables 4.14 and 4.15. The within block
analysis is computed using the aov function, with blocks (days)
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entered into the model before treatments. The adjusted treatment
means are computed by adding Ȳ.. to the estimated coefficients. We
also indicate the computation of the least squares estimates under
the summation constraint using the matrix formulae of Section 4.2.
The contrasts between pairs of treatment means do not have equal
precision; the estimated standard error is computed for each mean
using var(Ȳj.) = σ2/rj , although for comparing pairs of means it
may be more useful to use the result that cov(τ̂ ) = C−.

> day <- rep(1:7, each = 4)
> tmt <- scan()
1: 1 8 9 9 9 5 4 9 2 3 8 5 12 6 14 10
17: 11 15 3 13 1 6 4 7 2 9 7 9
29:
Read 28 items
> expansion <- scan()
1: 150 148 130 117 122 141 112 116
9: 159 108 158 156 127 186 114 112
17: 130 111 101 117 146 178 128 154
25: 150 107 109 96
29:
Read 28 items

> day <- factor(day)
> tmt <- factor(tmt)
> expansion <- expansion/10
> dough.df <- data.frame(expansion, tmt, day)
> dough.df

expansion tmt day
1 15.0 1 1
2 14.8 8 1
3 13.0 9 1
4 11.7 9 1
5 12.2 9 2
6 14.1 5 2

.

.

.

> tapply(expansion, day, mean)
1 2 3 4 5 6 7

13.625 12.275 14.525 13.475 11.475 15.150 11.550

> tapply(expansion, tmt, mean)
1 2 3 4 5 6 7 8 9 10 11

14.8 15.45 10.45 12 14.85 18.2 13.15 15.3 11.46667 11.2 13

12 13 14 15
12.7 11.7 11.4 11.1

> options(contrasts = c("contr.helmert", "contr.poly"))
> dough.aov <- aov(expansion~day+tmt, data = dough.df)
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> summary(dough.aov)
Df Sum Sq Mean Sq F value Pr(>F)

day 6 49.412 8.235 11.1877 0.002750 **
tmt 14 96.225 6.873 9.3372 0.003149 **
Residuals 7 5.153 0.736
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

> dummy.coef(.Last.value)$tmt
1 2 3 4 5 6 7 8

1.3706 3.5372 -2.3156 -1.0711 2.1622 3.9178 0.85389 2.2539

9 10 11 12 13 14 15
-0.51556 -3.4822 0.58444 -1.9822 -0.71556 -3.2822 -1.3156

> replications(dough.df)
$expansion NULL

$tmt
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2 2 2 2 2 2 2 2 6 1 1 1 1 1 1

$day
[1] 4

> R <- matrix(0, nrow = 15, ncol = 15)
> diag(R) <- replications(dough.df)$tmt
> K <- matrix(0, nrow = 7, ncol = 7)
> diag(K) <- 4
> N <- matrix(0, nrow = 15, ncol = 7)
> N[, 1] <- c(1, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0)
> N[, 2] <- c(0, 0, 0, 1, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0)
> N[, 3] <- c(0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0)
> N[, 4] <- c(0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0)
> N[, 5] <- c(0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1)
> N[, 6] <- c(1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0)
> N[, 7] <- c(0, 1, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 0)
>
> S <- tapply(expansion, tmt, sum)
> S <- matrix(S)
>
> B <- tapply(expansion, day, sum)
> B <- matrix(B)
>
> library(MASS)
> Q <- S-N%*%solve(K)%*%B
> C <- R-N%*%solve(K)%*%t(N)
> t(Q)%*%ginv(C)

[, 1] [, 2] [, 3] [, 4] [, 5] [, 6] [, 7] [, 8]
[1, ] 1.3706 3.5372 -2.3156 -1.0711 2.1622 3.9178 0.85389 2.2539

[, 9] [, 10] [, 11] [, 12] [, 13] [, 14] [, 15]
[1, ] -0.51556 -3.4822 0.58444 -1.9822 -0.71556 -3.2822 -1.3156
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> tauhat <- .Last.value
> as.vector(tauhat+mean(expansion))
[1] 14.5241 16.6908 10.8380 12.0825 15.3158 17.0713 14.0075
[8] 15.4075 12.6380 9.6713 13.7380 11.1713 12.4380 9.8713
[15] 11.8380
> se <- 0.7361/sqrt(diag(R))
> se
[1] 0.52050 0.52050 0.52050 0.52050 0.52050 0.52050 0.52050
[8] 0.52050 0.30051 0.73610 0.73610 0.73610 0.73610 0.73610
[15] 0.73610
> setauhat <- sqrt(diag(ginv(C)))
> setauhat
[1] 0.92376 0.92376 1.04243 0.92376 0.92376 1.04243 0.92376
[8] 0.92376 0.76594 1.59792 1.59792 1.59792 1.59792 1.59792
[15] 1.59792

C.5 Examples from Chapter 5

C.5.1 Factorial experiment, Section 5.2

The treatments in this experiment form a complete 3×2×2 facto-
rial. The data are given in Table 5.1 and the analysis summarized
in Tables 5.2 and 5.4. The code below illustrates how to construct
the levels of the factors. For this purpose we treat house as a factor,
although in line with the discussion of Section 5.1 it is not an aspect
of treatment. These factors are then used to stratify the response
in the tapply function, producing tables of marginal means. Fig-
ure 5.1 was obtained using interaction.plot, after constructing
a four-level factor indexing the four combinations of type of protein
crossed with level of fish solubles.

> weight <- scan()
1: 6559 6292 7075 6779 6564 6622 7528 6856 6738 6444 7333 6361
13: 7094 7053 8005 7657 6943 6249 7359 7292 6748 6422 6764 6560
25:
Read 24 items
> library(DoE.base)
> fnames <- list (House=c("I","II"), Lev.f=c("0","1"),
+ Lev.pro=c("0","1","2"), Type=c("gnut","soy") )

> exk.design <-fac.design(factor.names=fnames,
+ nlevels=c(2,2,3,2),randomize=F)
creating full factorial with 24 runs ...
> exk.design

House Lev.f Lev.pro Type
1 I 0 0 gnut
2 II 0 0 gnut
3 I 1 0 gnut
4 II 1 0 gnut
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5 I 0 1 gnut
.
.
.

class=design, type= full factorial
> exk.df <- data.frame(weight, exk.design)
> rm(exk.design)
> exk.df

weight House Lev.f Lev.pro Type
1 6559 I 0 0 gnut
2 6292 II 0 0 gnut
3 7075 I 1 0 gnut
4 6779 II 1 0 gnut

.

.

.
24 6560 II 1 2 soy

> tapply(weight, list(exk.df$Lev.pro, exk.df$Type), mean)
gnut soy

0 6676.25 7452.25
1 6892.50 6960.75
2 6719.00 6623.50
> tapply(weight, list(exk.df$Lev.f, exk.df$Type), mean)

gnut soy
0 6536.500 6751.500
1 6988.667 7272.833
> tapply(weight, list(exk.df$Lev.f, exk.df$Lev.pro), mean)

0 1 2
0 6749.5 6594.50 6588.0
1 7379.0 7258.75 6754.5
> tapply(weight, list(exk.df$Lev.pro, exk.df$Lev.f, exk.df$Type),

mean)

, , gnut
0 1

0 6425.5 6927
1 6593.0 7192
2 6591.0 6847

, , soy
0 1

0 7073.5 7831.0
1 6596.0 7325.5
2 6585.0 6662.0

> Type.Lev.f <- factor(c(1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2,
+ 3, 3, 4, 4, 3, 3, 4, 4, 3, 3, 4, 4))
> postscript(file = "Fig5.1.ps", horizontal = F)
> interaction.plot(exk.df$Lev.pro, Type.Lev.f, weight,
+ xlab="Level of Protein")

## the legend in Chapter 5 is incorrect; see the Errata
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> dev.off()

Table 5.3 shows the analysis of variance, using interactions with
houses as the estimate of error variance. As usual, the summary
table for the analysis of variance includes calculation of F statis-
tics and associated p-values, whether or not these make sense in
light of the design. For example, the F statistic for the main effect
of houses does not have a justification under the randomization,
which was limited to the assignment of chicks to treatments. Indi-
vidual assessment of main effects and interactions via F -tests is also
usually not relevant; the main interest is in comparing treatment
means. As the design is fully balanced, model.tables provides a
set of cross-classified means, as well as the standard errors for their
comparison. The linear and quadratic contrasts for the three-level
factor level of protein are obtained first by defining protein as an
ordered factor, and then by using the split option to the analysis
of variance summary.

> exk.aov <- aov(weight~Lev.f*Lev.pro*Type+House, data = exk.df)
> summary(exk.aov)

Df Sum Sq Mean Sq F value Pr(>F)
Lev.f 1 1421553 1421553 31.7414 0.0001524 ***
Lev.pro 2 636283 318141 7.1037 0.0104535 *
Type 1 373751 373751 8.3454 0.0147366 *
House 1 708297 708297 15.8153 0.0021705 **
Lev.f:Lev.pro 2 308888 154444 3.4485 0.0687641 .
Lev.f:Type 1 7176 7176 0.1602 0.6966078
Lev.pro:Type 2 858158 429079 9.5808 0.0038964 **
Lev.f:Lev.pro:Type 2 50128 25064 0.5596 0.5868633
Residuals 11 492640 44785
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

> model.tables(exk.aov, type = "mean", se = T)

Tables of means Grand mean

6887.375

Lev.f
Lev.f

0 1
6644 7131

. . .
Standard errors for differences of means

Lev.f Lev.pro Type House Lev.f:Lev.pro Lev.f:Type
86.4 105.8 86.4 86.4 149.6 122.2

replic. 12 8 12 12 4 6
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Lev.pro:Type Lev.f:Lev.pro:Type
149.6 211.6

replic. 4 2

> options(contrasts = c("contr.poly", "contr.poly"))
> exk.aov2 <- aov(weight~Lev.f*Lev.pro*Type+House, data = exk.df)
> summary(exk.aov2, split = list(Lev.pro = list(1, 2)))

Df Sum Sq Mean Sq F value Pr(>F)
Lev.f 1 1421553 1421553 31.7414 0.0001524 ***
Lev.pro 2 636283 318141 7.1037 0.0104535 *

Lev.pro: C1 1 617796 617796 13.7946 0.0034167 **
Lev.pro: C2 1 18487 18487 0.4128 0.5337216

Type 1 373751 373751 8.3454 0.0147366 *
House 1 708297 708297 15.8153 0.0021705 **
Lev.f:Lev.pro 2 308888 154444 3.4485 0.0687641 .

Lev.f:Lev.pro: C1 1 214369 214369 4.7866 0.0511622 .
Lev.f:Lev.pro: C2 1 94519 94519 2.1105 0.1742169

Lev.f:Type 1 7176 7176 0.1602 0.6966078
Lev.pro:Type 2 858158 429079 9.5808 0.0038964 **

Lev.pro:Type: C1 1 759512 759512 16.9589 0.0017061 **
Lev.pro:Type: C2 1 98645 98645 2.2026 0.1658565

Lev.f:Lev.pro:Type 2 50128 25064 0.5596 0.5868633
Lev.f:Lev.pro:Type: C1 1 47306 47306 1.0563 0.3261338
Lev.f:Lev.pro:Type: C2 1 2821 2821 0.0630 0.8064476

Residuals 11 492640 44785
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

C.5.2 24−1 fractional factorial; Section 5.7

The data for the nutrition trial of Blot et al. (1993) is given in Table
5.9. Below we illustrate the analysis of the log of the death rate from
cancer, and the numbers of cancer deaths. The second analysis is
a reasonable approximation to the first as the numbers at risk are
nearly equal across treatment groups. Both these analyses ignore
the blocking information on sex, age and commune. Blot et al.
(1993) report the results in terms of the relative risk, adjusting
for the blocking factors; the conclusions are broadly similar. Here
we illustrate the oa.design function in the package DoE.base to
generate the design matrix. In the model formula the shorthand
.^ 2 denotes all main effects and two-factor interactions.
We illustrate the use of qqnorm.aov in the package gplots for

constructing a half-normal plot of the estimated effects from an aov

object. The function qqnorm.aov(aov.object, full=T) will pro-
duce a full-normal plot of the estimated effects, and effects other
than the grand mean can be omitted from the plot with the op-
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tion omit=. The effects are extracted from the aov object using
effects(aov-example), which in turn relies on the Q-R decom-
position; these are not equal to, but are proportional to, the effects
as defined as the average difference between the two levels.

> library(DoE.base) # for oa.design
> library(gplots) # for qqnorm.aov

> lohi <- c("0","1")
> fnames <- list(D=lohi,C=lohi,B=lohi,A=lohi)
> d <-oa.design(factor.names=fnames,nruns=8, nfactors=4,
+ nlevels=2,randomize=F)
> cancer.design <-cbind(d[,4],d[,3],d[,2],d[,1])
> cancer.design

A B C D
1 0 0 0 0
2 1 1 0 0
3 1 0 1 0

.

.

.
> death.c <- scan()
1: 107 94 121 101 81 103 90 95
9:
> mean(1/death.c)
[1] 0.01023017
> years <- scan()
1: 18626 18736 18701 18686 18745 18729 18758 18792
9:
> log.rates <- log(death.c/years)

# Below we analyse number of deaths from cancer and
# the log death rate; the latter is discussed in Section 5.7.

> logcancer.df<-data.frame(log.rates,cancer.design)
> logcancer.df

log.rates A B C D
1 -5.159485 -1 -1 -1 -1
2 -5.294907 1 1 -1 -1
3 -5.040542 1 -1 1 -1
4 -5.220409 -1 1 1 -1
5 -5.444233 1 -1 -1 1
6 -5.203099 -1 1 -1 1
7 -5.339566 -1 -1 1 1
8 -5.287310 1 1 1 1

> cancer.df <- data.frame(death.c, cancer.design)
> rm(lohi,death.c,log.rates,d,cancer.design)

> logcancer.aov <- aov(log.rates~.^2, data = logcancer.df)
> model.tables(logcancer.aov, type = "effects")
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Tables of effects
A

-1 1
0.018054 -0.018054

B
-1 1

0.0027375 -0.0027375

C
-1 1

-0.026737 0.026737

D
-1 1

0.06986 -0.06986

A:B
B

A -1 1
-1 -0.021623 0.021623
1 0.021623 -0.021623

A:C
C

A -1 1
-1 0.07609 -0.07609
1 -0.07609 0.07609

A:D
D

A -1 1
-1 -0.029165 0.029165
1 0.029165 -0.029165

> cancer.aov <- aov(death.c~.^2, data = cancer.df)
> model.tables(cancer.aov, type = "effects")

Tables of effects
A

-1 1
1.25 -1.25

B
-1 1

0.75 -0.75

C
-1 1

-2.75 2.75

D
-1 1

6.75 -6.75
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A:B
B

A -1 1
-1 -2.5 2.5
1 2.5 -2.5

A:C
C

A -1 1
-1 7.5 -7.5
1 -7.5 7.5

A:D
D

A -1 1
-1 -3 3
1 3 -3

> qqnorm(logcancer.aov, label = TRUE) # plot half-normal quantitle
# then save it as FigC.1.ps

> mean(1/death.c)
[1] 0.01023017

C.5.3 Exercise 5.5: flour milling

This example is adapted from Tuck, Lewis and Cottrell (1993);
that article provides a detailed case study of the use of response
surface methods in a quality improvement study in the flour milling
industry. A subset of the full data from the article’s experiment I
is given in Table 5.11. There are six factors of interest, all quanti-
tative, labelled A through F and coded −1 and 1. The experiment
forms a one-quarter fraction of a 26 factorial. The complete data
included a further 13 runs taken at coded values for the factors
arranged in what is called in response surface methodology a cen-
tral composite design. Below we construct the fractional factorial
by specifying the defining relations as an optional argument to
ffDesMatrix.

> library(BHH2)
> M <- ffDesMatrix(6, gen = list(c(5, 1, 2, 3), c(6, 2, 3, 4)))

## A 2^(6-2) factorial design, with
## the alias structure 5=123 and 6=234;
## we label these acccording to Table 5.11

> A <- factor(M[, 4])
> B <- factor(M[, 3])
> C <- factor(M[, 2])
> D <- factor(M[, 6])



294 COMPUTATIONAL ISSUES

Figure C.1 Half normal plots of estimated effects: cancer mortality in
Linxiang nutrition trial. Aliased effects are automatically omitted. These
“estimated effects” are proportional to, but not equal to, effects as defined
in the text.

> E <- factor(M[, 1])
> F <- factor(M[, 5])

> flour.y <- scan()
1: 519 446 337 415 503 468 343 418 567 471 355 424
13: 552 489 361 425 534 466 356 431 549 461 354 427
25: 560 480 345 437 535 477 363 418 558 483 376 418
37: 551 472 349 426 576 487 358 434 569 494 357 444
49: 562 474 358 404 569 494 348 400 568 478 367 463
61: 551 500 373 462
65:
> flour.tmt <- rep(1:16, each = 4)
> flour.tmt
[1] 1 1 1 1 2 2 2 2 3 3 3 3 ...

> flour.tmt <- factor(flour.tmt)
> flour.day <- rep(1:4, 16)
> flour.day <- factor(flour.day)
> tapply(flour.y, flour.tmt, mean)

1 2 3 4 5 6 7 8 9
429.25 433.00 454.25 456.75 446.75 447.75 455.50 448.25 458.75
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10 11 12 13 14 15 16
449.50 463.75 466.00 449.50 452.75 469.00 471.50
> flour.ybar <- .Last.value

> flour.df <- data.frame(flour.ybar, A, B, C, D, E, F)
> flour.df

flour.ybar A B C D E F
1 429.25 -1 -1 -1 -1 -1 -1
2 433.00 -1 -1 -1 -1 1 1
3 454.25 -1 -1 1 1 -1 1
4 456.75 -1 -1 1 1 1 -1
5 446.75 -1 1 -1 1 -1 1
6 447.75 -1 1 -1 1 1 -1
7 455.50 -1 1 1 -1 -1 -1
8 448.25 -1 1 1 -1 1 1
9 458.75 1 -1 -1 1 -1 -1
10 449.50 1 -1 -1 1 1 1
11 463.75 1 -1 1 -1 -1 1
12 466.00 1 -1 1 -1 1 -1
13 449.50 1 1 -1 -1 -1 1
14 452.75 1 1 -1 -1 1 -1
15 469.00 1 1 1 1 -1 -1
16 471.50 1 1 1 1 1 1

> flour.aov <- aov(flour.ybar ~ A*B*C*D*E*F, data = flour.df)
> summary(flour.aov)

Df Sum Sq Mean Sq
A 1 745.97 745.97
B 1 55.32 55.32
C 1 866.57 866.57
D 1 197.75 197.75
E 1 0.10 0.10
F 1 23.16 23.16
A:B 1 25.63 25.63
A:C 1 0.19 0.19
B:C 1 32.35 32.35
A:E 1 0.10 0.10
B:E 1 0.003906 0.003906
C:E 1 0.10 0.10
D:E 1 1.72 1.72
A:B:E 1 39.85 39.85
A:C:E 1 25.63 25.63

> flour.aov2 <- aov(flour.y ~ flour.tmt + flour.day)
> summary(flour.aov2)

Df Sum Sq Mean Sq F value Pr(>F)
flour.tmt 15 8058 537 3.4284 0.0006867 ***
flour.day 3 324508 108169 690.3488 < 2.2e-16 ***
Residuals 45 7051 157
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

> model.tables(flour.aov, type = "effects")
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Tables of effects

A
-1 1

-6.828 6.828

B
-1 1

-1.8594 1.8594

C
-1 1

-7.359 7.359

D
-1 1

-3.516 3.516

E
-1 1

0.07812 -0.07812

F
-1 1

1.2031 -1.2031

A:B
B

A -1 1
-1 -1.2656 1.2656
1 1.2656 -1.2656

A:C
C

A -1 1
-1 0.10937 -0.10937
1 -0.10937 0.10937

B:C
C

B -1 1
-1 -1.4219 1.4219
1 1.4219 -1.4219

A:E
E

A -1 1
-1 -0.07813 0.07813
1 0.07813 -0.07813

B:E
E

B -1 1
-1 0.015625 -0.015625
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1 -0.015625 0.015625

C:E
E

C -1 1
-1 0.07812 -0.07812
1 -0.07812 0.07812

D:E
E

D -1 1
-1 -0.3281 0.3281
1 0.3281 -0.3281

A:B:E

, , E = -1
B

A -1 1
-1 -1.5781 1.5781
1 1.5781 -1.5781

, , E = 1
B

A -1 1
-1 1.5781 -1.5781
1 -1.5781 1.5781

A:C:E

, , E = -1
C

A -1 1
-1 -1.2656 1.2656
1 1.2656 -1.2656

, , E = 1
C

A -1 1
-1 1.2656 -1.2656
1 -1.2656 1.2656

C.6 Examples from Chapter 6

C.6.1 Split unit

The data for a split unit experiment are given in Table 6.9. The
structure of this example is identical to the split unit example in-
volving varieties of oats, originally given by Yates (1935), used as
an illustration by Venables and Ripley (2002, Chapter 6.7). Their
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discussion of split unit experiments emphasizes their formal simi-
larity to designs with more than one component of variance, such
as discussed briefly in Section 6.5. From this point of view the
subunits are nested within the whole units, and there is a special
modelling operator A/B to represent factor B nested within factor
A. Thus the result of

aov(y ~ temp * prep + Error(reps/prep))

is a list of aov objects, one of which is the whole unit analysis of
variance and another is the subunit analysis of variance. The sub-
unit analysis is implied by the model formula because the finest
level analysis, in our case “within reps”, is automatically com-
puted. As with unbalanced data, model.tables cannot be used
to obtain estimated standard errors, although it will work if the
model statement is changed to omit the interaction term between
preparation and temperature. Venables and Ripley (2002, Chapter
6.7) discuss the calculation of residuals and fitted values in models
with more than one source of variation.

> y <- scan()
1: 30 34 29 35 41 26 37 38 33 36 42 36
13: 28 31 31 32 36 30 40 42 32 41 40 40
25: 31 35 32 37 40 34 41 39 39 40 44 45
37:
Read 36 items
> prep <- factor(rep(1:3, times = 12))
> temp <- factor(rep(rep(1:4, each = 3), times = 3))
> days <- factor(rep(1:3, each = 12))
>
> split.df <- data.frame(days, temp, prep, y)
> rm(y, prep, temp, days)
> split.df

days temp prep y
1 1 1 1 30
2 1 1 2 34
3 1 1 3 29
4 1 2 1 35

...

> split.aov <- aov(y~temp*prep+Error(days/prep), data = split.df)
> summary(split.aov)

Error: days
Df Sum Sq Mean Sq F value Pr(>F)

Residuals 2 77.556 38.778

Error: days:prep
Df Sum Sq Mean Sq F value Pr(>F)

prep 2 128.389 64.194 7.0781 0.04854 *
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Residuals 4 36.278 9.069
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Error: Within
Df Sum Sq Mean Sq F value Pr(>F)

temp 3 434.08 144.69 36.4266 7.449e-08 ***
temp:prep 6 75.17 12.53 3.1538 0.02711 *
Residuals 18 71.50 3.97
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

> model.tables(split.aov, type = "mean")

Tables of means

Grand mean 36.02778

temp
1 2 3 4

31.22 34.56 37.89 40.44

prep
1 2 3

35.67 38.50 33.92

temp:prep
prep

temp 1 2 3
1 29.67 33.33 30.67
2 34.67 39.00 30.00
3 39.33 39.67 34.67
4 39.00 42.00 40.33

# calculate errors by hand

# use whole plot error for prep;
# prep means are averaged over 12 observations
> sqrt(2*9.069/12)
[1] 1.229431

# use subplot error for temp;
# temp means are averaged over 9 observations
> sqrt(2*3.97/9) observations[1] 0.9392669

# use subplot error for temp:prep;
# these means are averaged over 3 observations
> sqrt(2*3.97/3)
[1] 1.626858
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C.6.2 Wafer experiment; Section 6.7.2

There are six controllable factors and one noise factor. The design
is a split plot with the noise factor, over-etch time, the sub plot
treatment. Each subplot is an orthogonal array of 18 runs with six
factors each at three levels. Tables of such arrays are available from
the function oa.design.
The F -value and p-value have been deleted from the output, as

the main effects of the factors should be compared using the whole
plot error, and the interactions of the factors with OE should be
compared using the subplot error. These two error components are
not provided using the split plot formula, as there is no replication
of the whole plot treatment. One way to extract them is to specify
the model with all estimable interactions, and pool the appropriate
(higher order) ones to give an estimate of the residual mean square.
> library(DoE.base)
> elect1 <- oa.design(L18, randomize=F, columns=c(2:7))
> elect1

A B C D E F
1 1 1 1 1 1 1
2 1 2 2 2 2 2
3 1 3 3 3 3 3
4 2 1 1 2 2 3
5 2 2 2 3 3 1

...
18 3 3 2 1 2 3
class=design, type= oa

> OE <- factor(rep(c(1,2), each=18))
> elect.design <- cbind(elect1, OE)
Warning message:
In data.frame(..., check.names = FALSE) :

row names were found from a short variable and have been discarded
> elect.design

A B C D E F OE
1 1 1 1 1 1 1 1
2 1 2 2 2 2 2 1
3 1 3 3 3 3 3 1

...
35 3 2 1 3 1 2 2
36 3 3 2 1 2 3 2

> y <- scan()
1: 4750 5444 5802 6088 9000 5236 12960 5306 9370 4942
11: 5516 5084 4890 8334 10750 12508 5762 8692 5050 5884
21: 6152 6216 9390 5902 12660 5476 9812 5206 5614 5322
31: 5108 8744 10750 11778 6286 8920
37:
Read 36 items
>
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> elect.df <- data.frame(y,elect.design)
> rm(y,elect1,elect.design,OE)
> elect.df

y A B C D E F OE
1 4750 1 1 1 1 1 1 1
2 5444 1 2 2 2 2 2 1
3 5802 1 3 3 3 3 3 1
4 6088 2 1 1 2 2 3 1

. . .
35 6286 3 2 1 3 1 2 2
36 8920 3 3 2 1 2 3 2

> rm(y, A, B, C, D, E, F, OE)

> elect.aov <- aov(y~(A+B+C+D+E+F)+OE+OE*(A+B+C+D+E+F), data = elect.df)
> summary(elect.aov)

Df Sum Sq Mean Sq
A 2 84082743 42041371
B 2 6996828 3498414
C 2 3289867 1644933
D 2 5435943 2717971
E 2 98895324 49447662
F 2 28374240 14187120
OE 1 408747 408747
A:OE 2 112170 56085
B:OE 2 245020 122510
C:OE 2 5983 2991
D:OE 2 159042 79521
E:OE 2 272092 136046
F:OE 2 13270 6635
Residuals 10 4461690 446169
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

> summary(elect.aov,split=list( A=list(1,2), B=list(1,2),C=list(1,2),
+ D=list(1,2), E=list(1,2),F=list(1,2)))

Df Sum Sq Mean Sq
A 2 84082743 42041371

A: C1 1 590422 590422
A: C2 1 83492321 83492321

B 2 6996828 3498414
B: C1 1 6991307 6991307
B: C2 1 5521 5521

C 2 3289867 1644933
C: C1 1 3275947 3275947
C: C2 1 13920 13920

D 2 5435943 2717971
D: C1 1 702903 702903
D: C2 1 4733040 4733040

E 2 98895324 49447662
E: C1 1 42438 42438
E: C2 1 98852886 98852886

F 2 28374240 14187120
F: C1 1 1572947 1572947
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F: C2 1 26801293 26801293
OE 1 408747 408747
A:OE 2 112170 56085

A:OE: C1 1 35556 35556
A:OE: C2 1 76614 76614

B:OE 2 245020 122510
B:OE: C1 1 70939 70939
B:OE: C2 1 174081 174081

C:OE 2 5983 2991
C:OE: C1 1 523 523
C:OE: C2 1 5460 5460

D:OE 2 159042 79521
D:OE: C1 1 133300 133300
D:OE: C2 1 25741 25741

E:OE 2 272092 136046
E:OE: C1 1 50139 50139
E:OE: C2 1 221953 221953

F:OE 2 13270 6635
F:OE: C1 1 12429 12429
F:OE: C2 1 840 840

Residuals 10 4461690 446169
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

> summary(aov(y~A*B*C*D*E*F*OE, data = elect.df))
Df Sum Sq Mean Sq

A 2 84082743 42041371
B 2 6996828 3498414
C 2 3289867 1644933
D 2 5435943 2717971
E 2 98895324 49447662
F 2 28374240 14187120
OE 1 408747 408747
A:B 2 229714 114857
B:C 2 3001526 1500763
B:E 1 1175056 1175056
A:OE 2 112170 56085
B:OE 2 245020 122510
C:OE 2 5983 2991
D:OE 2 159042 79521
E:OE 2 272092 136046
F:OE 2 13270 6635
A:B:OE 2 2616 1308
B:C:OE 2 49258 24629
B:E:OE 1 3520 3520

> (229714+3001526+1175056)/5 # (AB+BC+BE)/5
[1] 881259.2
> (2616+49258+3520)/5 # (A:B:OE+B:C:OE+B:E:OE)/5
[1] 11078.8
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C.7 Bibliographic notes

The definitive guide to statistical analysis with S-PLUS/R is Ven-
ables and Ripley (2002), now in its fourth edition. See also the
book web page
http://www.stats.ox.ac.uk/pub/MASS4/

A detailed discussion of contrasts for fitting and partitioning sums
of squares is given in Chapter 6.2, and analysis of structured de-
signs is outlined in Chapter 6.7 and 6.8. Models with several com-
ponents of variation are discussed in Chapter 6.11 and current
releases of R include the nlme package for fitting mixed effects
models.
The R web site

http://cran.r-project.org/web/views/ExperimentalDesign.html

lists a number of packages for experimental design and analysis of
data from designed experiments with a wealth of related useful
links.
Faraway’s‖ Practical Regression and Anova using R (2002), gives

a readable introduction to R with examples of the analysis of struc-
tured designs in Chapter 16. Another helpful reference is An R

companion to ”Experimental Design” by Vikneswaran,∗∗ a com-
panion to Berger & Maurer.††

‖ cran.r-project.org/doc/contrib/Faraway-PRA.pdf
∗∗ http://cran.r-project.org/doc/contrib/Vikneswaran-ED_companion.pdf
†† Berger, P.D. and Maurer, E. (2002). Experimental Design with Applications

in Management, Engineering and the Sciences, Duxbury Press, Belmont.
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