Notes
e

» No class this Friday or next Friday

» No office hours next Thursday or Friday

» HW 3 coming on Mar 16, due last day of classes
» project due 1 week after last day of classes
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Tree-based methods (§9.2)

>
>
>

§9.2.1, 9.2.2 regression trees (y is continuous)
formalism: f(x) = SM_, cml{x € Rm}

Rm is a subspace of RP obtained by partitioning the
feature space using binary splits

if Rm is fixed, then the optimal choice of ¢, to minimize
> {yi —f(x)}? is justave(y; | i € Rm)

trees are ‘grown’ in a greedy fashion, starting with any
node and finding the variable to spliton X;, j=1,...,p
and the split point s

to minimize squared error after splitting

. . o 2 . o 2
min min > (yi—c)?+min > (¥ - c2)
Xi€R1(j,8) Xi€R2(j,8)

R1(j,s) = {X | X; < s}, R2(j,8) = {X | Xj > s}
€1 = avely;i | xi € Ri(j,s)}, €, =avely;|x € Rz(j,s)}
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Tree-based methods (§9.2)

» trees are grown to be quite large and then pruned, using a
cost-complexity criterion

Co(T) =T NmQm(T) +o|T|  (9.16)

Qm(T) = ﬁ ineRm(yi - ém)27 Cm = ﬁ ineRm Yi

|T| is number of terminal nodes

C.(T) trades off fit to data Qn, and tree size T

For each « there is a pruning strategy

Choose a by 5 or 10 fold CV

see Figure 9.5 for a classification tree

more on trees and MARS on March 16

vV vV VvV VvV VvV VvV VY
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Projection pursuit regression (§11.2)

» response Y, inputs X = (Xq,...,Xp)

» model f(X)=E(Y | X)orf(X)=pr(Y =1]|X)or
fic(X) = pr(Y =k | X)

» PPR model f(X) = SM_, gm(whX) = 3 gm(Vm), say

» gm are 'smooth’ functions, as in generalized additive

models
» Vm = wl X are derived variables: the projection of X onto

» see Figure 11.1

> as gn are nonlinear (in general), we are forming nonlinear
functiosn of linear combinations

» as M — oo, 3 gm(wh X) can get arbitrarily close to any
continuous function on RP

» if M = 1 a generalization of linear regression
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PPR fitting

» training data (X,y;), i=1,...,N
N M
min Y {yi — Y glwnx))?

{gmwm} {77 m=1
» M =1:fixw, formvi =w'x,i=1,...,N
» solve for g using a regression smoother — kernel, spline,

| oess, etc.

» given g, estimate w by weighted least squares of a derived

variable z; on x; with weights g3(w x;) and no constant
term

uses a simple linear approximation to g(-) (see note)

if M > 1 add in each derived input one at a time

vy
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> training data (x,.y). i =1,...,N

L—pPR fitting

-
» if M > 1add in each derived input o

9w ) ~ g(woXi) + 9’ (wo Xi ) (w — wo) "X

{yi—9w™x)}? = {yi—do— go(w —wo) % }?

= (gh)? ;— - % — (W= wo)Tx )2
0 0

o 2
= (9p)° {ngi - (y' g,go) —wai}
0

weight derived response (target)




PPR implementation

>
>

a smoothing method that provides derivatives is convenient
possible to put in a backfitting step to improve gn,’s after all
M are included; possible as well to refit the wn,

M is usually estimated as part of the fitting

provided in MASS library as ppr : fits Mmax terms and drops
least effective term and refits, continues down to M terms:
both M and Mpax provided by the user

ppr also accommodates more than a single response Y ;
see help file and VR p.280

difficult to interpret results of model fit, but may give good
predictions on test data

PPR is more general than GAM, because it can
accommodate interactions between features: eg.

X1Xz = {(X1 +X2)? — (X1 — X2)?}/4

the idea of ‘important’ or ‘interesting’ projections can be
used in other contexts to reduce the number of features, in
classification and in unsupervised learning, for example
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Neural networks (§11.3)

v vvyyvyy

vvyyy

inputs Xq,...,Xp

derived inputs Z, ..., Zy (hidden layer)

output (response) Yq,..., Yk

usual regression has K = 1; classification has
(Y1,...,Yx)=(0,...,1,0,...)

also can accommodate multivariate regression with several
outputs

derived inputs Zy, = o(agm + o) X) for some choice o(-)
output Yy = fx(X) = 9k (Bok + BEZ) for some choice gi(+)
Bok + B Z called the kth target, Ty

o(v) called an activation function, usually chosen to be
logistic 1/(1 + e~") (sigmoid)

in regression gx would usually be the identity function, in

classification logistic
el

in K-class classification usually use gx(T) = XzKiT
e'k
=1
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Neural networks (§11.3)

connection to PPR: "M _ gm(whX)

Vi — Zm = o(aom + o X)

Om — Zmzl BrkmZm

i.e. gm(Vm) replaced by Bmo(aom + af X)

smooth functions are less flexible, but may have many
derived Z’s

» note that the intercept terms agm and Gox could be
absorbed into the general expression by including an input
of 1, and a hidden layer input of 1; these are called ‘bias
units’

vV v.v. v Yy
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NN fitting (§11.4)

» need to estimate (aom,am),m=1,...,M M(p +1)
and (ﬂ0k7ﬂk)7k:l7...K K(M+1)

» loss function R(#); 6 = (aom, am, Bok, Bk ) to be minimized,;
regularization needed to avoid overfitting

» loss function would be least squares in regression setting,
e.g.

Z Z{yu k(Xi )}

k=1i=1
» for classification could use cross-entropy

N K
ZZ Yik |ngk XI

i=1 k=1

» the parameters o and 3 called (confusingly) weights, and
regularization is called weight decay
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Back propogation

» data (yik,Xi),i =1,....,N;k =1,...,K: let
Zmi = U(a0m +a1r.;1Xi) and Zi = (Zlia"'azmi)

> fi(X) = gk (Bok + Bf Z) : Zm = o(com + amX)
> R(0) = SN SR {yik — fk(x)}2 = S Ri(9), say

OR; /
D —2{yi — f (X))} 0y (B¢ Zi)Zmi
R, <
dome —2> {yic — fic (%) 19k (B 23) B (com i )i
m k=1

at each iteration use 9R /906 to guide choice to next point
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Back propogation

N
OR;
ﬂlEH_l) _ B(r) Z i
" i=1 8@&2
N
OR
552” = (r) - Z (rl)
i=1 8am£
i = — (Yik — fi (%)) 9k (Be Zi)
Smi = —2 Z{ylk - fk }gk(ﬁk Z )ﬂkmg (amx )
Smi = o' (amX) Zﬁkmcski (11.15)

use current estimates to get fi (x;)
compute dy; and hence sy, from (11.15)

Eut these into $11'132
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2005-03-10

L Back propogation

— 13} (372 (0%

fimbs (1115)

use curtent estimates 10 get fy(x)
compute fy and hence sr from (11.15)
put these into (11.13)

e the coefficients (ame, Bim) are usually called weights

e the algorithm is called back propogation or the §-rule

e can be computed in time linear in the number of hidden units
e can be processed one instance (case) at a time

e any continuous function can be represented this way (with
enough Z’s)



Training NNs (§11.5)

» with small apy, o(v) ~ v; large linear regression
» if algorithm stops early, am, still small; fit ‘nearly’ linear or

vV v.v Y

shrunk towards a lienar fit

use penalty as in ridge regression to avoid overfitting

min  R(0) + ()

I(0) = 3= Bim + X o

as in ridge regression need to scale inputs to mean 0, var
1 (at least approx.)

A called weight decay parameter; seems to be more crucial
than the number of hidden units

nnet in MASS library

> regression examples: §11.6, simulated, also cpus data

>

from MASS
classification examples: Figure 11.4 and Figures 2.1-4
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