
Notes

◮ No class this Friday or next Friday
◮ No office hours next Thursday or Friday
◮ HW 3 coming on Mar 16, due last day of classes
◮ project due 1 week after last day of classes

STA 450/4000 S: March 9 2005: , 1



Tree-based methods (§9.2)

◮ §9.2.1, 9.2.2 regression trees (y is continuous)
◮ formalism: f̂ (x) =

∑M
m=1 cm1{x ∈ Rm}

◮ Rm is a subspace of Rp obtained by partitioning the
feature space using binary splits

◮ if Rm is fixed, then the optimal choice of cm to minimize
∑

{yi − f (xi)}
2 is just ave(yi | xi ∈ Rm)

◮ trees are ‘grown’ in a greedy fashion, starting with any
node and finding the variable to split on Xj , j = 1, . . . , p
and the split point s

◮ to minimize squared error after splitting

min
j ,s



min
c1

∑

xi∈R1(j ,s)

(yi − c1)
2 + min

c2

∑

xi∈R2(j ,s)

(yi − c2)
2





◮ R1(j , s) = {X | Xj ≤ s}, R2(j , s) = {X | Xj > s}
◮ ĉ1 = ave{yi | xi ∈ R1(j , s)}, ĉ2 = ave{yi | xi ∈ R2(j , s)}

STA 450/4000 S: March 9 2005: , 2



Tree-based methods (§9.2)

◮ trees are grown to be quite large and then pruned, using a
cost-complexity criterion

◮ Cα(T ) =
∑|T |

m=1 NmQm(T ) + α|T | (9.16)
◮ Qm(T ) = 1

Nm

∑

xi∈Rm
(yi − ĉm)2, ĉm = 1

Nm

∑

xi∈Rm
yi

◮ |T | is number of terminal nodes
◮ Cα(T ) trades off fit to data Qm and tree size T
◮ For each α there is a pruning strategy
◮ Choose α by 5 or 10 fold CV
◮ see Figure 9.5 for a classification tree
◮ more on trees and MARS on March 16

STA 450/4000 S: March 9 2005: , 3



Projection pursuit regression (§11.2)

◮ response Y , inputs X = (X1, . . . , Xp)

◮ model f (X ) = E(Y | X ) or f (X ) = pr(Y = 1 | X ) or
fk (X ) = pr(Y = k | X )

◮ PPR model f (X ) =
∑M

m=1 gm(ωT
mX ) =

∑

gm(Vm), say
◮ gm are ’smooth’ functions, as in generalized additive

models
◮ Vm = ωT

mX are derived variables: the projection of X onto
ωm = (ωm1, . . . , ωmp), with ||ωm|| = 1

◮ see Figure 11.1
◮ as gm are nonlinear (in general), we are forming nonlinear

functiosn of linear combinations
◮ as M → ∞,

∑

gm(ωT
mX ) can get arbitrarily close to any

continuous function on Rp

◮ if M = 1 a generalization of linear regression

STA 450/4000 S: March 9 2005: , 4



PPR fitting

◮ training data (xi , yi ), i = 1, . . . , N

min
{gm,ωm}

N
∑

i=1

{yi −

M
∑

m=1

g(ωT
mxi)}

2

◮ M = 1: fix ω, form vi = ωT xi , i = 1, . . . , N
◮ solve for g using a regression smoother – kernel, spline,
loess, etc.

◮ given g, estimate ω by weighted least squares of a derived
variable zi on xi with weights g2

0(ωT
0 xi) and no constant

term
◮ uses a simple linear approximation to g(·) (see note)
◮ if M > 1 add in each derived input one at a time

STA 450/4000 S: March 9 2005: , 5



◮ training data (xi , yi), i = 1, . . . , N

min
{gm,ωm}

N
∑

i=1

{yi −

M
∑

m=1

g(ωT
mxi)}

2

◮ M = 1: fix ω, form vi = ωT xi , i = 1, . . . , N
◮ solve for g using a regression smoother – kernel, spline,
loess, etc.

◮ given g, estimate ω by weighted least squares of a derived
variable zi on xi with weights g2

0(ωT
0 xi) and no constant

term
◮ uses a simple linear approximation to g(·) (see note)
◮ if M > 1 add in each derived input one at a time

20
05

-0
3-

10
PPR fitting

g(ωT xI) ≃ g(ωT
0 xi) + g′(ωT

0 xi)(ω − ω0)
T xi

{yi − g(ωT xi)}
2 = {yi − g0 − g′

0(ω − ω0)
T xi}

2

= (g′

0)
2{

yi

g′

0
−

g0

g′

0
− (ω − ω0)

T xi}
2

= (g′

0)
2
{

ωT
0 xi +

(

yi − g0

g′

0

)

− ωT xi

}2

weight derived response (target)



PPR implementation

◮ a smoothing method that provides derivatives is convenient
◮ possible to put in a backfitting step to improve gm’s after all

M are included; possible as well to refit the ωm
◮ M is usually estimated as part of the fitting
◮ provided in MASS library as ppr: fits Mmax terms and drops

least effective term and refits, continues down to M terms:
both M and Mmax provided by the user

◮ ppr also accommodates more than a single response Y ;
see help file and VR p.280

◮ difficult to interpret results of model fit, but may give good
predictions on test data

◮ PPR is more general than GAM, because it can
accommodate interactions between features: eg.
X1X2 = {(X1 + X2)

2 − (X1 − X2)
2}/4

◮ the idea of ‘important’ or ‘interesting’ projections can be
used in other contexts to reduce the number of features, in
classification and in unsupervised learning, for example

STA 450/4000 S: March 9 2005: , 7



Neural networks (§11.3)

◮ inputs X1, . . . , Xp
◮ derived inputs Z1, . . . , ZM (hidden layer)
◮ output (response) Y1, . . . , YK
◮ usual regression has K = 1; classification has

(Y1, . . . , YK ) = (0, . . . , 1, 0, . . . )
◮ also can accommodate multivariate regression with several

outputs
◮ derived inputs Zm = σ(α0m + αT

mX ) for some choice σ(·)
◮ output Yk = fk (X ) = gk(β0k + βT

k Z ) for some choice gk(·)
◮ β0k + βT

k Z called the k th target, Tk
◮ σ(v) called an activation function, usually chosen to be

logistic 1/(1 + e−v ) (sigmoid)
◮ in regression gk would usually be the identity function, in

classification logistic

◮ in K -class classification usually use gk(T ) =
eTk

∑K
ℓ=1 eTk

STA 450/4000 S: March 9 2005: , 8



Neural networks (§11.3)

◮ connection to PPR:
∑M

m=1 gm(ωT
mX )

◮ Vm → Zm = σ(α0m + αT
mX )

◮ gm →
∑M

m=1 βkmZm

◮ i.e. gm(Vm) replaced by βmσ(α0m + αT
mX )

◮ smooth functions are less flexible, but may have many
derived Z ’s

◮ note that the intercept terms α0m and β0k could be
absorbed into the general expression by including an input
of 1, and a hidden layer input of 1; these are called ‘bias
units’

STA 450/4000 S: March 9 2005: , 9



NN fitting (§11.4)

◮ need to estimate (α0m, αm), m = 1, . . . , M M(p + 1)
and (β0k , βk ), k = 1, . . . K K (M + 1)

◮ loss function R(θ); θ = (α0m, αm, β0k , βk ) to be minimized;
regularization needed to avoid overfitting

◮ loss function would be least squares in regression setting,
e.g.

K
∑

k=1

N
∑

i=1

{yij − fk (xi )}
2

◮ for classification could use cross-entropy

N
∑

i=1

K
∑

k=1

yik log fk (xi)

◮ the parameters α and β called (confusingly) weights, and
regularization is called weight decay

STA 450/4000 S: March 9 2005: , 10



Back propogation

◮ data (yik , xi), i = 1, . . . , N, k = 1, . . . , K : let
zmi = σ(α0m + αT

mxi) and zi = (z1i , . . . , zmi )

◮ fk (X ) = gk (β0k + βT
k Z ) : Zm = σ(α0m + αT

mX )

◮ R(θ) =
∑N

i=1
∑K

k=1{yik − fk (xi)}
2 =

∑

Ri(θ), say

∂Ri

∂βkm
= −2{yik − fk (xi)}g′

k (βT
k zi)zmi

∂Ri

∂αmℓ

= −2
K

∑

k=1

{yik − fk (xi)}g′
k (βT

k zi)βkmσ′(αT
mxi)xiℓ

at each iteration use ∂R/∂θ to guide choice to next point

STA 450/4000 S: March 9 2005: , 11



Back propogation

β
(r+1)
km = β

(r)
km − γr

N
∑

i=1

∂Ri

∂β
(r)
km

α
(r+1)
mℓ

= α
(r)
mℓ

− γr

N
∑

i=1

∂Ri

∂α
(r)
mℓ

δki = −2(yik − fk (xi ))g
′
k (βT

k zi)

smi = −2
K

∑

k=1

{yik − fk (xi)}g′
k (βT

k zi)βkmσ′(αT
mxi)

smi = σ′(αT
mxi)

K
∑

i=1

βkmδki (11.15)

use current estimates to get f̂k (xi)
compute δki and hence smi from (11.15)
put these into (11.13)

STA 450/4000 S: March 9 2005: , 12



β
(r+1)
km = β

(r)
km − γr

N
∑

i=1

∂Ri

∂β
(r)
km

α
(r+1)
mℓ = α

(r)
mℓ − γr

N
∑

i=1

∂Ri

∂α
(r)
mℓ

δki = −2(yik − fk (xi))g
′
k (βT

k zi)

smi = −2
K

∑

k=1

{yik − fk (xi)}g′
k (βT

k zi)βkmσ′(αT
mxi )

smi = σ′(αT
mxi)

K
∑

i=1

βkmδki (11.15)

use current estimates to get f̂k (xi )
compute δki and hence smi from (11.15)
put these into (11.13)

20
05

-0
3-

10
Back propogation

• the coefficients (αmℓ, βkm) are usually called weights

• the algorithm is called back propogation or the δ-rule

• can be computed in time linear in the number of hidden units

• can be processed one instance (case) at a time

• any continuous function can be represented this way (with
enough Z ’s)



Training NNs (§11.5)

◮ with small αmℓ, σ(v) ≃ v ; large linear regression
◮ if algorithm stops early, αmℓ still small; fit ‘nearly’ linear or

shrunk towards a lienar fit
◮ use penalty as in ridge regression to avoid overfitting
◮ min R(θ) + λJ(θ)

◮ J(θ) =
∑

β2
km +

∑

α2
mℓ

◮ as in ridge regression need to scale inputs to mean 0, var
1 (at least approx.)

◮ λ called weight decay parameter; seems to be more crucial
than the number of hidden units

◮ nnet in MASS library
◮ regression examples: §11.6, simulated, also cpus data

from MASS

◮ classification examples: Figure 11.4 and Figures 2.1-4

STA 450/4000 S: March 9 2005: , 14


	Notes
	Tree-based methods (§9.2)
	Projection pursuit regression (§11.2)
	PPR fitting
	PPR implementation
	Neural networks (§11.3)
	NN fitting (§11.4)
	Back propogation
	Training NNs (§11.5)

