Separating hyperplanes (§4.5)

- assume two classes only; change notation so that $y = \pm 1$
- use linear combinations of inputs to predict y

$$y = \begin{cases} -1 & \text{as } \beta_0 + x^T \beta < 0 \\ +1 & \beta_0 + x^T \beta > 0 \end{cases}$$

► misclassification error D(β, β₀) = −Σ_{i∈M}y_i(β₀ + x_i^Tβ) where

$$\blacktriangleright \mathcal{M} = \{j; y_j(\beta_0 + x_j^T \beta) < 0\}$$

- note that $D(\beta) > 0$ and proportional to the 'size' of $\beta_0 + x_i^T \beta$
- ► Can show that an algorithm to minimize D(β, β₀) exists and converges to the plane that separates y = +1 from y = −1 if such a plane exists
- But it will cycle if no such plane exists and be very slow if the 'gap' is small

Separating hyperplanes (§4.5)

- Also if one plane exists there is likely many (Figure 4.13)
- The plane that defines the "largest" gap is defined to be "best"
- can show that this needs to

$$\min_{\beta_0,\beta}\frac{1}{2}||\beta||^2$$

s.t. $y_i(\beta_0 + x_i^T \beta) \ge 1, \quad i = 1, ..., N$ (4.44)

- See Figure 4.15
- the points on the edges (margin) of the gap called support points or support vectors; there are typically many fewer of these than original points
- this is the basis for the development of Support Vector Machines (SVM), more later
- sometimes add features by using basis expansions; to be discussed first in the context of regression (Chapter 5)

Support vector machines (§12.2, 12.3)

- ▶ plane in R^p defined by $f(\underline{x}) = \beta_0 + \underline{\beta}^T \underline{x} = 0$
- ► call this plane *L*
 - 1. For any $x_0 \in \mathcal{L}, \beta_0 = -\beta^T x_0$
 - 2. if $x_1, x_2 \in \mathcal{L}$ then $\beta^T(x_1 x_2) = 0$, i.e. $\beta \perp (x_1 x_2)$, i.e. $\frac{\beta}{||\beta||} \perp \mathcal{L}$
 - 3. If $x \in R^p$ the distance to the closest point in \mathcal{L} , x_0 , say, is

$$\frac{\beta^{T}}{||\beta||}(x-x_{0}) = \frac{\beta^{T}x+\beta_{0}}{||\beta||} = \frac{f(x)}{||\beta||}$$

- a perceptron returns sign $(\beta_0 + \beta^T x)$
- The perceptron learning algorithm tries to find L by minimizing the number of misclassifications

$$\min D(\beta,\beta_0) = -\sum_{i\in\mathcal{M}} y_i(x_i^T + \beta_0)$$

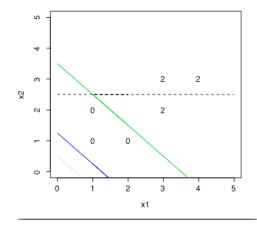
- Algorithm based on derivatives of D: visit points in M in some order
- update using

$$\begin{pmatrix} \beta^{(t)} \\ \beta^{(t)}_{0} \end{pmatrix} = \begin{pmatrix} \beta^{(t-1)} \\ \beta^{(t-1)}_{0} \end{pmatrix} + \rho \begin{pmatrix} y_{i} x_{i} \\ y_{i} \end{pmatrix}$$

- ρ called the learning rate
- if classes are linearly separable, this converges in a finite number of steps
- the separating hyperplane with the largest margin has

$$\max_{\beta,\beta_0,||\beta||=1} C \qquad s.t. \quad y_i(x_i^T\beta+\beta_0) > C \quad \forall i$$

Support vector machines (§12.2, 12.3)



Finding the optimal separating plane: a quadratic programming problem:

$\max_{\beta,\beta_0} C$	s.t	$. y_i(x_i^T\beta + \beta_0) \geq C \beta $
$\max \frac{C}{ \beta }$	s.t.	$y_i(x_i^T\beta + \beta_0) \ge C$
$\max \frac{1}{ \beta }$	s.t.	$y_i(x_i^Teta+eta_0)\geq 1$
$\min \beta $	s.t.	$y_i(x_i^T\beta+eta_0)\geq 1$
$\min \frac{1}{2} \beta ^2$	s.t.	$y_i(x_i^Teta+eta_0)\geq 1$

Allowing overlap:

$$\min ||\beta|| \quad s.t. \quad y_i(x_i^{\mathsf{T}}\beta + \beta_0) \ge 1 - \xi_i \quad \forall i \quad (12.7)$$

with

$$\xi_i \ge 0, \quad \sum \xi_i \le constant$$

- ξ_i called slack variables
- note equivalent to $y_i(x_i^T\beta + \beta_0) \ge C(1 \xi_i)$
- some points allowed to cross into the margin
- some points allowed to cross to the wrong side of the margin (see Figure 12.2)
- the number of $\xi_i > 1$ is the number of misclassified points
- ∑ ξ_i is the total proportional amount by which predictions
 are on the wrong side
- new optimization problem

$$\min_{\beta_0,\beta} \frac{1}{2} ||\beta||^2 + \gamma \sum_{i=1}^N \xi_i \quad s.t. \quad \xi_i \ge 0, \quad y_i(x_i^T \beta + \beta_0) \ge 1 - \xi_i$$

$$L_{P} = \frac{1}{2} ||\beta||^{2} + \gamma \sum_{i=1}^{N} \xi_{i} - \sum_{i=1}^{N} \alpha_{i} \{ y_{i}(x_{i}^{T}\beta + \beta_{0}) - (1 - \xi_{i}) \} - \sum_{i=1}^{N} \mu_{i} \xi_{i}$$

to be minimized over β, β₀, ξ_i: α_i, μ_i are Lagrange multipliers

$$\beta = \sum \alpha_i \mathbf{y}_i \mathbf{x}_i$$
$$\mathbf{0} = \sum \alpha_i \mathbf{y}_i$$
$$\alpha_i = \gamma - \mu_i, \quad \forall i$$

as well as positivity constraints on α_i , μ_i , ξ_j . Substitute into L_P :

$$L_D = \sum_{i=1}^N \alpha_i - \frac{1}{2} \sum_{i=1}^N \sum_{i'=1}^N \alpha_i \alpha_{i'} \mathbf{y}_i \mathbf{y}_{i'} \mathbf{x}_i^T \mathbf{x}_{i'}$$

to be maximized subject to $0 \le \alpha_i \le \gamma$ and $\sum_{i=1}^{N} \alpha_i y_i = 0$. plus

STA 450/4000 S: March 16 2005: ,

• the solution for β has the form

$$\hat{\beta} = \sum_{i=1}^{N} \hat{\alpha}_i \mathbf{y}_i \mathbf{x}_i$$

- ▶ i.e. linear combinations of x_i ($y_i = \pm 1$)
- ▶ only some of the â_i are nonzero: those where the lower bound is exact (12.14)
- these observations are called the support vectors
- Figure 12.2
- the "Bayes optimal" classifier is based on the exact posterior probabilities (unknown in general; this example is simulated data)

 use basis function expansions to create more flexible boundaries

•
$$f(x) = h(x)^T \beta + \beta_0$$

• new $L_D = \sum \alpha_i - \frac{1}{2} \sum \sum \alpha_i \alpha_{i'} y_i y_{i'} h(x_i)^T h(x_{i'})$

- ► solution looks like (12.20) $f(x) = \sum \alpha_i y_i < h(x), h(x_i) > +\beta_0$
- ► i.e. depends only on inner products; alternatively depends on h(·) only through its Kernel function K(x, x') =< h(x), h(x') >
 - polynomial: $(1 + \langle x, x' \rangle)^d$
 - radial basis: $\exp(-||x x'||^2/c)$
 - neural network $tanh(\kappa_1 < x, x' > +\kappa_2)$

Figure 12.3

►

another view of SVM: a penalization problem

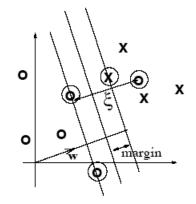
$$\min_{\beta_0,\beta} \sum \{1 - y_i f(x_i)\}_+ + \lambda ||\beta||^2$$

- λ corresponds to $1/(2\gamma)$
- Figure 12.4, Table 12.1
- The "kernelization" of the SVM algorithm means computations are easier; you specify a kernel function instead of (many many h's)
- ► But we want a sparse solution (many α_i = 0) to avoid overfitting
- kernelization can be applied to many algorithms (even ridge regression)
- see Lecture 13 for Sam Roweis' course on machine learning
- the SVM algorithm induces kernelization and sparsity simultaneously

Support Vector Machines

- A support vector machine (SVM) is nothing more than a kernelized maximum-margin hyperplane classifier.
- You train it by solving the dual quadratic programming problem.
- You run it by finding dot products of the test point with all the training cases.
- Easy!

Courtesy of Sam R (Lecture 13 CSC 2515)



svm {e1071}

R Documentatio

Support Vector Machines

Description

svm is used to train a support vector machine. It can be used to carry out general regression and classification (of nu and epsilon-type), as well as density-estimation. A formula interface is provided.

Usage

```
## S3 method for class 'formula':
svm(formula, data = NULL, ..., subset, na.action =
na.omit, scale = TRUE)
## Default S3 method:
svm(x, y = NULL, scale = TRUE, type = NULL, kernel =
"radial", degree = 3, gamma = 1 / ncol(as.matrix(x)), coef0 = 0, cost = 1, nu = 0.5
class.weights = NULL, cachesize = 40, tolerance = 0.001, epsilon = 0.1,
shrinking = TRUE, cross = 0, probability = FALSE, fitted = TRUE,
..., subset, na.action = na.omit)
```

Arguments

formula	a symbolic description of the model to be fit.
data	an optional data frame containing the variables in the model. By default the variables are taken from the environment which 'svm' is called from.
x	a data matrix, a vector, or a sparse matrix (object of class <u>matrix.csr</u> as provided by the package SparseM).
У	a response vector with one label for each row/component of x. Can be either a factor (for classification tasks) or a numeric vector (for regression).
scale	A logical vector indicating the variables to be scaled. If scale is of length 1, the value is recycled as many times as needed. Per default, data are scaled internally (both x and y

```
R : Copyright 2004, The R Foundation for Statistical Computing
Version 2.0.1 (2004-11-15), ISBN 3-900051-07-0
> library(MASS)
> library(e1071)
Loading required package: class
> 2977m
> data(cats)
> dim(cats)
[1] 144 3
> cats[1:3,]
  Sex Bwt Hwt
1 F 27.0
2 F 27.4
3 F 2 9.5
> ## this is a simple example taken from the help file for plot.svm
> ## Bwt is body weight in kg; Hwt is heart weight in g
> m <- svm(Sex~., data=cats)
> plot(m,cats)
> guartz()
> plot(cats$Hwt,cats$Bwt,pch=21, bq=c("red","green3")[unclass(cats$Sex)])
> ## we can now look at various components of m, including coefs, SV, index
```

- ► For more than 2 classes, do K(K 1)/2 pairwise comparisons and average (somehow)
- ► There is a regression version (§12.3.5,6); see Figure 12.6
- Remainder of Chapter 12 is more flexible versions of discriminant analysis; generalizing LDA (I'll skip this)
- New page 385 available from book web site