
Notes

I Homework 3 due on Wednesday, March 9
I Friday’s class for answering questions re homework
I No office hour this Friday
I HW 2, Question 2: don’t need (can’t) solve explicitly for β̂

I HW 2, Question 3: don’t need to divide into training and
test error

I HW 2, Question 4: I thought smoothing was on the β̂’s
(256 of them), but it is perhaps on the x ’s directly
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The curse of dimensionality (§2.5)

I “local” in R1 is quite different that local in Rp

I Example: suppose each feature variable is uniformly
distributed on (0, 1). If we want 10% of the sample in R1,
we need a window of length 0.1. In Rp, to get 10% of the
volume, we need a box with edge length 0.11/10 = 0.80, so
on each axis we need a window of length 0.8.

I Example: N data points uniformly distributed on a unit ball
in Rp. What is the distance to the nearest neighbour to the
origin? Median is

I (1− 0.51/N)1/p ≈ 0.52 if p = 10, N = 500.
I Figures 2.6 and 2.7
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Generalized additive models (§9.1)

I extend smoothing methods to p inputs, avoiding the curse
of dimensionality

I retain interpretation, computationally feasible
I a ‘linear’ additive model has the form

E(Y | X1, . . . , Xp) = µ(X ) = α +
∑p

j=1 fj(Xi)

I fj unspecified ‘smooth’ function, e.g. a smoothing spline, or
a kernel regression function

I a ‘generalized additive model’ has the form
g{µ(X )} = α +

∑p
j=1 fj(Xi)

I examples of g(·) are g(µ) = log{µ/(1− µ)} for binomial
proportions, g(µ) = log µ for Poisson data, etc. (builds on
generalized linear models as discussed in STA 410)
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Fitting ‘linear’ additive models (§9.1.1.)

I first constrain fj so that
∑N

i=1 fj(xij) = 0, j = 1, . . . , p
I penalized residual sum of squares∑N

i=1{yi − α−
∑p

j=1 fj(xij)}2 +
∑p

j=1 λj
∫

f ′′j (t)2dt
I backfitting: (Algorithm 9.1)

• α̂ = 1
N

∑N
i=1 yi , f̂j ≡ 0, j = 1, . . . , p

• cycle through j = 1, . . . , p, 1, . . . , p until convergence:

ŷi ←− yi − α̂−
p∑

k 6=j

f̂k (xik ) i = 1, . . . , N

f̂j ←− Sj(yi , xij)
N
i=1

f̂j ←− f̂j −
1
N

N∑
i=1

f̂j(xij)

I the last step to enforce the constraint in the presence of
roundoff error
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Fitting ‘linear’ additive models (§9.1.1.)

– replacement yi is the residual from the current fit
– fitting to the residuals is analogous to multiple regression by
successive partial regressions (§3.3)
– iteratively reweighted least squares used for logistic regression in
§4.4.1



Fitting ‘linear’ additive models (§9.1.1.)

I S is a cubic smoothing spline if we use penalized residual
sum of squares

I could in principle be any smoothing operation: e.g. natural
cubic spline or other regression spline, kernel regression
function, loess, etc.

I claim (p.260) solution is unique if (xij) matrix of full column
rank (theory project)

I can allow some terms to be ordinary linear regression
terms; no smoothing needed

I can (in principle) allow some terms to be smooth functions
of, e.g., pairs of inputs

I degrees of freedom for smoother Sj is dfj = trace(Sj)− 1,
where Sj is the N × N operator matrix (correctness of this
still open)

I for generalized additive models, goal is to maximize the
penalized log-likelihood, not minimize the penalized
residual sum of squares
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Additive logistic regression (§9.1.2)

I combine the iteratively reweighted least squares algorithm
for generalized linear models with Algorithm 9.1
(backfitting)

I model

log
Pr(Y = 1 | X )

Pr(Y = 0 | X )
= α + f1(X1) + · · ·+ fp(Xp)

• initialize: α̂ = log(ȳ)/(1− ȳ), where ȳ is sample mean
(proportion of 1’s); f̂j ≡ 0

I η̂i = α̂ +
P

j f̂j(xij), µ̂i = 1/{1 + exp(−µ̂i)}
I working variable zi = η̂i + yi−µ̂i

µ̂i (1−µ̂i )

I working weight ŵi = µ̂i(1 − µ̂i)
I use Alg. 9.1 to fit an additive model to zi with weights wi

• update η̂i and continue until convergence
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The package mgcv

> hr.gam <- gam(chd˜s(sbp)+s(tobacco)+s(ldl)+famhist+s(obesity)+s(alcohol)+s(age),family=binomial,data=hr)

> hr.gam$coef
(Intercept) famhistPresent s(sbp).1 s(sbp).2

-1.314442e+00 9.479920e-01 3.882599e-01 2.927006e-02
s(sbp).3 s(sbp).4 s(sbp).5 s(sbp).6

-2.103390e-02 9.864767e-03 -6.265013e-03 -2.081766e-03
s(sbp).7 s(sbp).8 s(sbp).9 s(sbp).10

3.421593e-03 2.544205e-04 -3.386699e-01 1.413812e-01
s(tobacco).1 s(tobacco).2 s(tobacco).3 s(tobacco).4
4.730698e-10 2.510070e-11 1.280031e-11 -2.759787e-11
s(tobacco).5 s(tobacco).6 s(tobacco).7 s(tobacco).8

-5.695848e-11 -8.963317e-12 -2.058901e-12 1.842881e-12
s(tobacco).9 s(tobacco).10 s(ldl).1 s(ldl).2

-4.983894e-10 3.713993e-01 5.901141e-08 -1.337292e-10
s(ldl).3 s(ldl).4 s(ldl).5 s(ldl).6

-7.556864e-09 8.533137e-10 -2.491124e-10 4.035828e-10
s(ldl).7 s(ldl).8 s(ldl).9 s(ldl).10

7.538201e-11 1.255975e-10 5.284967e-08 4.021833e-01
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The package mgcv

> hr.gam$sp
[1] 1.386301e+04 7.306222e+10 1.076798e+08 6.958563e+01 1.624067e+13
[6] 5.315837e+01

> plot.gam(hr.gam)

> hr.gam

Family: binomial
Link function: logit

Formula:
chd ˜ s(sbp) + s(tobacco) + s(ldl) + famhist + s(obesity) + s(alcohol) +

s(age)

Estimated degrees of freedom:
1.713315 1 1.000000 2.097546 1 3.984891 total = 12.79575

UBRE score: 0.02242598
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The package mgcv

I if estimated degrees of freedom near 1, then linear fit is
satisfactory (e.g. tobacco)

I if the plotted confidence band includes zero, then term is
not needed (e.g. alcohol)

I generalized cross-validation is used to estimate each
smoothing parameter (Wood, 2001)

I this is not exactly the same as the back-fitting algorithm
described in the text, but seems to be more reliable

I UBRE is a version of generalized cross-validation
recommended for binomial data

I from Wood (2001): if the GCV score drops when a term is
omitted, and the confidence band includes zero, then the
term is not needed in the model

I the default is 10 knots for a smooth term if unspecified
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The package mgcv

I each smooth can be specified as
• s(x): default 10 knots + penalty for smoothness
• s(x,k=5,fx=TRUE) or s(x,5|f): force 5 knots (4 df) for

x , no shrinkage permitted
• s(x,20): start with 20 knots (maximum 19 df), and choose

fewer by GCV
I the default basis is the thin plate basis; to get cubic

regression splines use argument bs="cr"
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The spam data (§9.1.2)

I example in text uses “spam” data from UC Irvine: 4601
instances, training set of size 3065 (indicators available on
web site)

I binary response (1=spam, 0= not spam), cubic splines, 4df
per predictor

I Table 9.1:

predicted class
true class email spam

email 58.5% 2.5%
spam 2.7 % 36.2%

I linear logistic regression has test error of 7.6%
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The spam data (§9.1.2)

I Table 9.2:

Name num. df coef se Z nonlinear
P-value

Positive effects

our 5 3.9 0.566 0.114 4.970 0.052
over 7 3.9 0.244 0.195 1.249 0.004

CAPMAX 56 3.8 0.247 0.228 1.080 0.000
CAPTOT 47 4.0 0.755 0.165 4.566 0.063

I see Figure 9.1
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Tree-based methods (§9.2)

I §9.2.1, 9.2.2 regression trees (y is continuous)
I formalism: f̂ (x) =

∑M
m=1 cm1{x ∈ Rm}

I Rm is a subspace of Rp obtained by partitioning the
feature space using binary splits

I if Rm is fixed, then the optimal choice of cm to minimize∑
{yi − f (xi)}2 is just ave(yi | xi ∈ Rm)

I trees are ‘grown’ in a greedy fashion, starting with any
node and finding the variable to split on Xj , j = 1, . . . , p
and the split point s

I to minimize squared error after splitting

min
j,s

min
c1

∑
xi∈R1(j,s)

(yi − c1)
2 + min

c2

∑
xi∈R2(j,s)

(yi − c2)
2


I R1(j , s) = {X | Xj ≤ s}, R2(j , s) = {X | Xj > s}
I ĉ1 = ave{yi | xi ∈ R1(j , s)}, ĉ2 = ave{yi | xi ∈ R2(j , s)}
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Tree-based methods (§9.2)

I trees are grown to be quite large and then pruned, using a
cos-complexity criterion

I Cα(T ) =
∑|T |

m=1 NmQm(T ) + α|T | (9.16)
I Qm(T ) = 1

Nm

∑
xi∈Rm

(yi − ĉm)2, ĉm = 1
Nm

∑
xi∈Rm

yi

I |T | is number of terminal nodes
I Cα(T ) trades off fit to data Qm and tree size T
I For each α there is a pruning strategy
I Choose α by 5 or 10 fold CV
I see Figure 9.5 for a classification tree
I more on trees and MARS on March 16
I next week neural networks (Ch 11)
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