
Models assessment and selection (Ch. 7)

I to see how well any of these smoothing methods work,
need a notion of ‘long-run’ performance

I e.g. if we assume Y = f (X ) + ε and our method gives f̂ (·)
based on (x1, yn), . . . , (xN , yN):
• Does f̂ (x0) → f (x0), N →∞? all x0?
• Is

√
n{f̂ (x0)− f (x0)} asymptotically normal? variance?

• Is Ef̂ (x0) = f (x0) ? ( unbiased?)
I assume we have a a loss function, i.e. a measure of

distance from Y to f̂ (X )

L(Y , f̂ (X )) = (Y − f̂ (X ))2

I Test error, generalization error:

Err = E [L{Y , f̂ (X )}]

over the distribution of Y , X , and f̂ .
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Models assessment and selection (Ch. 7)

• Test error: Err = EL{Y , f̂ (X )}:
f̂ (X ) = f̂ (X ; x1, y1, . . . , xN , yN) = f̂ (X , tN), say

• distribution of f̂ (X ) depends on distribution of X and tN
• Err = EX ,Y ,tN L{Y , f̂ (X )}



Models assessment and selection (Ch. 7)

I Training error: average loss in training sample
err = 1

N
∑N

i=1 L{yi , f̂ (xi)}
I As f̂ (·) becomes more complex, training error will decrease

(eventually to 0) but test error will increase, because f̂ (·)
fits observed data exactly
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Methods of estimating test error (§7.3)

I Test error at a fixed x0: Err (x0) = E [L{Y , f̂ (x0)}]
I depends on distribution of Y and f̂ (x0) = f̂ (x0; tN)

I under squared error loss

Err (x0) = σ2 + Bias2 f̂ (x0) + var f̂ (x0)

I Example: k -nearest neighbour estimate
f̂ (x0) = 1

k
∑N

i=1 yi1{xi ∈ Nk (x0)}
I Ef̂ (x0) = 1

k
∑

E [yi1{xi ∈ Nk (x0)}]
I assume xi are fixed

= 1
k

∑N
i=1 E(yi)1{xi ∈ Nk (x0)} = 1

k
∑k

`=1 f (x(`))

I var f̂ (x0) = σ2/k
I see Eq. (7.9) ; note have assumed training xi are fixed
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Methods of estimating test error (§7.3)

I Example: linear regression: f̂ (x0) = xT
0 β̂

I var̂f (x0) = var(xT
0 β̂) = varxT

0 {(X T X )−1X T y} where X and
y refer to training data

I = var(aT y), say,
= σ2aT a = σ2||a||2 = σ2||x0(X T X )−1X T x0||2 = σ2||h(x0)||2

I note have assumed training xi are fixed
I Err(x0) = σ2 + Bias2 f̂ (x0) + σ2||h(x0)||2

I a rough guide to Err(x0) is
1
N

∑
Err(xi) = σ2 + 1

N
∑
{f (xi)− Ef̂ (xi)}2 + σ2p/N

I shows that Err increases as p increases
I similarly for ridge regression

Err(x0) = σ2 + Bias2 f̂ ridge(x0) + σ2||hridge(x0)||2

I hridge(x0) = xT
0 (X T X + λI)−1x0
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Methods of estimating test error (§7.3)

I §7.3 and 7.4 discuss instead the estimation of “in-sample
error”, not quite the same as test error

I Errin = 1
N

∑N
i=1 EyEY new [L{Y new

i , f̂ (xi)}]
I test values Y new

i observed at training points xi

I Claim Errin = Eyerr + (2/N)
∑N

i=1 cov(ŷi , yi) (7.18)
I For squared error loss, a vague sketch

err =
1
N

∑
(yi − ŷi)

2

=
1
N

∑
(yi − f (xi) + f (xi)− ŷi)

2

=
1
N

∑
(yi − f (xi))

2 +
1
N

∑
{ŷi − f (xi)}2

− 2
N

∑
{yi − f (xi)}{ŷi − f (xi)}
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Methods of estimating test error (§7.3)

I If ŷ = Sy , where S has d degrees of freedom, then∑
cov(ŷi , yi) = dσ2

I Errin = Eyerr + 2
N dσ2

I Errin relevant for model selection, and easier to analyse
than Err

I Estimating Errin: for example err + 2
N dσ2: this is Cp

I AIC replaces 1
N

∑
(yi − ŷi)

2 with − 2
N log(θ̂; y)

I see Figure 7.4
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Cross-validation §7.10

I Generalization/test error Err = EX ,Y ,̂f [L{Y , f̂ (X )}]
I Cross-validation attempts to estimate this directly
I CV = 1

N
∑

L{yi , f̂ κ(i)(xi)} (7.42)
I κ(i) indexes which of K partitions observation i is in (K -fold

CV)
I If f̂ depends on a tuning parameter, α, then we compute
I CV (α) = 1

N
∑

L{yi , f̂ κ(i)(xi , α)} for a variety of choices
I K = 1 has low bias but high variance; large K the

opposite; K = 5 or 10 recommended
I generalized CV is an approximation to CV with K = 1 used

in linear fitting methods with squared error loss
I (GCV is used by the lm.ridge program)
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