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The goal is to understand in more detail the role of prediction error in model selection and
assessment, and to study the notion of bias and variance trade-off. We assume that we have
a set of training data T , typically N instances (x1, y1), . . . , (xN , yN), where x is usually a
vector of features and y a response, either continuous or discrete. We further assume that
we have a fitted function f̂(·), which is a rule that has been constructed from T , that maps
a vector x to a value y. In this notation the dependence of f̂(·) on T is suppressed. In most
applications, f̂(·) is obtained by minimizing

N∑
i=1

L{yi, f(xi)}

where L{Y, f(X)} is a loss function, and the minimum is calculated over some class of
functions {f} to be specified.

Common choices of loss functions are squared error loss, absolute error, and more rarely
losses based on the pth norm, for continuous responses y and especially for models where
f(x) = E(Y | x). For discrete responses a loss function that counts misclassifications is quite
common. The loss function that leads to maximum likelihood estimation is −2 log Pr(Y ; θ)
or more generally −2 log Pr(Y ; f(·)).

In considering errors made in using f̂(·) for prediction, or more specifically on test data, two
quantities of interest are

ErrT = E{L(Y, f̂(X)) | T }, (1)

Err = E(ErrT ) (2)

where the expectation in (??) is over the joint distribution of (Y,X), conditional on the
training data T , and the expectation in (??) is over the training data. ErrT is called test
error, prediction error or generalization error, and Err is called expected prediction/test
error. Loosely speaking, ErrT is relevant to model selection: how well will a range of models
to the training data serve to predict new data?, whereas Err is relevant to model assessment:
how well will a range of possible models work for a range of applications? However, ErrT
is more difficult to analyse theoretically than Err. Of course neither of these measures can
address errors in prediction due to changes in the underlying structure of the data or the
errors; the test data must have something in common with the training data in order that
the training data be useful for prediction.

Example: additive errors. Suppose the model is Y = f(X) + ε, where E(ε) = 0,
var(ε) = σ2

ε . It is natural in this setting to use squared error loss, and to condition on the
feature variables. Thus we compute, as in §7.3,

Err(x0) = E{(Y − f̂(x0))
2 | X = x0}

= σ2
ε + {E(f̂(x0))− f(x0)}2 + var{f(x0)},
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where now the expectation is over Y and y1, . . . , yN , with X = x0 and x1, . . . , xN fixed. To
verify this the RHS of the first line is expanded, after adding and subtracting E(Y | x0) =
f(x0). The first term is “irreducible error”, reflecting the fact that even if we knew f(x0),
we would not know Y . To get further with this formula we need to say more about f̂(·).
Suppose, for example, that f̂(x0) is estimated by the average of the y-values for k nearest
neighbours of x0 in feature space, i.e.

f̂(x0) =
1

k

k∑
`=1

y(`),

where |x(1) − x0| < |x(2) − x0| < . . . < |x(N) − x0|, using some distance measure in feature
space, and y(`) is the response for input x(`). In this case we have

Err(x0) = {f(x0)−
1

k

k∑
`=1

f(x(`))}2 +
σ2
ε

k
.

We can see that the third term will decrease as k increases, and it seems plausible that the
second term will increase with k, although this will depend on how quickly f(·) is changing
near x0, and how far away the x(`) points are relative to the change in f(·).

Example: Least Squares. Suppose now that f(x0) = xT0 β, where β is p × 1, and we
estimate β by least squares. Then Ef̂(x0) = xT0 β = f(x0), and

var(f̂(x0)) = xT0 (XTX)−1x0σ
2
ε ,

where X is the N × p feature matrix in the training data. Then

Err(x0) = σ2
ε{1 + x0(X

TX)−1x0}, (3)

the prediction error for a new Y at x0. The bias term is zero. If we further simplify the
model by assuming that there is only a single feature, plus a constant term, then

(XTX)−1 =

(
1
n
Σx2i −x
−x 1

)
1

Σ(xi − x)2

and

(1 x0)(X
TX)−1

(
1
x0

)
=

1

n
+

(x− x0)2

Σ(xi − x)2
,

so

Err(x0) = σ2
ε{1 +

1

n
+

(x− x0)2

Σ(xi − x)2
}.

To see how the expression (??) depends on p, we follow (7.12) and consider the average of
Err(x0) where x0 takes on the values in the training data with equal probability. This gives

1

N

N∑
i=1

Err(xi) = σ2
ε (1 +

p

N
).
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In the text in (7.12) the squared bias term is included, but for this particular example it is
zero.

Example: ridge regression. In the same linear model, if we have β̂ = (XTX+λI)−1XTy,
then Ef̂(x0) = xT0 (XTX +λI)−1XTXβ and var(f̂(x0)) = xT0 (XTX +λI)−1x0σ

2
ε , and it is at

least plausible that there is some value of λ for which Err(x0) is smaller than its value when
λ = 0.

We now consider the estimation of Err in more general settings. The training error is defined
as

err =
1

N

N∑
i=1

L(yi, f̂(xi)),

and it is clearly an underestimate of Err, because f̂(·) is usually determined to minimize err.
In §7.4 the “in-sample generalization error”, or “in-sample test error” is defined as

Errin =
1

N

N∑
i=1

E{L(Y 0
i , f̂(xi)) | T },

where the expectation is over a new sample of Y ’s of size N ; one Y for each xi. This is still
conditional on x1, . . . , xN . It can be shown that

Ey(Errin − err) =
2

N

N∑
i=1

cov(yi, f̂(xi))

for both squared error loss and 0-1 loss, and that this holds approximately for log-likelihood
loss. 1 Further, for f̂(xi) determined by linear regression with d basis functions, the second
term is (2/N)dσ2

ε . This could be simple least squares regression as above, with d = p, or
it could be any type of regression spline, or regression on wavelet basis. More generally, as
stated in §7.6,

∑N
i=1 cov(yi, f̂(xi)) = trace(S)σ2

ε , for a linear model and any linear fitting

method f̂ = Sy, which includes regularization methods such as spline smoothing and ridge
regression.

This result gives a way to correct err to give an estimate of Errin: since

Ey(Errin) = Ey(err) +
2

N
dσ2

ε ,

then an estimate of the LHS is given by

err +
2

N
dσ2

ε .

It is further claimed that for log-likelihood loss, it can be shown that as N →∞,

−2E{log Pr(y; θ̂)} ' − 2

N

N∑
i=1

log Pr(yi; θ̂) + 2
d

N

1Here Ey means expectation over the training y1, . . . , yN This is similar to the calculation that takes
ErrT to Err, but emphasizes via the notation that the training x’s are fixed.
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where d is the number of parameters in θ̂, thus motivating the estimating the expected loss
by the RHS, which is Akaike’s information criterion AIC: see, e.g. (7.30) (where however
there is a typo: σ2

ε should not be in the equation).

A different derivation of AIC is given in Davison (2003, §4.7), tied more closely to maximum
likelihood fitting. Suppose we have a random sample Y1, . . . , YN from an unknown true
density g(y), but that we fit the family of models {f(y; θ); θ ∈ Θ} by maximizing the log-
likelihood function `(θ) = Σ log f(yi; θ). Define the Kullback-Liebler discrepancy

D(fθ, g) =

∫
log

{
g(y)

f(y; θ)

}
g(y)dy;

this is 0 if f(y; θ) = g(y) and otherwise is positive. Denote by θg the value of θ that minimizes

D(fθ, g). The expected likelihood ratio statistic for comparing g with fθ at θ = θ̂ for a new
random sample Y +

1 , . . . , Y
+
N from g, independent of Y1, . . . , YN is

E+
g

[
N∑
i=1

log

{
g(Y +

i )

f(Y +
i ; θ̂)

}]
= nD(fθ̂, g) ≥ nD(fθg , g).

Davison shows that

nD(fθ̂, g)
.
= nD(fθg , g) + (1/2)tr{(θ̂ − θg)(θ̂ − θg)T Ig(θg)},

where Ig = −n
∫
{∂2 log f(y; θ)/∂θ∂θT}g(y)dY and Eg is over the distribution of θ̂. He then

shows that this can be estimated by

−`(θ̂) + c,

where c estimates (1/2)tr{(θ̂− θg)(θ̂− θg)T Ig(θg)}, and finally shows that c = p = dim(θ) is
the the expected value of this quantity, so serves as a reasonable estimator. This gives the
estimator

−`(θ̂) + p,

the AIC is typically a scalar multiple of this. Our book uses the multiple (2/N); other books
use 2.

Finally, a seemingly more direct estimate of ERRT is the cross-validation estimate

CV (f̂) =
1

N

N∑
i=1

L{yi, f̂−κ(i)(xi)},

where f̂−κ(i)(xi) is the prediction of yi based on a fitted model that omits either the partition
κ(i) that yi falls in (K-fold cross-validation), or simply the ith observation (leave-one-out
cross-validation). This would seem to give an internal estimate of ErrT , but the book argues
that in fact it seems to estimate Err instead. For linear smoothers and squared-error loss it
can be shown that

CV =
1

N

N∑
i=1

{yi − f̂(xi)}2

(1− Sii)2
;

replacing (1− Sii) by 1− tr(S)/N makes computations even simpler. This latter expression
is known as the GCV criterion.
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