The goal is to understand in more detail the role of prediction error in model selection and assessment, and to study the notion of bias and variance trade-off. We assume that we have a set of training data \(T \), typically \(N \) instances \((x_1, y_1), \ldots, (x_N, y_N)\), where \(x \) is usually a vector of features and \(y \) a response, either continuous or discrete. We further assume that we have a fitted function \(\hat{f}(\cdot) \), which is a rule that has been constructed from \(T \), that maps a vector \(x \) to a value \(y \). In this notation the dependence of \(\hat{f}(\cdot) \) on \(T \) is suppressed. In most applications, \(\hat{f}(\cdot) \) is obtained by minimizing

\[
\sum_{i=1}^{N} L(y_i, f(x_i))
\]

where \(L(Y, f(X)) \) is a loss function, and the minimum is calculated over some class of functions \(\{f\} \) to be specified.

Common choices of loss functions are squared error loss, absolute error, and more rarely losses based on the \(p \)th norm, for continuous responses \(y \) and especially for models where \(f(x) = E(Y \mid x) \). For discrete responses a loss function that counts misclassifications is quite common. The loss function that leads to maximum likelihood estimation is \(-2 \log \Pr(Y; \theta)\) or more generally \(-2 \log \Pr(Y; f(\cdot))\).

In considering errors made in using \(\hat{f}(\cdot) \) for prediction, or more specifically on test data, two quantities of interest are

\[
\text{Err}_T = E\{L(Y, \hat{f}(X)) \mid T\},
\]

\[
\text{Err} = E\{\text{Err}_T\}
\]

where the expectation in (??) is over the joint distribution of \((Y, X) \), conditional on the training data \(T \), and the expectation in (??) is over the training data. \(\text{Err}_T \) is called test error, prediction error or generalization error, and \(\text{Err} \) is called expected prediction/test error. Loosely speaking, \(\text{Err}_T \) is relevant to model selection: how well will a range of models to the training data serve to predict new data?, whereas \(\text{Err} \) is relevant to model assessment: how well will a range of possible models work for a range of applications? However, \(\text{Err}_T \) is more difficult to analyse theoretically than \(\text{Err} \). Of course neither of these measures can address errors in prediction due to changes in the underlying structure of the data or the errors; the test data must have something in common with the training data in order that the training data be useful for prediction.

Example: additive errors. Suppose the model is \(Y = f(X) + \epsilon \), where \(E(\epsilon) = 0 \), \(\text{var}(\epsilon) = \sigma_\epsilon^2 \). It is natural in this setting to use squared error loss, and to condition on the feature variables. Thus we compute, as in §7.3,

\[
\text{Err}(x_0) = E\{(Y - \hat{f}(x_0))^2 \mid X = x_0\} = \sigma_\epsilon^2 + \{E(\hat{f}(x_0)) - f(x_0)\}^2 + \text{var}\{f(x_0)\},
\]
where now the expectation is over Y and y_1, \ldots, y_N, with $X = x_0$ and x_1, \ldots, x_N fixed. To verify this the RHS of the first line is expanded, after adding and subtracting $E(Y \mid x_0) = f(x_0)$. The first term is “irreducible error”, reflecting the fact that even if we knew $f(x_0)$, we would not know Y. To get further with this formula we need to say more about $\hat{f}(\cdot)$. Suppose, for example, that $\hat{f}(x_0)$ is estimated by the average of the y-values for k nearest neighbours of x_0 in feature space, i.e.

$$\hat{f}(x_0) = \frac{1}{k} \sum_{\ell=1}^{k} y(\ell),$$

where $|x(1) - x_0| < |x(2) - x_0| < \ldots < |x(N) - x_0|$, using some distance measure in feature space, and $y(\ell)$ is the response for input $x(\ell)$. In this case we have

$$\text{Err}(x_0) = \{f(x_0) - \frac{1}{k} \sum_{\ell=1}^{k} f(x(\ell))\}^2 + \frac{\sigma^2}{k}.$$

We can see that the third term will decrease as k increases, and it seems plausible that the second term will increase with k, although this will depend on how quickly $f(\cdot)$ is changing near x_0, and how far away the $x(\ell)$ points are relative to the change in $f(\cdot)$.

Example: Least Squares. Suppose now that $f(x_0) = x_0^T \beta$, where β is $p \times 1$, and we estimate β by least squares. Then $\hat{f}(x_0) = x_0^T \beta = f(x_0)$, and

$$\text{var}(\hat{f}(x_0)) = x_0^T (X^T X)^{-1} x_0 \sigma^2,$$

where X is the $N \times p$ feature matrix in the training data. Then

$$\text{Err}(x_0) = \sigma^2 \{1 + x_0 (X^T X)^{-1} x_0\}, \quad (3)$$

the prediction error for a new Y at x_0. The bias term is zero. If we further simplify the model by assuming that there is only a single feature, plus a constant term, then

$$(X^T X)^{-1} = \left(\begin{array}{cc} \frac{1}{n} \sum x_i^2 & -\bar{x} \\ -\bar{x} & 1 \end{array}\right) \frac{1}{\sum (x_i - \bar{x})^2}$$

and

$$(1 \quad x_0)(X^T X)^{-1} \left(\begin{array}{c} 1 \\ x_0 \end{array}\right) = \frac{1}{n} + \frac{(\bar{x} - x_0)^2}{\sum (x_i - \bar{x})^2},$$

so

$$\text{Err}(x_0) = \sigma^2 \{1 + \frac{1}{n} + \frac{(\bar{x} - x_0)^2}{\sum (x_i - \bar{x})^2}\}.$$

To see how the expression (33) depends on p, we follow (7.12) and consider the average of $\text{Err}(x_0)$ where x_0 takes on the values in the training data with equal probability. This gives

$$\frac{1}{N} \sum_{i=1}^{N} \text{Err}(x_i) = \sigma^2 \left(1 + \frac{p}{N}\right).$$
In the text in (7.12) the squared bias term is included, but for this particular example it is zero.

Example: ridge regression. In the same linear model, if we have \(\hat{\beta} = (X^T X + \lambda I)^{-1} X^T y \), then \(E \hat{f}(x_0) = x_0^T (X^T X + \lambda I)^{-1} X^T X \beta \) and \(\text{var}(\hat{f}(x_0)) = x_0^T (X^T X + \lambda I)^{-1} x_0 \sigma^2 \), and it is at least plausible that there is some value of \(\lambda \) for which \(\text{Err}(x_0) \) is smaller than its value when \(\lambda = 0 \).

We now consider the estimation of \(\text{Err} \) in more general settings. The *training error* is defined as

\[
\text{err} = \frac{1}{N} \sum_{i=1}^{N} L(y_i, \hat{f}(x_i)),
\]

and it is clearly an underestimate of \(\text{Err} \), because \(\hat{f}(\cdot) \) is usually determined to minimize \(\text{err} \). In §7.4 the “in-sample generalization error”, or “in-sample test error” is defined as

\[
\text{Err}_{\text{in}} = \frac{1}{N} \sum_{i=1}^{N} E \{ L(Y_i^0, \hat{f}(x_i)) \mid T \},
\]

where the expectation is over a new sample of \(Y \)'s of size \(N \); one \(Y \) for each \(x_i \). This is still conditional on \(x_1, \ldots, x_N \). It can be shown that

\[
E_y(\text{Err}_{\text{in}} - \text{err}) = \frac{2}{N} \sum_{i=1}^{N} \text{cov}(y_i, \hat{f}(x_i))
\]

for both squared error loss and 0-1 loss, and that this holds approximately for log-likelihood loss. \(^1\) Further, for \(\hat{f}(x_i) \) determined by linear regression with \(d \) basis functions, the second term is \((2/N)d\sigma^2 \). This could be simple least squares regression as above, with \(d = p \), or it could be any type of regression spline, or regression on wavelet basis. More generally, as stated in §7.6, \(\sum_{i=1}^{N} \text{cov}(y_i, \hat{f}(x_i)) = \text{trace}(S)\sigma^2 \), for a linear model and any linear fitting method \(\hat{f} = Sy \), which includes regularization methods such as spline smoothing and ridge regression.

This result gives a way to correct \(\text{err} \) to give an estimate of \(\text{Err}_{\text{in}} \): since

\[
E_y(\text{Err}_{\text{in}}) = E_y(\text{err}) + \frac{2}{N} d\sigma^2,
\]

then an estimate of the LHS is given by

\[
\text{err} + \frac{2}{N} d\sigma^2.
\]

It is further claimed that for log-likelihood loss, it can be shown that as \(N \to \infty \),

\[
-2E\{\log \Pr(y; \hat{\theta})\} \simeq -\frac{2}{N} \sum_{i=1}^{N} \log \Pr(y_i; \hat{\theta}) + \frac{2d}{N}
\]

\(^1\)Here \(E_y \) means expectation over the training \(y_1, \ldots, y_N \). This is similar to the calculation that takes \(\text{Err}_T \) to \(\text{Err} \), but emphasizes via the notation that the training \(x \)'s are fixed.
where \(d\) is the number of parameters in \(\hat{\theta}\), thus motivating the estimating the expected loss by the RHS, which is Akaike’s information criterion AIC: see, e.g. (7.30) (where however there is a typo: \(\sigma^2\) should not be in the equation).

A different derivation of AIC is given in Davison (2003, §4.7), tied more closely to maximum likelihood fitting. Suppose we have a random sample \(Y_1, \ldots, Y_N\) from an unknown true density \(g(y)\), but that we fit the family of models \(\{f(y; \theta); \theta \in \Theta\}\) by maximizing the log-likelihood function \(\ell(\theta) = \sum \log f(y; \theta)\). Define the Kullback-Liebler discrepancy

\[
D(f_\theta, g) = \int \log \left\{ \frac{g(y)}{f(y; \theta)} \right\} g(y) dy;
\]

this is 0 if \(f(y; \theta) = g(y)\) and otherwise is positive. Denote by \(\theta_g\) the value of \(\theta\) that minimizes \(D(f_\theta, g)\). The expected likelihood ratio statistic for comparing \(g\) with \(f_\theta\) at \(\theta = \hat{\theta}\) for a new random sample \(Y_1^+, \ldots, Y_N^+\) from \(g\), independent of \(Y_1, \ldots, Y_N\) is

\[
E_g^+ \left[\sum_{i=1}^N \log \left\{ \frac{g(Y_i^+)}{f(Y_i^+; \hat{\theta})} \right\} \right] = nD(f_{\hat{\theta}}, g) \geq nD(f_{\theta_g}, g).
\]

Davison shows that

\[
nD(f_{\hat{\theta}}, g) = nD(f_{\theta_g}, g) + (1/2)\text{tr}\left\{ (\hat{\theta} - \theta_g)(\hat{\theta} - \theta_g)^T I_g(\theta_g) \right\},
\]

where \(I_g = -n \int \{ \partial^2 \log f(y; \theta) / \partial \theta \partial \theta^T \} g(y) dy\) and \(E_g\) is over the distribution of \(\hat{\theta}\). He then shows that this can be estimated by

\[
-\ell(\hat{\theta}) + c,
\]

where \(c\) estimates \((1/2)\text{tr}\{ (\hat{\theta} - \theta_g)(\hat{\theta} - \theta_g)^T I_g(\theta_g) \}\), and finally shows that \(c = p = \text{dim}(\theta)\) is the the expected value of this quantity, so serves as a reasonable estimator. This gives the estimator

\[
-\ell(\hat{\theta}) + p,
\]

the AIC is typically a scalar multiple of this. Our book uses the multiple \((2/N)\); other books use 2.

Finally, a seemingly more direct estimate of ERR\(_T\) is the cross-validation estimate

\[
CV(\hat{f}) = \frac{1}{N} \sum_{i=1}^N L\{y_i, \hat{f}^{-\kappa(i)}(x_i)\},
\]

where \(\hat{f}^{-\kappa(i)}(x_i)\) is the prediction of \(y_i\) based on a fitted model that omits either the partition \(\kappa(i)\) that \(y_i\) falls in (\(K\)-fold cross-validation), or simply the \(i\)th observation (leave-one-out cross-validation). This would seem to give an internal estimate of Err\(_T\), but the book argues that in fact it seems to estimate Err instead. For linear smoothers and squared-error loss it can be shown that

\[
CV = \frac{1}{N} \sum_{i=1}^N \frac{(y_i - \hat{f}(x_i))^2}{(1 - S_{ii})^2};
\]

replacing \((1 - S_{ii})\) by \(1 - \text{tr}(S)/N\) makes computations even simpler. This latter expression is known as the GCV criterion.