STA 414S/2104S: TakeHome Midterm Test. Due March 25, 2010 before 2 pm.

Please work alone.

1. (Adapted from Exercise 2.7, HTF). Suppose we have a sample $(y_1, x_1), \ldots, (y_N, x_N)$, and we assume the model

$$y_i = f(x_i) + \epsilon_i,\tag{1}$$

where $f(\cdot)$ is an unkown regression function, $\epsilon_i \sim N(0, \sigma^2)$, and the ϵ 's are independent. A fairly wide class of estimators considered in the course are of the form

$$\hat{f}(x_0) = \sum_{i=1}^N \ell_i(x_0; \mathbf{x}) y_i,$$

where $\mathbf{x} = (x_1, \ldots, x_N)$.

- (a) Show that linear regression and k-nearest neighbour regression are members of this class of estimators, and describe the weights $\ell_i(x_0; \mathbf{x})$ in each of these cases.
- (b) STA 2104 only Decompose the conditional mean-squared error

$$E_{\mathbf{y}|\mathbf{x}}\{\hat{f}(x_0) - f(x_0)\}^2,$$

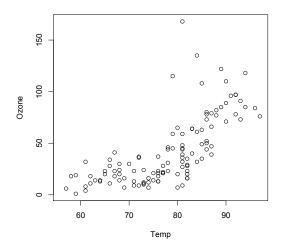
where the expectation is over the conditional distribution of y_1, \ldots, y_N , given x_1, \ldots, x_N .

2. (Adapted from Exercise 2.1, R.A. Berk). Figure 1 shows a plot of Ozone against Temperature, from a database of daily measurements in New York over 154 summer days. The following fits are summarized in the code extract:

- (a) The first model is the smoothest possible model; the second is the roughest possible model, and the third is somewhere in between.¹ Explain why this is the case.
- (b) A summary of the output is presented below. Which model has the best fit judging by the residual deviance? Which model has the best fit judging by the AIC? Why might the choice of the best model differ depending on which measure of fit is used? Which model seems to be the most useful judging from Figure 2?

¹The function gam assumes Normal errors if nothing is specified, so the model for out1, for example, can also be fit using lm(Ozone ~ Temp).

Figure 1: Plot of Ozone vs. Temperature, using dataset airquality.



(c) **STA 2104 only** Experiment with out3 with different amounts of smoothing, and present plots that include a confidence band for the smooth function. Explain how this confidence band was computed.

> summary(out1) Call: gam(formula = Ozone ~ Temp) Deviance Residuals: Min 1Q Median ЗQ Max -40.7295 -17.4086 11.3062 118.2705 -0.5869 (Dispersion Parameter for gaussian family taken to be 562.3675) Null Deviance: 125143.1 on 115 degrees of freedom Residual Deviance: 64109.89 on 114 degrees of freedom AIC: 1067.706 37 observations deleted due to missingness Number of Local Scoring Iterations: 2 DF for Terms Df (Intercept) 1 Temp 1 > summary(out2) Call: gam(formula = Ozone ~ as.factor(Temp)) Deviance Residuals: Min 1Q Median ЗQ Max

-44.0 -9.0 -1.0 8.0 117.3 (Dispersion Parameter for gaussian family taken to be 500.02) Null Deviance: 125143.1 on 115 degrees of freedom Residual Deviance: 38501.54 on 77 degrees of freedom AIC: 1082.558 37 observations deleted due to missingness Number of Local Scoring Iterations: 2 DF for Terms Df (Intercept) 1 as.factor(Temp) 38 > summary(out3) Call: gam(formula = Ozone ~ s(Temp)) Deviance Residuals: Min 1Q Median 3Q Max -34.924 -11.144 -3.414 8.595 124.076 (Dispersion Parameter for gaussian family taken to be 483.8819) Null Deviance: 125143.1 on 115 degrees of freedom Residual Deviance: 53710.96 on 111.0001 degrees of freedom AIC: 1053.176 37 observations deleted due to missingness Number of Local Scoring Iterations: 2 DF for Terms and F-values for Nonparametric Effects Df Npar Df Npar F $\Pr(F)$ (Intercept) 1 3 7.1639 0.0001929 *** 1 s(Temp) Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

- 3. This question requires you to read the paper by M. Zhu, "Kernels and ensembles: perspectives on statistical learning". It was handed out in class and is also posted on the web page. (You may omit §4.)
 - (a) Explain in two or three sentences, without using equations, the "kernel trick", as applied to support vector machines.
 - (b) Explain in two or three sentences, without using equations, the method of ensembles. Zhu describes this method as "relatively mindless": why?
 - (c) Compare mis-classification rates for the classification problem for the wine data of HW 2 using support vector machines and random forests, and compare these to each other and to your results from HW 2.

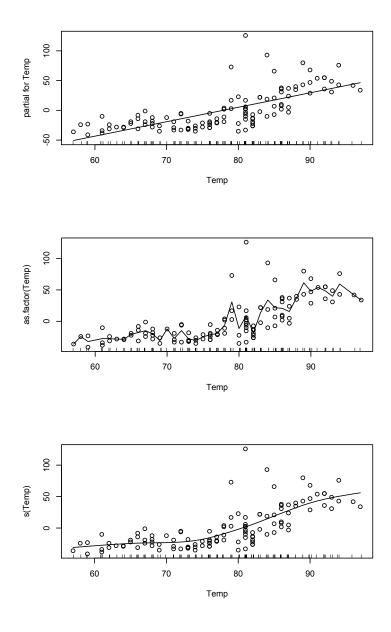


Figure 2: Data with fitted values from $\mathtt{out1}$, $\mathtt{out2}$, $\mathtt{out3}$