Notes

- Sample test questions posted
- Review and/or questions on Thursday this week
- Test will have 3 questions: one from Sample test, one specific to 414/2104
- Extra Office Hour Monday, March 15, 3-4
- Watch web site for late breaking announcement re MidTerm
Neural Networks

- “feed forward single layer neural network”

\[Y_k = g_k\{\beta_0 + \sum_{m=1}^{M} \beta_{km}\sigma(\alpha_{0m} + \sum_{\ell=1}^{p} \alpha_{\ell m}X_{\ell})\} = f_k(X_{\ell}) \]

\[\sigma(x) = \frac{1}{1+e^{-x}} \]

\[\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} \]

maps to \((-1, +1)\)
... neural networks

\[Y_k = g_k \{ \beta_0 + \sum_{m=1}^{M} \beta_{km} \sigma(\alpha_0 + \sum_{\ell=1}^{P} \alpha_{\ell m} x_\ell) \} = f_k(x_\ell) \]

\(\theta = (\alpha_0, \alpha_m, \beta_0, \beta_k) \)

\[R(\theta) = \sum_{i=1}^{N} \sum_{k=1}^{K} \{ y_{ik} - f_k(x_i) \}^2, \text{ or} \]

\[R(\theta) = -\sum_{i=1}^{N} \sum_{k=1}^{K} y_{ik} \log f_k(x_i) \]

\(\dim(\theta) = M(p + 1) + K(M + 1) \rightarrow \)

regularization/shrinkage, also called weight decay

minimize

\[R(\theta) + \lambda J(\theta) = R(\theta) + \lambda \left(\sum_{km} \beta_{km}^2 + \sum_{m\ell} \alpha_{m\ell}^2 \right) \]

standardize inputs to mean 0, variance 1 for regularization

backfitting algorithm for minimizing \(R(\theta) \) described in \(\S 11.4 \); extension to \(R(\theta) + \lambda J(\theta) \) in \(\S 11.5.2 \)
... neural networks

- \texttt{nnet} in \texttt{MASS} library: recommend
 \[\lambda \in (10^{-4}, 10^{-2}) \] for squared error loss;
 \[\lambda \in (.01, .1) \] for log-likelihood

- compare Figure 11.4 top/bottom

- results very sensitive to starting values: \(R(\theta) \) has many local maxima

- recommendation (Ripley): take average predictions over several \texttt{nnet} fits

- weight decay seems to be more important than number of hidden units

- See §11.7, 8, 9 for interesting examples where neural nets work well
Aside: “Bayes error rate”

\[pr(G = k \mid x) = \frac{f_k(x) \pi_k}{\sum_{\ell=1}^{K} f_\ell(x) \pi_\ell} \]

- In Figure 11.4 (and many others) \(x = (x_1, x_2) \)
- data is simulated from known \(f_k \) with known probability \(\pi_k \)
- \(pr(G = k \mid x_0) \) can be calculated for any \(x_0 \) in \(R^2 \)
- \(x_0 \) assigned to, e.g., class 2 if

\[
\Pr(G = 2 \mid x_0) > \Pr(G = 1 \mid x_0) > \Pr(G = 3 \mid x_0), \text{ etc.} \quad (2.23) \text{ and Figure 2.5}
\]

- this gives the Bayes boundary (best possible)
Example from Venables and Ripley, Ch. 11
Handout

```r
> library(MASS); library(nnet)
> data(Cushings)
> dim(Cushings)
[1] 27  3
> Cushings # result omitted
> cush = log(as.matrix(Cushings[, -3]))[1:21,]  ## use log scale for inputs, use known classes
> tp = Cushings$Type[1:21, drop=T]  ## record type when it is known
> par(mfrow=c(2,2))
> pltnn("Size = 2")
set.seed(1); plt.bndry(size = 2, col = 2)
set.seed(3); plt.bndry(size = 2, col = 3)
plt.bndry(size = 2, col = 4)
pltnn("Size = 2, lambda = 0.001")
set.seed(1); plt.bndry(size = 2, decay = 0.001, col = 2)
set.seed(2); plt.bndry(size = 2, decay = 0.001, col = 4)
pltnn("Size = 2, lambda = 0.01")
set.seed(1); plt.bndry(size = 2, decay = 0.01, col = 2)
set.seed(2); plt.bndry(size = 2, decay = 0.01, col = 4)
pltnn("Size = 5, 20 lambda = 0.01")
set.seed(2); plt.bndry(size = 5, decay = 0.01, col = 1)
set.seed(2); plt.bndry(size = 20, decay = 0.01, col = 2)
```
Size = 2

Size = 2, lambda = 0.001

Size = 2, lambda = 0.01

Size = 5,20, lambda = 0.01
Average predictions over several fits

pltnn("Many local maxima")
Z <- matrix(0, nrow(cushT), ncol(tpi))
for(iter in 1:20) {
 set.seed(iter)
 cush.nn <- nnet(cush, tpi, skip = T, softmax = T, size = 3,
 decay = 0.01, maxit = 1000, trace = F)
 Z <- Z + predict(cush.nn, cushT)
 # In R replace @ by $ in next line.
 cat("final value", format(round(cush.nn@value,3)), "\n")
 b1(predict(cush.nn, cushT), col = 2, lwd = 0.5)
}
pltnn("Averaged")
b1(Z, lwd = 3)
Support Vector Machines §12.2, 12.3
Zhu, M. Amer. Statist.

- not on test
- two class classification
- change notation so that \(y = \pm 1 \)
- use linear combinations of \(p \) inputs to predict \(y \)

\[
y = \begin{cases}
-1 & \text{as } \beta_0 + x^T \beta < 0 \\
1 & \beta_0 + x^T \beta > 0
\end{cases}
\]

- \(f(x) = \beta_0 + x^T \beta = 0 \) defines a hyperplane in \(\mathbb{R}^p \)
- this is a separating hyperplane if there exists \(c > 0 \) s.t.

\[
y_i(\beta_0 + x_i^T \beta) > c, \ i = 1, \ldots, N
\]

- by rescaling we can take \(c = 1 \) w.l.o.g.
- \textbf{margin} = \(2 \times \min \{ y_i d_i, i = 1, \ldots, N \} \); \(d_i \) signed distance from \(x_i \) to hyperplane
Figure 1. Two separating hyperplanes, one with a larger margin than the other.
... support vector machines

\[
\text{margin} = \frac{2}{||\beta||}
\]

- maximizing margin means small \(\beta\)
- optimization problem becomes

\[
\min_{\beta_0, \beta} \frac{1}{2} ||\beta||^2
\]

\[
\text{s.t. } y_i(\beta_0 + x_i^T \beta) \geq 1, \quad i = 1, \ldots, N \quad (4.48)
\]

- Note: text has \(\min ||\beta||\) (12.4)
 later changes to \(\min \frac{1}{2} ||\beta||^2\) (12.8)
Allowing overlap

$$\min_{\beta_0, \beta} \frac{1}{2} ||\beta||^2 + \gamma \sum_{i=1}^{N} \xi_i \quad \text{s.t.} \quad \xi_i \geq 0$$

subject to \(y_i(x_i^T \beta + \beta_0) \geq 1 - \xi_i \)

\(\xi_i \) called slack variables

Book uses \(C \); Zhu uses \(\gamma \) for tuning parameter (user specified)
- some points allowed to cross into the margin
- some points allowed to cross to the wrong side of the margin Figure 12.1
- the number of $\xi_i > 1$ is the number of misclassified points
- $\sum \xi_i$ is the total proportional amount by which predictions are on the wrong side

FIGURE 12.1. Support vector classifiers. The left panel shows the separable case. The decision boundary is the solid line, while broken lines bound the shaded maximal margin of width $2M = 2/\|\beta\|$. The right panel shows the nonseparable (overlap) case. The points labeled ξ_j^* are on the wrong side of their margin by an amount $\xi_j^* = M \xi_j$; points on the correct side have $\xi_j^* = 0$. The margin is maximized subject to a total budget $\sum \xi_i \leq \text{constant}$. Hence $\sum \xi_j^*$ is the total distance of points on the wrong side of their margin.
Constrained optimization

\[\min_{\beta_0, \beta} \frac{1}{2} \|\beta\|^2 + \gamma \sum_{i=1}^{N} \xi_i \quad \text{s.t.} \quad \xi_i \geq 0 \]

subject to \(y_i(x_i^T \beta + \beta_0) \geq 1 - \xi_i \)

equivalent to

\[\min \sum_{i=1}^{N} \left\{ 1 - y_i(x_i^T \beta + \beta_0) \right\}_+ + \lambda \|\beta\|^2 \]

loss function with penalty

solution is

\[\hat{\beta} = \sum_{i=1}^{N} \hat{\alpha}_i y_i x_i \]
... optimization

\[
\hat{\beta} = \sum_{i=1}^{N} \hat{\alpha}_i y_i x_i
\]

- \(\hat{\alpha}_i \) are solutions to

\[
\text{max } \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j x_i^T x_j
\]

\[
\text{s.t. } \sum_{i=1}^{N} \alpha_i y_i = 0 \quad \text{and} \quad \alpha_i \geq 0
\]
... optimization

- the solution for β has the form

$$\hat{\beta} = \sum_{i=1}^{N} \hat{\alpha}_i y_i x_i$$

- i.e. linear combinations of x_i ($y_i = \pm 1$)

- only some of the $\hat{\alpha}_i$ are nonzero: those where the lower bound is exact (12.14)

- these observations are called the support vectors

- $\hat{\alpha}_i$ are solutions to

$$\max \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j x_i^T x_j$$

- s.t. $\sum_{i=1}^{N} \alpha_i y_i = 0$ and $\alpha_i \geq 0$

- Figure 12.2
Beyond linear (§12.3)

\[\hat{f}(x) = \hat{\beta}_0 + x^T \hat{\beta} = \hat{\beta}_0 + \sum_{i \in SV} \hat{\alpha}_i y_i x_i^T x = 0 \]

- depends only on inner products \(x_i^T x \)
- use basis function expansions to create more flexible boundaries
- \(f(x) = h(x)^T \beta + \beta_0 \)
- new \(L_D = \sum \alpha_i - \frac{1}{2} \sum \sum \alpha_i \alpha_{i'} y_i y_{i'} h(x_i)^T h(x_{i'}) \)
- solution depends only on inner products
- Alternatively depends on \(h(\cdot) \) only through its
- Kernel function \(K(x, x') = < h(x), h(x') > \)
 - polynomial: \((1+ < x, x' >)^d\)
 - radial basis: \(\exp(-\|x - x'\|^2/c)\)
 - neural network \(\tanh(\kappa_1 < x, x' > + \kappa_2) \)
Figure 2. Kernel PCA, toy example. (a) Original data. (b) Projection onto the first two kernel principal components.