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Notes
I Sample test questions posted
I Review and/or questions on Thursday this week
I Test will have 3 questions: one from Sample test, one

specific to 414/2104
I Extra Office Hour Monday, March 15, 3-4
I Watch web site for late breaking announcement re

MidTerm
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Neural Networks
I “feed forward single layer neural network”

I

Yk = gk{β0k +
M∑

m=1

βkmσ(α0m +

p∑
`=1

α`mX`)} = fk (X`)

I σ(x) = 1
1+e−x tanh(x) = ex−e−x

ex+e−x , maps to (−1,+1)
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... neural networks
I

Yk = gk{β0k +
M∑

m=1

βkmσ(α0m +

p∑
`=1

α`mX`)} = fk (X`)

I θ = (α0m, αm, β0k , βk )
I R(θ) =

∑N
i=1
∑K

k=1{yik − fk (xi)}2, or
I R(θ) = −

∑N
i=1
∑K

k=1 yik log fk (xi)
I dim(θ) = M(p + 1) + K (M + 1) −→

regularization/shrinkage, also called weight decay
I minimize

R(θ) + λJ(θ) = R(θ) + λ

(∑
km

β2
km +

∑
m`

α2
m`

)
I standardize inputs to mean 0, variance 1 for regularization
I backfitting algorithm for minimizing R(θ) described in
§11.4; extension to R(θ) + λJ(θ) in §11.5.2
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... neural networks
I nnet in MASS library: recommend
λ ∈ (10−4,10−2) for squared error loss;
λ ∈ (.01, .1) for log-likelihood

I compare Figure 11.4 top/bottom
I results very sensitive to starting values: R(θ) has many

local maxima
I recommendation (Ripley): take average predictions over

several nnet fits
I weight decay seems to be more important than number of

hidden units
I See §11.7, 8, 9 for interesting examples where neural nets

work well
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Aside: “Bayes error rate”
I

pr(G = k | x) = fk (x)πk∑K
`=1 f`(x)π`

I In Figure 11.4 (and many others) x = (x1, x2)

I data is simulated from known fk with known probability πk

I pr(G = k | x0) can be calculated for any x0 in R2

I x0 assigned to, e.g., class 2 if

Pr(G = 2 | x0) > Pr(G = 1 | x0)

> Pr(G = 3 | x0),etc. (2.23) and Figure 2.5

I this gives the Bayes boundary (best possible)
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Example from Venables and Ripley, Ch. 11
Handout

> library(MASS); library(nnet)
> data(Cushings)
> dim(Cushings)
[1] 27 3
> Cushings # result omitted
> cush = log(as.matrix(Cushings[,-3])) [1:21,] ## use log scale for inputs, use known classes only
> tp = Cushings$Type[1:21,drop=T] ## record type when it is known
> par(mfrow=c(2,2))
> pltnn("Size = 2")
set.seed(1); plt.bndry(size = 2, col = 2)
set.seed(3); plt.bndry(size = 2, col = 3)
plt.bndry(size = 2, col = 4)

pltnn("Size = 2, lambda = 0.001")
set.seed(1); plt.bndry(size = 2, decay = 0.001, col = 2)
set.seed(2); plt.bndry(size = 2, decay = 0.001, col = 4)

pltnn("Size = 2, lambda = 0.01")
set.seed(1); plt.bndry(size = 2, decay = 0.01, col = 2)
set.seed(2); plt.bndry(size = 2, decay = 0.01, col = 4)

pltnn("Size = 5, 20 lambda = 0.01")
set.seed(2); plt.bndry(size = 5, decay = 0.01, col = 1)
set.seed(2); plt.bndry(size = 20, decay = 0.01, col = 2)

7 / 20



2 5 10 20 50

0.
05

0.
20

1.
00

5.
00

Size = 2

Tetrahydrocortisone

P
re
gn
an
et
rio
l

a

a

a

a

a

a

b

b

b

b

b

b

b

bb

b

cc

c c

c

u

u

u

u u

u

2 5 10 20 50

0.
05

0.
20

1.
00

5.
00

Size = 2, lambda = 0.001

Tetrahydrocortisone

P
re
gn
an
et
rio
l

a

a

a

a

a

a

b

b

b

b

b

b

b

bb

b

cc

c c

c

u

u

u

u u

u

2 5 10 20 50

0.
05

0.
20

1.
00

5.
00

Size = 2, lambda = 0.01

Tetrahydrocortisone

P
re
gn
an
et
rio
l

a

a

a

a

a

a

b

b

b

b

b

b

b

bb

b

cc

c c

c

u

u

u

u u

u

2 5 10 20 50

0.
05

0.
20

1.
00

5.
00

Size = 5,20, lambda = 0.01

Tetrahydrocortisone

P
re
gn
an
et
rio
l

a

a

a

a

a

a

b

b

b

b

b

b

b

bb

b

cc

c c

c

u

u

u

u u

u



STA 414/2104 Mar 9, 2010

Average predictions over several fits
pltnn("Many local maxima")
Z <- matrix(0, nrow(cushT), ncol(tpi))
for(iter in 1:20) {

set.seed(iter)
cush.nn <- nnet(cush, tpi, skip = T, softmax = T, size = 3,

decay = 0.01, maxit = 1000, trace = F)
Z <- Z + predict(cush.nn, cushT)

# In R replace @ by $ in next line.
cat("final value", format(round(cush.nn$value,3)), "\n")
b1(predict(cush.nn, cushT), col = 2, lwd = 0.5)

}
pltnn("Averaged")
b1(Z, lwd = 3)
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Support Vector Machines §12.2, 12.3
Zhu, M. Amer. Statist.

I not on test
I two class classification
I change notation so that y = ±1
I use linear combinations of p inputs to predict y

y =

{
−1
+1

as
β0 + xTβ < 0
β0 + xTβ > 0

I f (x) = β0 + xTβ = 0 defines a hyperplane in Rp

I this is a separating hyperplane if there exists c > 0 s.t.

yi(β0 + xT
i β) > c, i = 1, . . . ,N

I by rescaling we can take c = 1 w.l.o.g.
I margin = 2×min{yidi , i = 1, . . . ,N}; di signed distance

from xi to hyperplane
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... support vector machines
I

margin =
2
||β||

I maximizing margin means small β
I optimization problem becomes

min
β0,β

1
2
||β||2

s.t. yi(β0 + xT
i β) ≥ 1, i = 1, . . .N (4.48)

I Note: text has min ||β|| (12.4)
later changes to min 1

2 ||β||
2 (12.8)
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I

I Allowing overlap

min
β0,β

1
2
||β||2 + γ

N∑
i=1

ξi s.t . ξi ≥ 0

I subject to yi(xT
i β + β0) ≥ 1− ξi

I ξi called slack variables
I Book uses C; Zhu uses γ for tuning parameter (user

specified)
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I some points allowed to cross into the margin
I some points allowed to cross to the wrong side of the

margin Figure 12.1
I the number of ξi > 1 is the number of misclassified points
I
∑
ξi is the total proportional amount by which predictions

are on the wrong side

I
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Constrained optimization
I

min
β0,β

1
2
||β||2 + γ

N∑
i=1

ξi s.t . ξi ≥ 0

I subject to yi(xT
i β + β0) ≥ 1− ξi

I equivalent to
I

min
N∑

i=1

{1− yi(xT
i β + β0)}+ + λ||β||2

I loss function with penalty
I solution is

β̂ =
N∑

i=1

α̂iyixi
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... optimization
I

β̂ =
N∑

i=1

α̂iyixi

I α̂i are solutions to
I

max
N∑

i=1

αi −
1
2

N∑
i=1

N∑
j=1

αiαjyiyjxT
i xj

I

s.t.
N∑

i=1

αiyi = 0 and αi ≥ 0
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... optimization
I the solution for β has the form

β̂ =
N∑

i=1

α̂iyixi

I i.e. linear combinations of xi (yi = ±1)
I only some of the α̂i are nonzero: those where the lower bound is

exact (12.14)
I these observations are called the support vectors
I α̂i are solutions to
I

max
N∑

i=1

αi −
1
2

N∑
i=1

N∑
j=1

αiαjyiyjxT
i xj

I

s.t.
N∑

i=1

αiyi = 0 and αi ≥ 0

I Figure 12.2 17 / 20
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Beyond linear (§12.3)
I

f̂ (x) = β̂0 + xT β̂ = β̂0 +
∑
i∈SV

α̂iyixT
i x = 0

I depends only on inner products xT
i x

I use basis function expansions to create more flexible
boundaries

I f (x) = h(x)Tβ + β0

I new LD =
∑
αi − 1

2
∑∑

αiαi ′yiyi ′h(xi)
T h(xi ′)

I solution depends only on inner products
I lternatively depends on h(·) only through its
I Kernel function K (x , x ′) =< h(x),h(x ′) >

I polynomial: (1+ < x , x ′ >)d

I radial basis: exp(−||x − x ′||2/c)
I neural network tanh(κ1 < x , x ′ > +κ2)
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