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k-means clustering

kml5 = kmeans (x[g==0,],5)

km25 = kmeans (x[g==1,1,5)

for(i in 1:6831) {

md = c(mydist (xnew([i,],kml5Scenter[l,]),mydist (xnew[i,],kml5$center[2,

mydist (xnew[i,],kml5Scenter[3,]),mydist (xnew[i,],kml5Scenter([4,]),
mydist (xnew[i,],kml5$center[5,]),mydist (xnew[i,],km25%center([1,]),
mydist (xnew[i, ], km25%center[2,]),mydist (xnew[i,],km25%center([3,1]1),
] [

mydist (xnew[i,],km25%center[4,]),mydist (xnew[i,],km25%center[5,1))
mark = which(md == min (md))

nearest[i] = ifelse(mark <= 5, "blue", "orange")}
plot (xnew, type="n", xlab = "x1", ylab = "x2",

main= "kmeans with 5 cluster centers")

points (xnew, col=nearest, pch=".")

points (km25$centers, col="orange", pch=19, cex=2)
points (kml5$centers, col="blue", pch=19, cex=2)
points(x, col= ifelse(g==0, "blue","orange"))
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kmeans with 2 cluster centers

x2

kmeans with 5 cluster centers

data (mixture.example)

p.16:

My, ~ NQ{(1,0)/,/},k: 1,...,10; moy, ~ N2{(0.1)/./}.k =1
bluex <- mvrnorm (100,
matrix(c(1,0,0,1),ncol=2))
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The curse of dimensionality (52.5)

“local” in R' is quite different than local in RP
Example: each feature variable uniformly distributed on
(0,1).

want 10% of the sample in R': need a window of length
0.1.

want 10% of the sample in RP: need a box with edge
length 0.1/ = 0.80

on each axis need a window of length 0.8.
Figure 2.6
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... CUrse

» Example: N data points uniformly distributed on a unit ball
in RP.

» Distance from the origin to the nearest data point?

» Median: (1 — 0.5/N)1/p ~ 0.52if p = 10, N = 500.
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Cluster Analysis (514.3)

discover groupings among the cases; cases within clusters
should be 'close’ and clusters should be 'far apart’

» Figure 14.4
» many (not all) clustering methods use as inputan N x N

matrix D of dissimilarities

» require D > 0, Djy = Dy; and D;; =0
» sometimes the data are collected this way (see §14.3.1)
» more often D needs to be constructed from the N x p data

matrix

often (usually) Dj» = >-7_; dj(x;, xi;), where dj(-,-) to be
chosen, e.g. (Xj — Xxij)?, |Xj — Xij], etc.

See p 504, 505 for more details on choosing a type of
dissimilarity matrix

this can be done using dist or daisy

(the latter in the R library cluster)
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... Cluster analysis

dissimilarities for categorical features
binary: simple matching uses

Dii’ = (#{(1 ’ O) or (07 1) pairs )/p
Jacard coefficient uses
Dii’ = (#{(1 ’ O)or(O, 1) pairs )/(#{(1 ) O)v (07 1) or (1’ 1) pairs )

ordered categories — use ranks as continuous data (see
eq. (14.23))

unordered categories — create binary dummy variables and
use matching
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... cluster analysis

dist (x, method = c("euclidean", "maximum",
"manhattan", "canberra", "binary", "minkowski"))

where maximum is maxq<j<p(Xj — X7;) and binary is Jacard
coefficient.

daisy(x, metric=c("euclidean", "manhattan", "gower")
standardize=F, type=c("ordratio","logratio","asymm","symm")

(see the help files)

> x = matrix (rnorm(100), nrow=5)

> dim(x)
[1] 5 20
> dist (x)
1 2 3 4
2 5.493679
3 6.360923 5.652732
4 7.439924 5.885949 7.960187
5 4.437444 3.679995 6.133873 5.936607
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Combinatorial algorithms

suppose number of clusters K is fixed (K < N)
C(i) = k if observation i is assigned to cluster k

T= Yo
i=1i'=1
1 K
= 32 > | X Dbi+ > D
k=1 C()=k \C(i")=k C(i’);ék
K
= EZZ > Ditg ZZ > Di
k=1 C(i)=k C(i")=k k 1 C(i)=k C(i")#k
— W(C) + B(C)

W(C) is a measure of within cluster dissimilarity
B(C) is a measure of between cluster dissimilarity
T is fixed given the data: minimizing W(C) same as
maximizing B(C)
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K-Means clustering (514.3.6)

» most algorithms use a ‘greedy’ approach by modifying a
given clustering to decrease within cluster distance:
analogous to forward selection in regression

» K-means clustering is (usually) based on Euclidean
distance: D = ||x; — x#||?, so x’s should be centered and
scaled (and continuous)

» Use the result

K

> Z > Z l1xi = xil[2 =N > [1xi— Xl?

k 1.C(i)=k C(i" k=1 C()=k
where Ny is the number of observations in cluster k and
Xk = (Xqk, - .., Xpk) is the mean in the kth cluster

» The algorithm starts with a current set of clusters, and
computes the cluster means. Then assign observations to
clusters by finding the cluster whose mean is closest.

Recompute the cluster means and continue.
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Constructing dissimilarity matrices

dist (x, method = c("euclidean", "maximum",
"manhattan", "canberra", "binary"))

where maximum is maxq<j<p(Xj — X7;) and binary is Jacard
coefficient.

daisy (x, metric=c("euclidean", "manhattan",

"gower"), standardize=F, type=c ("ordratio","lograti
"asymm" , "Symm" )

(see the help files)
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Hierarchical clustering §14.3.12

» no specification of number of clusters

» top down = divisive; bottom up = agglomerative

» bottom up: each value is a cluster, cluster the closest pair
of points, iterate: find the closest pair of clusters C; and Cy
merge them

» need a measure for distance between points and between
clusters (the clusters needn’t be vectors)

» single link clustering measures the distance between
clusters by the minimum distance
d(Cy, C2) = minjcc, irec, Dir

» susceptible to ‘chaining’; long strings of points assigned to
the same cluster

» sensitive to outliers

» complete linkage d(Cy, Cz) = max;cc, irec, Dir

» group average intermediate between complete and single
linkage.
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... hierarchical clustering

easily pictured in a dendogram
Figs 14.12 and 14.13
'look’ is quite different for different linkages
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Implemented in Rin hclust and agnes.
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