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Flashback

e Recall slides from February 3: Separating hyperplanes.

e Find the line (or hyper-plane) that separates the two groups with

the largest possible margin.
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More formally
Training data: (z1,91), (1,¥1),--., (N, yn) with z; € IRP and
y; € {—1,1} (a label for the class).

e Classification rule: G(z) = sign(z? 8 + 39).
e Separating hyperplane

max M
ﬁ7/807||/8||:1

subject to y;(z; B+ Bo) > M, i=1,...,N

e The sizes of M and ||3|| are linked together. Without loss of
generality, we can fix M = 1/||3|| rather than ||5]| = 1.
- 2
min
i 9]
subject to y;(z} B+ Bo) > 1, i .., N
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What should we do if the groups overlap?

Separable Not Separable

3 /21



Support Vector Classifier

We allow some points to be misclassified by introducing slack variables
(&;) that measure the distance between the misclassified point and the
decision boundary. The total slack is bounded by an arbitrary constant
chosen by the user.

;‘1_‘!'[_;:3 + 3o =0

. T/ / margin
- e d

] 1
M = I
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Program

We use the constraints y;(z] 3+ 80) > M(1 — ;) with & > 0 and
Z?]:\Ll 57, S constant. The program iS
(

yi(zi B+ Bo) >1—-& Vi,

min ||3|| subject to < N
& > 0, Z& < constant.
i=1

\

This more convenient form is however used:

| N
: 2
min 5”5“ +C;€i

subject to & >0, yi(z; B+ B0) >1—¢& Vi

where C' is a user-defined cost parameter.
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Lagrange multipliers

Lagrange multipliers lead to:

——||/3H2+OZ@ Zazyz (z] B+ Bo) — (1 - &) Zm

i=1
with a;, i, & > 0 and must be minimized with respect to (3, 5y, &;.

Taking derivatives:

N
E ;Y L
i=1

07)

Therefore the solution to the problem is of the form B — Zfil QYT
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Tool #1: Duality

The dual of a minimization problem is a maximization problem that
shares the same solution, but may be easier to solve.
Here is an example from Strang (1986):

Primal problem:

Find the shortest distance between a line £ and a point p in IR®.

Dual problem:
Find the longest distance between p and a plane containing /.

Both optimization problems find the same distance, but the dual is
easier, even if it involves two optimizations.

Wolfe (1961) found a dual applicable to our optimization problem.

G. Strang (1986). Introduction to Applied Mathematics, Wellesley-Cambridge Press.
P. Wolfe (1961). A Duality Theorem for Nonlinear Programming, Quarterly of Applied Mathematics, 19:3, 239-244.
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Wolfe's Dual for SVM

Maximizing the function Lp below is equivalent to minimizing Lp.

Lp = Zaz -5 Z Z Qi YiYir T T

zlz’l

subject to 0 < «; < C' and vazl o;y; = 0.

Much easier: Quadratic positive (semi-?)definite function of «;
constrained to an hyper-cube.

Note: Can rewrite as Lp = —sa’ diag(y)(x? x)diag(y)a + a™1.

2

Unconstrained solution: & = [diag(y)(x!x)diag(y)]~'1.
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Tool #2: Karush-Kuhn-Tucker (simplified version)

min f(x)

subject to ¢;(x) <0, i=1....,m

Necessary conditions: for a feasible point x* to be minimum:
A > 0 in IR™ such that

Vix*)+X'Vgx*)=0 and Ngx*)=0

l.e. X* is an interior point where the derivative of f is zero, or a point
on the boundary of the feasible set. In addition, \; is positive only if
the condition g; is active.

Sufficient condition: if in addition, the Hessian associated to
V f(x) + A Vg(x) is positive semidefinite on the tangent subspace of
the active constraints at x*.
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Three cases:

Contours of f

C/

™S

&

Feasible set
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Karush-Kuhn-Tucker for SVM

According tp HTF, KKT bring the additional constraints:
ailyi(z B+ Bo) — (1 — &)
&
yi(z; B+ Bo) — (1 = &)

Why Support Vector Machine

The first equation above implies that either x; is within the margin, or
a; = 0. Therefore, the estimate B = > . ;1 &uy;x; will be based only
on a few data points (with «; > 0) called the support vectors.

11 / 21



Decision

We now have estimates of 3 and 3y. Given a new x, a decision is
made based on

A A

G(x) = sign(z" 0 + fo)

Decision for Multiple Classes

When y has m > 2 classes, a SVM is fitted to all of the m(m — 1)/2
pairs of groups. Each model will allocate the new = to a category. A
majority vote is used to determine the decision.
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Choice of

The amount of slack (C) has
to be decided by the user.

A large C forces a tight margin,

but a low C encourages overfitting.

C' = oo requires perfect separation.

Training Error: 0.270
Test Error: 0.288
Bayes Error:  0.210

Training Error: 0.26 -+~

Test Error: 0.30
Bayes Error:  0.21
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Extensions

What can we do when the data is separable, but not by an hyperplane?
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Adding Bases

We can expand the space of functions used to classify the data by
adding additional bases.

Suppose x; = [u;, v;].

We can use x; = [u;, v;, u?,v?, uv| instead, yielding more flexibility.

The Kernel Trick

To fit the SVM, we must optimize

LD — Z@z — A Z Z azaz’yzyz’x Ly

1=1 =1

subject to 0 < o; < C' and ) «o;y; = 0.

15 / 21



The Kernel Trick (continued)

We can simply replace the inner product by different kernels.
For instance:

dth-Degree polynomial : K(z,z')=(1+ <:E,£E’>)d,

Radial basis : K(z,2") = exp(—|lz — 2'||?),
Neural network : K(z,z") = tanh(k1{z, ") + K2).
With d = 2, and = = [u, v], the polynomial kernel expands into
K(z,2") =1+ 2uu + 20" + (uu')? + (vv')? + 2un’vv’
which is equivalent to using the additional bases

1,V 2u, vV2v, u?, v?, V2uv].

Kernels should be positive symmetric (semi-)definite functions.
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Examples
Polynomial Kernel (d=2) Radial basis
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Choice of C' vs Overfitting

The expression makes more sense when many bases are used. When
more slack is allowed, it is easier to use a larger number of bases and
therefore overfit.

Curse of Dimensionality

Adding more features or using kernels with more bases will not

necessarily lead to better separation. In fact, it can make good

classifiers in a subspace harder to find.

Test Error (SE)

Method No Noise Features Six Noise Features
SV Classifier ).003)

SVM/poly 2 ).078 (0.00:
SVM /poly 5
SVM /poly 10
BRUTO
MARS
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Continuous Response

SVM can be adapted to accommodate regression (continuous v).
We consider the minimization of

H (3, Bo) ZV{% a:z)}+—||ﬁ||2 with V =

Function for extending SVM Huber’s robust regression
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The resulting optimization problem is similar to SVM.
The Kernel trick is still applicable.
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Function svm from Library ee1071

svmiel071) R Documentation

Support Vector Machines

Description

svm is used to train a support vector machine. It can be used to carry out general regression and classification (of nu
and epsilon-tvpe), as well as density-estimation. A formula interface is provided.

Usage

$% 53 method for class 'formula':
svm (formula, data = NULL, ..., subset, na.action =
na.omit, =scale = TRUE)
£#% Default 53 method:
svm(x, v = NULL, =scale = TRUE, type = NULL, kernel =
"radial", degree = 3, gamma = if (is.wvector(x)) 1 else 1 / necol(x),
coef0 = 0, cost = 1, nu = 0.5,
class.weights = NULL, cachesize = 40, tolerance = 0.001, ep=silon = 0.1,
shrinking = TRUE, cross = 0, probability = FALSE, fitted = TRUE,
., Subset, na.action = na.omit)

Arguments

formula a symbolic description of the model to be fit.

data an optional data frame containing the variables in the model. By default the variables are taken from
the environment which “svm’ is called from.
a data matrix, a vector, or a sparse matrix (object of class matrix=.c=r as provided by the package
SparseM).
a response vector with one label for each row/component of x. Can be either a factor (for
classification tasks) or a numeric vector (for regression).
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A logical vector indicating the variables to be scaled. If =cale is of length 1, the value is recvcled as

Data i lized many times as needed. Per default, data are scaled internally (both = and v variables) to zero mean
ata Is normalize and unit variance. The center and scale values are returned and used for later predictions.

tyvpe =vm can be used as a classification machine, as a regresson machine, or for novelty detection.
Depending of whether v is a factor or not, the default setting for tvpe is C-classification or
eps-regression, respectively, but may be overwritten by setting an explicit valie.
Valid options are:

E— C-classification
MethOdS we nu-classification
discussed one-classification (for novelty detection)
e eps-regression

nu-regression

the kernel used in training and predicting. Y ou might consider changing some of the following

parameters, depending on the kernel type.

Choose |
akerne| ~ fmeas

u'"™*y
polvnomial:

(gamma®*u'*v + coefl) degree
radial basis:

exp(-gamma®|u-v"2)
sigmoid:

tanh(gamma®*u'*v + coefl)

parameter needed for kernel of type polynomial (default: 3)

Tuning
kernel

parameter needed for all kernels except 1inear (defaunlt: 1/(data dimension))
parameter needed for kernels of type polynomial and =igmoid (default: 0)

C cost of constraints violation (default: 1)}—it is the “C’-constant of the regularization term in the
Lagrange formulation.

parameter needed for nu-classification, nu-regression, and one-classification
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