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Flashback

• Recall slides from February 3: Separating hyperplanes.

• Find the line (or hyper-plane) that separates the two groups with

the largest possible margin.
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More formally

Training data: (x1, y1), (x1, y1), . . . , (xN , yN ) with xi ∈ IRp and

yi ∈ {−1, 1} (a label for the class).

• Classification rule: G(x) = sign(xT β + β0).

• Separating hyperplane

max
β,β0,||β||=1

M

subject to yi(xT
i β + β0) ≥ M, i = 1, . . . , N

• The sizes of M and ||β|| are linked together. Without loss of

generality, we can fix M = 1/||β|| rather than ||β|| = 1.

min
β,β0

||β||2

subject to yi(xT
i β + β0) ≥ 1, i = 1, . . . , N
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What should we do if the groups overlap?
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Support Vector Classifier

We allow some points to be misclassified by introducing slack variables

(ξi) that measure the distance between the misclassified point and the

decision boundary. The total slack is bounded by an arbitrary constant

chosen by the user.
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Program

We use the constraints yi(xT
i β + β0) ≥ M(1− ξi) with ξi ≥ 0 and∑N

i=1 ξi ≤ constant. The program is

min ||β|| subject to


yi(xT

i β + β0) ≥ 1− ξi ∀i,

ξi ≥ 0,

N∑
i=1

ξi ≤ constant.

This more convenient form is however used:

min
1
2
||β||2 + C

N∑
i=1

ξi

subject to ξi ≥ 0, yi(xT
i β + β0) ≥ 1− ξi ∀i

where C is a user-defined cost parameter.
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Lagrange multipliers

Lagrange multipliers lead to:

LP =
1
2
||β||2 + C

N∑
i=1

ξi −
N∑

i=1

αi[yi(xT
i β + β0)− (1− ξi)]−

N∑
i=1

µiξi

with αi, µi, ξi ≥ 0 and must be minimized with respect to β, β0, ξi.

Taking derivatives:

β =
N∑

i=1

αiyixi

0 =
N∑

i=1

αiyi

αi = C − µi.

Therefore the solution to the problem is of the form β̂ =
∑N

i=1 α̂iyixi.
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Tool #1: Duality

The dual of a minimization problem is a maximization problem that

shares the same solution, but may be easier to solve.

Here is an example from Strang (1986):

Primal problem:

Find the shortest distance between a line ` and a point p in IR3.

Dual problem:

Find the longest distance between p and a plane containing `.

Both optimization problems find the same distance, but the dual is

easier, even if it involves two optimizations.

Wolfe (1961) found a dual applicable to our optimization problem.
G. Strang (1986). Introduction to Applied Mathematics, Wellesley-Cambridge Press.

P. Wolfe (1961). A Duality Theorem for Nonlinear Programming, Quarterly of Applied Mathematics, 19:3, 239-244.

7 / 21



Wolfe’s Dual for SVM

Maximizing the function LD below is equivalent to minimizing LP .

LD =
N∑

i=1

αi −
1
2

N∑
i=1

N∑
i′=1

αiαi′yiyi′x
T
i xi′

subject to 0 ≤ αi ≤ C and
∑N

i=1 αiyi = 0.

Much easier: Quadratic positive (semi-?)definite function of αi

constrained to an hyper-cube.

Note: Can rewrite as LD = − 1
2αT diag(y)(xT x)diag(y)α + αT 1.

Unconstrained solution: α̂ = [diag(y)(xT x)diag(y)]−11.
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Tool #2: Karush-Kuhn-Tucker (simplified version)

min f(x)

subject to gi(x) ≤ 0, i = 1. . . . ,m

Necessary conditions: for a feasible point x∗ to be minimum:

∃λ ≥ 0 in IRm such that

∇f(x∗) + λT ∇g(x∗) = 0 and λT g(x∗) = 0

i.e. x∗ is an interior point where the derivative of f is zero, or a point

on the boundary of the feasible set. In addition, λi is positive only if

the condition gi is active.

Sufficient condition: if in addition, the Hessian associated to

∇f(x) + λT ∇g(x) is positive semidefinite on the tangent subspace of

the active constraints at x∗.
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Three cases:
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Karush-Kuhn-Tucker for SVM

According tp HTF, KKT bring the additional constraints:

αi[yi(xT
i β + β0)− (1− ξi)] = 0

µiξi = 0

yi(xT
i β + β0)− (1− ξi) ≥ 0

Why Support Vector Machine

The first equation above implies that either xi is within the margin, or

αi = 0. Therefore, the estimate β̂ =
∑N

i=1 α̂iyixi will be based only

on a few data points (with αi > 0) called the support vectors.
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Decision

We now have estimates of β and β0. Given a new x, a decision is

made based on

Ĝ(x) = sign(xT β̂ + β̂0)

Decision for Multiple Classes

When y has m > 2 classes, a SVM is fitted to all of the m(m− 1)/2
pairs of groups. Each model will allocate the new x to a category. A

majority vote is used to determine the decision.
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Choice of C

The amount of slack (C) has

to be decided by the user.

A large C forces a tight margin,

but a low C encourages overfitting.

C = ∞ requires perfect separation.
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Extensions

What can we do when the data is separable, but not by an hyperplane?
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Adding Bases

We can expand the space of functions used to classify the data by

adding additional bases.

Suppose xi = [ui, vi].

We can use xi = [ui, vi, u
2
i , v

2
i , uv] instead, yielding more flexibility.

The Kernel Trick

To fit the SVM, we must optimize

LD =
N∑

i=1

αi −
1
2

N∑
i=1

N∑
i′=1

αiαi′yiyi′x
T
i xi′

subject to 0 ≤ αi ≤ C and
∑

αiyi = 0.
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The Kernel Trick (continued)

We can simply replace the inner product by different kernels.

For instance:

dth-Degree polynomial : K(x, x′) = (1 + 〈x, x′〉)d,

Radial basis : K(x, x′) = exp(−γ||x− x′||2),
Neural network : K(x, x′) = tanh(κ1〈x, x′〉+ κ2).

With d = 2, and x = [u, v], the polynomial kernel expands into

K(x, x′) = 1 + 2uu′ + 2vv′ + (uu′)2 + (vv′)2 + 2uu′vv′

which is equivalent to using the additional bases

[1,
√

2u,
√

2v, u2, v2,
√

2uv].

Kernels should be positive symmetric (semi-)definite functions.
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Examples
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Choice of C vs Overfitting

The expression makes more sense when many bases are used. When

more slack is allowed, it is easier to use a larger number of bases and

therefore overfit.

Curse of Dimensionality

Adding more features or using kernels with more bases will not

necessarily lead to better separation. In fact, it can make good

classifiers in a subspace harder to find.
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Continuous Response

SVM can be adapted to accommodate regression (continuous y).

We consider the minimization of

H(β, β0) =
N∑

i=1

V {yi − f(xi)}+
λ

2
||β||2 with V =

The resulting optimization problem is similar to SVM.

The Kernel trick is still applicable.
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Function svm from Library ee1071
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