Notes

- Take-home Midterm: March 16 – March 25
- One question from "Kernels and Ensembles" by M. Zhu
- Classification and regression trees §9.2
- Ensemble methods and random forests Zhu + §15.1-3
- k-means and k-nearest neighbour methods §13.1-3
- unsupervised learning §14.1-3
VR code for neural networks

Size = 2

Size = 2, $\lambda = 0.001$

Size = 2, $\lambda = 0.01$

Size = 5, 20, $\lambda = 0.01$
plt.bndry <- function(size=0, decay=0, ...)
{
 cush.nn <- nnet(cush, tpi, skip=T, softmax=T, size=size,
 decay=decay, maxit=1000)
 invisible(b1(predict(cush.nn, cushT), ...))
}

b1 <- function(Z, ...)
{
 zp <- Z[,3] - pmax(Z[,2], Z[,1])
 contour(exp(xp), exp(yp), matrix(zp, np),
 add=T, levels=0, labex=0, ...)
 zp <- Z[,1] - pmax(Z[,3], Z[,2])
 contour(exp(xp), exp(yp), matrix(zp, np),
 add=T, levels=0, labex=0, ...)
}
...code for nn

- \(Z = \text{predict(cush.nn, cushT)} \)
 - uses fitted neural network to predict on a \(100 \times 100 \) grid of \((x_1, x_2)\) called \(\text{cushT} \)
 - the grid points are called \(x_p \) and \(y_p \)
 - this gives a \(10,000 \times 3 \) matrix of probabilities

- \(z_p = Z[,3] - \text{pmax}(Z[,2], Z[,1]) \)
 - \(\text{Pr}(3) - \max\{\text{Pr}(2), \text{Pr}(1)\} \)
 - positive if class 3 is the highest probability, else negative
 - \(\text{matrix}(z_p, np): np=100, \) the number of columns in the matrix \(z_p \)

- \(\text{contour(exp(xp), exp(yp), matrix(zp, np), add=T, levels = 0)} \)
 - the boundary where \(\text{Pr}(3) \) is largest

- and similarly

- \(z_p = Z[,1] - \text{pmax}(Z[,3], Z[,2]) \)
 - \(\text{Pr}(1) - \max\{\text{Pr}(3), \text{Pr}(2)\} \)
 - positive if class 1 is the highest probability, else negative
 - \(\text{contour(exp(xp), exp(yp), matrix(zp, np), add=T, levels = 0)}: \) the boundary where \(\text{Pr}(1) \) is largest
Support Vector Machines

\[\min_{\beta_0, \beta} \frac{1}{2} \| \beta \|^2 + \gamma \sum_{i=1}^{N} \xi_i \quad \text{s.t.} \quad \xi_i \geq 0 \]

under constraints

\[\xi_i \geq 0, \quad y_i (x_i^T \beta + \beta_0) \geq 1 - \xi_i \]

Lagrange multipliers:

\[L_P = \frac{1}{2} \| \beta \|^2 + \gamma \sum_{i=1}^{N} \xi_i - \sum_{i=1}^{N} \alpha_i \{ y_i (x_i^T \beta + \beta_0) - (1 - \xi_i) \} - \sum_{i=1}^{N} \mu_i \xi_i \]

minimize over \(\beta, \beta_0, \xi_i \)

\[\hat{\beta} = \sum_{i=1}^{N} \hat{\alpha}_i x_i y_i \]

\(\{ x_i : \hat{\alpha}_i \neq 0 \} \) support vectors
library(e1071)
library(rgl)

similar boundary drawing functions for
neural networks etc are in Chapter 12 scripts for MASS

boundaries=function(y,b,n=100){
 # y is the data, Êb the svm object
 grid=expand.grid(seq(min(y[,1]),max(y[,1]),length=n),seq(min(y[,2]),max(y[,2]),length=n))
 points(grid,pch=4,cex=.15,col=paste(as.character(predict(b,grid))))
}

supports=function(y,b){
 # y is the data, Êb is the svm object
 points(y[b$index,],cex=2)
}

Examples of SVM

y=matrix(rnorm(200),ncol=2)+rep(c(0,5),each=50)
lab=rep(c("Red","Blue"),each=50)
plot(y,col=lab,pch=20)

b=svm(y,as.factor(lab),kernel="linear")
summary(b)
supports(y,b)

boundaries(y,b)
Example with misclassification

```r
y = matrix(rnorm(200), ncol=2) + rep(c(0,2), each=50)
lab = rep(c("Red", "Blue"), each=50)
plot(y, col=lab, pch=20)

b = svm(y, as.factor(lab), kernel="linear")
supports(y, b)
summary(b)
fit = as.character(b$fitted)
plot(y, col=lab, pch=20)
points(y[fit!=lab,], col=fit[fit!=lab], pch=5, cex=1.5)

boundaries(y, b)
```
Example with circles

```r
norm=function(x){sqrt(sum(x^2))}
y=matrix(rnorm(200),ncol=2)
y[51:100,]=y[51:100,]+4*y[51:100,]/apply(y[51:100,],1,norm)
lab=rep(c("Red","Blue"),each=50)
plot(y,col=lab,pch=20)

b=svm(y,as.factor(lab),kernel="linear")
summary(b)
fit=as.character(b$fitted)
points(y[fit!=lab,],col=fit[fit!=lab],pch=5,cex=1.5)
boundaries(y,b)

b=svm(y,as.factor(lab),kernel="radial")
summary(b)
fit=as.character(b$fitted)
plot(y,col=lab,pch=20)
points(y[fit!=lab,],col=fit[fit!=lab],pch=5,cex=1.5)
boundaries(y,b)

plot(y,col=lab,pch=20)
points(y[fit!=lab,],col=fit[fit!=lab],pch=5,cex=1.5)
supports(y,b)

# Check new data

y2=matrix(rnorm(200),ncol=2)
y2[51:100,]=y2[51:100,]+4*y2[51:100,]/apply(y2[51:100,],1,norm)
lab=rep(c("Red","Blue"),each=50)
fit=as.character(predict(b,y2))
plot(y2,col=fit,pch=20)
points(matrix(y2[fit!=lab,],ncol=2),cex=1.2)
```
Example with many clusters

```
norm=function(x){sqrt(sum(x^2))}
y=matrix(rnorm(400),ncol=2)
y[51:100,]=y[51:100,]+3*y[51:100,]/apply(y[51:100,],1,norm)
y[101:150,]=y[101:150,]+c(4,4)
y[151:200,]=y[151:200,]+6*y[151:200,]/apply(y[151:200,],1,norm)
lab=rep(c("Red","Blue","Green","Black"),each=50)
plot(y,col=lab,pch=20)

chk=sample(1:200,20)

b=svm(y[-chk,],as.factor(lab[-chk]),kernel="radial")
summary(b)
boundaries(y,b)
supports(y,b)

fit=as.character(predict(b,y[chk,]))
plot(y[-chk,],col=lab[-chk],pch=20)
points(y[chk,],col=fit,pch=3)

# Points with wrong category
points(matrix(y[chk[fit!=lab[chk]],],ncol=2),col=lab[chk[fit!=lab[chk]]],pch=7)
```
Example with music files

Real data. List of songs. Variables are based on the analysis of the signal of 30 seconds of music. Use that data to predict the type of songs.

```r
a = read.table("music_data_17_10_05.exa", sep = " ")[-52]

x = array(as.numeric(as.matrix(a[, 2:50])), dim(a))

rem = apply(is.na(x), 1, sum)
tit = a[!rem, 1]
genre = a[!rem, 51]
x = x[!rem,]
x = x[, apply(x, 2, sd) != 0]

# Visualization

pairs(x[, sample(1:46, 5)], col = lab, pch = 20)
keep = sample(1:46, 3); kp = paste("var", keep); plot3d(x[, keep], size = 3, col = lab, xlab = kp[1], ylab = kp[2], zlab = kp[3])

# Remove data for validation

chk = sample(1:1559, 200)

# Different SVM

b = svm(x[-chk,], genre[-chk])
sum(predict(b, x[chk,]) == genre[chk])

b1 = svm(x[-chk,], genre[-chk], kernel = "linear")
sum(predict(b1, x[chk,]) == genre[chk])
```
Vary the value of C / γ

```r
b1 <- svm(x[-chk,], genre[-chk], kernel = "linear")
sum(predict(b1, x[chk,]) == genre[chk])

b1 <- svm(x[-chk,], genre[-chk], kernel = "linear", cost = 10)
sum(predict(b1, x[chk,]) == genre[chk])

b1 <- svm(x[-chk,], genre[-chk], kernel = "linear", cost = .1)
sum(predict(b1, x[chk,]) == genre[chk])

b1 <- svm(x[-chk,], genre[-chk], kernel = "linear", cost = 100)
sum(predict(b1, x[chk,]) == genre[chk])

# Data from the book
x <- matrix(scan("x.dat"), ncol = 2)
y <- scan("y.dat")
y <- c("orange", "blue")[2 - y]
plot(x, col = y, pch = 20)
b <- svm(x, as.factor(y))
boundaries(x, b)
supports(x, b)

b <- svm(x, as.factor(y), kernel = "polynomial", degree = 4)
boundaries(x, b)
supports(x, b)
```
The data files contain features for most of the audio tracks in Garageband dataset. These have been extracted using the approach described in [Mierswa/Morik/2005a]. More information about the Garageband dataset and the audio tracks can be found in [Homburg/etal/2005a].

Format

The dataset is represented in the Yale format and can be read and processed with the Yale package (http://yale.cs.uni-dortmund.de).

History

17.10.2005
We have revised the former exampleset, which can be found under "http://www-ai.cs.uni-dortmund.de/AUDIO/Music_features_old.zip". We replaced ".mp3" with "_mp3" in the suffixes of the example ids, to make them compatible with the user taxonomies. Also 30 examples were removed to provide consistency with another exampleset containing more features which will be available soon.

References
