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Administration
I Homework 1 available Thursday
I Discussion of project requirements on Thursday
I NSERC summer undergraduate awards
I Fields-MITACS undergraduate summer research

http://www.fields.utoronto.ca/programs/scientific/10-11/summer-research/
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Geometric view of least squares fitting
I β̂ = (X T X )−1X T y
I β̂ = (β̂0, β̂1, . . . , β̂p)

I β̂p can be obtained by a series of regressions (projections)
as outlined in algorithm 3.1 on p.54

regress x1 on 1, get coefficient γ̂01, form residual
z1 = x1 − x̂1
regress x2 on 1, z1, get coefs γ̂02, γ̂12, form
residual z2 = x2 − γ̂021− γ̂12z1
...
regress xp on zp−1, zp−2, . . . , z1,1 to get
zp = xp − x̂p

regress y on zp to get β̂p

I illustration on prostate training data – see
prostateRsession.txt

2 / 24



STA 414/2104 Jan 19, 2010

QR Decomposition X = Z Γ

I matrix representation X = Z Γ

I Z has columns zj

I

Γ =


0 γ̂01 γ̂02 . . . γ̂0p
0 0 γ̂12 . . . γ̂1p

. . .
γ̂p−1,p

0 . . . 0


I Let Djj = (zT

j zj)
1/2 = ||zj || and D = diag (Djj) dimension?

I X = ZD−1DΓ = QR
I QT Q = I, R is upper triangular
I β̂ = R−1QT y
I ŷ = QQT y check pr.lm$qr
I Gram-Schmidt
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Singular value decomposition, X = UDV
I X assumed to be centered, so all columns add to zero

(p.64, l.-4)
I U is N × p, V is p × p
I D is diagonal, d1 ≥ d2 ≥ · · · ≥ dp ≥ 0 not the same D
I

X T X = VD2V T

eigendecomposition of X T X and of NS = XX T

I ŷ = X β̂ = UUT y
= QQT y different orthogonal bases for ...

I define
z1 = Xv1 = u1d1

I note that var(z1) = d2
1/N

I z1 is the derived variable with the largest variance: the first
principal component of X

I z2 has the largest variance among linear combinations
orthogonal to z1
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... singular value decomposition
I

XN×p = UN×pDp×pV T
p×p, UT U = I, V T V = I,

D = diag(d1, . . .dp)

X β̂LS = X (X T X )−1X T y
= UDV T (VDUT UDV T )−1VDUT y

= UDV T V T−1
D−2V−1VDUT y

= UUT y = Σp
j=1ujuT

j y

svd(model.matrix(pr.lm)), for example
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Model selection: subsets (§3.3.1)
I linear regression: forward, backward, stepwise, all possible

subsets regression
I RSS(β̂) = (y − X β̂)T (y − X β̂) = Σ(yi − ŷi)

2

Figure 3.5 this is called SSE in the 302 text

I if we add a regressor, say from Xp−1 to Xp, RSS(β̂)
necessarily decreases

I forward (stepwise) selection starts with one predictor
(usually the constant term) and stops when no additional
predictor is statistically significant step(pr.lm,
direction = "forward", ...)

I backward (stepwise) selection starts with all predictors and
deletes least significant ... direction =
"backward"...

I stepwise selection checks at each stage whether or not to
add variables back in direction = "both"
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... subset selection
I forward stagewise: a “slow” version of forward stepwise, in

which coefficients are not re-computed
I all possible subsets regression considers all 2p models.
I for p < 30, feasible with the “leaps and bounds” algorithm,

implemented in package leaps (See Figure 3.6), also
regsubsets

I Figure 3.7
I huh?
I 10-fold cross-validation
I model selection related to expected prediction error:

theory to come in Ch. 7
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“Mallows’ Cp”
I a common adjustment to measure benefit of adding further

parameters:

Cp =
RSSp

σ2 + 2p − N if σ2 is known;

I or an estimate of this, if σ2 is unknown
I rule of thumb: choose p so that Cp is small and Cp ' p
I can be shown to be a good choice for prediction (details

deferred until Chapter 7)
I a closely related, more general, criterion AIC (Akaike’s

Information Criterion)
I for our linear model

AIC ≈ N log(RSSp/N) + 2p + constant

I stepAIC in MASS library; step in base
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step

> step(pr.lm)
Start: AIC=-37.13
lpsa ˜ lcavol + lweight + age + lbph + svi + lcp + gleason +

pgg45

Df Sum of Sq RSS AIC
- gleason 1 0.011 29.437 -39.103
<none> 29.426 -37.128
- age 1 0.989 30.415 -36.914
- pgg45 1 1.532 30.959 -35.727
- lcp 1 1.768 31.195 -35.218
- lbph 1 2.144 31.571 -34.415
- svi 1 3.093 32.520 -32.430
- lweight 1 3.839 33.265 -30.912
- lcavol 1 14.610 44.037 -12.118

Step: AIC=-39.1
lpsa ˜ lcavol + lweight + age + lbph + svi + lcp + pgg45

Df Sum of Sq RSS AIC
<none> 29.437 -39.103
- age 1 1.102 30.540 -38.639
- lcp 1 1.758 31.196 -37.216
- lbph 1 2.135 31.573 -36.411
- pgg45 1 2.376 31.813 -35.903
- svi 1 3.166 32.604 -34.258
- lweight 1 4.005 33.442 -32.557
- lcavol 1 14.887 44.325 -13.681

Call:
lm(formula = lpsa ˜ lcavol + lweight + age + lbph + svi + lcp + pgg45, data = train)

Coefficients:
(Intercept) lcavol lweight age lbph

2.4669 0.6764 0.2653 -0.1450 0.2095
svi lcp pgg45

0.3071 -0.2872 0.2523
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Shrinkage Methods: (§3.4)
I Ridge regression
I

β̂LS = (X T X )−1X T y
β̂ridge = (X T X + λI)−1X T y

I can show that β̂ridge satisfies

min
β

(
Σ{yi − β0 − Σp

j=1xijβj}2 + λΣp
j=1β

2
j

)
min
β

Σ{yi − β0 − Σp
j=1xijβj}2 s.t. Σβ2

j ≤ t

I Assume xj ’s are centered and put these in matrix X (with
no column of 1’s:

min
β

(y − Xβ)T (y − Xβ) s.t. ||β||2 ≤ t
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... ridge regression
I minβ{(y − Xβ)T (y − Xβ) + λ||β||2}
I λ is a tuning parameter: λ = 0 gives β̂LS, λ→∞

Figure 3.8
I in R the library MASS library(MASS ) has a ridge

regression version of lm called lm.ridge

I if columns of X are nearly linearly dependent
(multicollinearity), β̂’s for these columns should be shrunk
towards 0.

I essential that the predictors are all scaled to the same units
I this is difficult for interpretation of the coefficients
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X β̂ridge = X (X T X + λI)−1X T y

= UDV T (VD2V T + λI)−1VDUT y
= UDV T (VD2V T + λVV T )−1VDUT y
= UD(D2 + λI)−1DUT y

= Σp
j=1uj(

d2
j

d2
j + λ

)uT
j y

df (λ) = tr[X (X T X + λI)−1X T ] = Σp
j=1

d2
j

d2
j + λ

Figure 3.7

df (λ) called effective number of parameters in Ch. 7
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Lasso
I

min
β

(
Σ{yi − β0 − Σp

j=1xijβj}2 + λΣp
j=1|βj |

)
I

min
β

Σ{yi − β0 − Σp
j=1xijβj}2 s.t. Σ|βj | ≤ t

I quadratic programming problem
I β̂ lasso is nonlinear function of y
I Figure 3.10
I Table 3.3
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...Lasso
I in Table 3.3 each method had a tuning parameter to

choose; they used cross-validation within the training data
I in lm.ridge you can extract a component called $GCV

I the quantity Σd2
j /(d2

j + λ) has an interpretation as the
number of ’degrees of freedom’ or number of ’parameters’
used by the ridge regression fit

I book says that the best value is 4.16, which corresponds to
quite a large λ (39); the GCV criterion chooses λ = 5

I analysis of lasso more difficult; note Figure 3.10 plotted
against t/Σ|β̂j |
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... smoothing
I ridge regression gives “proportional shrinkage”
I subset selection gives “hard thresholding” (some βj → 0)
I lasso gives “soft thresholding”: blend of shrinkage and

zeroing (Figure 3.10 and Figure 3.11)
I Least Angle Regression (LAR): combine forward stagewise

regression with the lasso
I related to the Dantzig selector (Candes and Tao, AS 2007)
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Mean squared error of prediction in linear models
Let β̃ = β̃(y) be a competing estimator of β (not β̂, the LS estimator).
Using β̃ for prediction would give ỹ0 = xT

0 β̃, where
xT

0 = (1, x01, . . . , x0p) is the new value of the inputs. The expected
prediction error is

E(ỹ0 − y0)2 = E(xT
0 β̃ − y0)2 (by definition)

= E(y0 − xT
0 β + xT

0 β − xT
0 β̃)2

= var(y0) + E(xT
0 β̃ − xT

0 β)2 (why is cross prod 0?)

= σ2 + E{xT
0 (β̃ − β)(β̃ − β)T x0}

= σ2 + xT
0 E{(β̃ − β)(β̃ − β)T}x0

= σ2 + xT
0 E{(β̃ − E β̃ + E β̃ − β)(β̃ − E β̃ + E β̃ − β)x0

= σ2 + xT
0 [E{(β̃ − E β̃)(β̃ − E β̃)T}+ (E β̃ − β)(E β̃ − β)T ]x0

= σ2 + xT
0 {cov(β̃) + bias2(β̃)}x0

The first term, σ2, is unavoidable. The next two terms together are the
Mean Squared Error (MSE) of the prediction ỹ0, and are shown here
to be a function of x0 and the MSE of β̃. If β̃ is unbiased, i.e. E β̃ = β,
then we only need to worry about the covariance terms. Estimates of
β obtained by ridge regression, Lasso, and LARS are all biased. This
could be useful if the variance is decreased enough to give smaller
MSE.
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Derived features §3.5
I replace x1, . . .xp with linear combinations of columns
I principal components from SVD are natural candidates
I X = UDV
I zm = Xvm, m = 1, . . . ,M < p
I zm are orthogonal by construction
I

ŷpcr
(M) = ȳ1 +

M∑
m=1

θ̂mzm

I

θ̂m =
〈zm, y〉
〈zm, zm〉

I inputs should be scaled first (mean 0, variance 1)
I Figure 3.17
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... derived features
I closely related method Partial least squares
I also constructs derived variables
I widely used in chemometrics, where often p > N
I see §3.6 for discussion
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Thursday and next week
I more on ridge regression and lasso in R

I construction of Table 3.3 in R test set error
I discussion of project
I HW 1 will be available
I Next week Chapter 4: §4.1 to §4.4
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