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Administration

» Homework 1 available Thursday

» Discussion of project requirements on Thursday
» NSERC summer undergraduate awards

» Fields-MITACS undergraduate summer research

http://www.fields.utoronto.ca/programs/scientific/10-11/summer—-research/
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Geometric view of least squares fitting
> = (XTX)"'XTy
> /3: (@07317"'7/3[3)
> Bp can be obtained by a series of regressions (projections)

as outlined in algorithm 3.1 on p.54

regress Xy on 1, get coefficient 41, form residual
Z1 =X — )’t1

regress Xo on 1, zq, get coefs 4g2, 412, form
residual zo = X, — ’3/021 — ’3/1221

regress X, oN Z,_1,Zp—2,...,21, 1 to get
Zp =Xp — Xp X
regress y on z, to get 3,
» illustration on prostate training data — see
prostateRsession.txt

2/24



STA 414/2104 Jan 19, 2010

QR Decomposition X = ZT

» matrix representation X = ZT
» Z has columns z;

0 Aot A2 - Aop

0 0 2 ... Hip

r= :
ﬁp—“vp

0

> Let Dj = (27 z)"/? = ||z|| and D = diag (D) dimension?

X =ZD'Dr = QR

Q"Q =1, Ris upper triangular
f=R"QTy

» = QQTy check pr.1msqr

» Gram-Schmidt

vV vy
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Singular value decomposition, X = UDV

» X assumed to be centered, so all columns add to zero
(p.64, 1.-4)
» UisNxp, Vispxp
» Disdiagonal, dy > d>>--->dp >0 notthe same D
>
XX =VvD?VvT
eigendecomposition of X7 X and of NS = XX
» y=X3=UUTy
= QQTy different orthogonal bases for ...
» define
71 = XV1 = U d1

» note that var(z¢) = d?/N

» 74 is the derived variable with the largest variance: the first
principal component of X

» 7 has the largest variance among linear combinations

orthogonal to z;
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FIGURE 3.9. Principal components of some input data points. The largest prin-
cipal component is the direction that mazimizes the variance of the projected data,
and the smallest principal component minimizes that variance. Ridge regression
projects ¥ onto these components, and then shrinks the coefficients of the low-
wariance components more than the high-variance components.
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... singular value decomposition

Xnxp = UnxpDpxp VpTXp’ U'u = I, Vv = l,
D = diag(dy, ... dp)

XBis = X(XTX)7'XTy
= uUbvT(vbuTupv='vbU'y
= Upbv'VvT 'D2v-'vDUTy
= Wy =5 yuly

svd (model.matrix (pr.1m)), for example
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>

>

Model selection: subsets (53.3.1)

linear regression: forward, backward, stepwise, all possible
subsets regression

RSS(B) = (v — XB3)T(y — X3) =2(yi - 9i)?
Figure 3.5 this is called SSE in the 302 text
if we add a regressor, say from X,,_4 to Xp, RSS(j)

necessarily decreases

forward (stepwise) selection starts with one predictor
(usually the constant term) and stops when no additional
predictor is statistically significant step (pr. 1m,
direction = "forward", ...)

backward (stepwise) selection starts with all predictors and
deletes least significant . . .  direction =
"backward". ..

stepwise selection checks at each stage whether or not to
add variables back in direction = "both"
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... Subset selection

forward stagewise: a “slow” version of forward stepwise, in
which coefficients are not re-computed

» all possible subsets regression considers all 2° models.

v

vV v.v Yy

for p < 30, feasible with the “leaps and bounds” algorithm,
implemented in package leaps (See Figure 3.6), also
regsubsets

Figure 3.7
huh?
10-fold cross-validation

model selection related to expected prediction error:
theory to come in Ch. 7

8/24



STA 414/2104 Jan 19, 2010

“Mallows’ C,”
» a common adjustment to measure benefit of adding further
parameters:
RSS,
Cp= 2p+2p—N if 02 is known:
g

» or an estimate of this, if 2 is unknown
» rule of thumb: choose p so that Cp is small and Cp, ~ p

» can be shown to be a good choice for prediction (details
deferred until Chapter 7)

» a closely related, more general, criterion A/C (Akaike’s
Information Criterion)

» for our linear model
AIC =~ Nlog(RSSp/N) + 2p + constant

» stepAICin MASS library; step in base
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step

> step (pr.1lm)
Start: AIC=-37.13
lpsa ~ lcavol + lweight + age + lbph + svi + lcp + gleason +

pgg4s

Df Sum of Sqg RSS AIC
- gleason 1 0.011 29.437 -39.103
<none> 29.426 -37.128
- age 1 0.989 30.415 -36.914
- pgg4s 1 1.532 30.959 -35.727
- lcp 1 1.768 31.195 -35.218
- lbph 1 2.144 31.571 -34.415
- svi 1 3.093 32.520 -32.430
- lweight 1 3.839 33.265 -30.912
- lcavol 1 14.610 44.037 -12.118

Step: AIC=-39.1
lpsa ~ lcavol + lweight + age + lbph + svi + lcp + pgg45

Df Sum of Sqg RSS AIC
<none> 29.437 -39.103
- age 1 1.102 30.540 -38.639
- lcp 1 1.758 31.196 -37.216
- lbph 1 2.135 31.573 -36.411
- pgg4s 1 2.376 31.813 -35.903
- svi 1 3.166 32.604 -34.258
- lweight 1 4.005 33.442 -32.557
- lcavol 1 14.887 44.325 -13.681
Call:
Im(formula = lpsa ~ lcavol + lweight + age + lbph + svi + lcp + pgg45, data = train)
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Shrinkage Methods: (53.4)

» Ridge regression
>

Bs = (XTX)'XTy
Bridge = (XTX+/\I)_1XT,V

> can show that fiqge satisfies
mﬂin (Z{y/ — o — z7:1)(0‘5/}2 + )‘):5;1@'2)
minT{yi - fo — T x0)° st IH <t

» Assume x;'s are centered and put these in matrix X (with
no column of 1’s:

min(y — Xp)'(y =XB)  stlplF <t
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... ridge regression

> ming{(y — X8)"(y — XB) + Al|5|*}
» ) is a tuning parameter: A = 0 gives (5, A — oo
Figure 3.8

» inRthe library MASS library (MASS ) has aridge
regression version of 1m called 1m. ridge

» if columns of X areAnearIy linearly dependent
(multicollinearity), ’s for these columns should be shrunk
towards O.

» essential that the predictors are all scaled to the same units
» this is difficult for interpretation of the coefficients
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XBrigge = X(XTX+AN)'XTy
= UDVT(VDAVT + An~'vDU'y
= UbvT(vD?vT + avv='vDUTy

= UD(D? +X\)~'DUTy
2

i T
i

2

a:
df(\) = u[X(XTX + AN IXT] =50
=1df + A

Figure 3.7

df()\) called effective number of parameters in Ch. 7
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Coefficients
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FIGURE 3.8. Profiles of ridge coefficients for the prostate cancer erample, as
the tuning parameter A is varied. Coefficients are plotted versus df (A), the effective
degrees of freedom. A wertical line is drawn at df = 5.0, the value chosen by
cross-validation.
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Lasso
min (00— 6o — 0382 + L1

minT{yi — fo — I 0} st TGl <t

» quadratic programming problem
» [3ass0 s nonlinear function of y
» Figure 3.10

» Table 3.3
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FIGURE 3.10. Profiles of lasso coefficients, as the tuning parameter t is varied.

Coefficients are plotted versus s =t/ 3.7 |35]. A vertical line is drawn at s = 0.36,
the value chosen by erass-validation. Compare Figure 3.8 on page 65; the lasso



TABLE 3.3. Estimated coefficients and test ervor results, for different subset
and shrinkage methods applied to the prostate data. The blank entries correspond
to variables omitted.

Term LS Best Subset Ridge Lasso PCR PLS
Intercept 2.465 2477 2,452  2.468 2.497 2.452
lcavel 0.680 0.740 0.420 0.533 0.543 0.419
lweight 0.263 0.316 0.238  0.169 0.289 0.344
age —0.141 —0.046 —0.152  —0.026

1bph 0.210 0.162  0.002 0.214 0.220

svi 0.305 0.227  0.094 0.315 0.243

lcp —0.288 0.000 —0.051 0.079
gleason —0.021 0.040 0.232 0.011
pgeds  0.267 0.133 ~0.056  0.084
Test Error 0.521 0.492 0.492 0479 0.449 0.528

Std Error 0.179 0.143 0.165  0.164 0.105 0.152
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...Lasso
» in Table 3.3 each method had a tuning parameter to
choose; they used cross-validation within the training data
» in 1m.ridge you can extract a component called $GCv

> the quantity d?/(d? + X) has an interpretation as the
number of 'degrees of freedom’ or number of ‘parameters’
used by the ridge regression fit

» book says that the best value is 4.16, which corresponds to
quite a large X (39); the GCV criterion chooses A =5

» analysis of IaAsso more difficult; note Figure 3.10 plotted
against t/X|;|
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... Smoothing

» ridge regression gives “proportional shrinkage”
» subset selection gives “hard thresholding” (some 3; — 0)

» lasso gives “soft thresholding”: blend of shrinkage and
zeroing (Figure 3.10 and Figure 3.11)

» Least Angle Regression (LAR): combine forward stagewise
regression with the lasso

» related to the Dantzig selector (Candes and Tao, AS 2007)
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Mean squared error of prediction in linear models

Let 3 = 3(y) be a competing estimator of 3 (not 3, the LS estimator).
Usmg f for prediction would give ji, = xJ 3, where

x0 = (1,Xo1, ..., Xop) is the new value of the inputs. The expected
prediction error is

E(Jo—y)? = E(x{B—y0)? (by definition)

E()’O—Xo/“'xoﬂ XoTﬁ)z

Vdr(YO)+E( 76— X(,Td) (why is cross prod 07)

o+ E{xJ (B—B)(B - B) x}

o+ xg E{(B = B)(B - B) }Ix0

= ‘7+XOE{(/3 EG+ER—B)(B - EB+EB-B)x

o® +xg [E{(5 — EB)(B — EB)T} + (EB — B)(ES — 5)TIx0
= o° + X {cov(ﬁ)+bmb( )}x0

The first term, o2, is unavoidable. The next two terms together are the
Mean Squared Error (MSE) of the prediction j;, and are shown here
to be a function of x, and the MSE of /3. If 3 is unbiased, i.e. EG = 8,
then we only need to worry about the covariance terms. Estimates of
( obtained by ridge regression, Lasso, and LARS are all biased. This
could be useful if the variance is decreased enough to give smaller

MSE.
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vV v v v v Yy

Derived features §3.5

replace X1, ... X, with linear combinations of columns
principal components from SVD are natural candidates

X = UDV
Zm:XVm7 m:1,,M<p
zm are orthogonal by construction

M

m=1

(zm, y)

0, =
m <Zm7 Zm>

» inputs should be scaled first (mean 0, variance 1)
» Figure 3.17
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... derived features

» closely related method Partial least squares

» also constructs derived variables

» widely used in chemometrics, where often p > N
» see §3.6 for discussion
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Thursday and next week

more on ridge regression and lasso in R
construction of Table 3.3 in R test set error
discussion of project

HW 1 will be available

Next week Chapter 4: §4.1 to §4.4

vV v . v v Y
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