
STA 414S/2104S: Homework #1 Due Feb.11, 2010 at 1 pm

Late homework is penalized at 20% deduction per day. You are welcome to discuss your
work on this homework with your classmates. You are required to write up the work on your
own, using your own words, and to provide your own computer code.

Answers to the computational questions must be submitted in two parts. The first part
presents your conclusions and supporting evidence in a report, written in paragraphs and
sentences (not point form) that does not include computer code. This part may include
tables and figures. The second part is a complete, and annotated, file showing the computer
code that you used to obtain the results discussed in the first part. It is important to include
readable code, since everyone’s answers will be based on different training and test samples.

1. Likelihood and Bayesian inference in the linear model:
Suppose that the n × 1 vector Y follows a normal distribution with mean Xβ and
variance σ2I:

Y ∼ N(Xβ, σ2I)

i.e. that

f(y | β, σ2) =
1

(
√

2πσ)n
exp{− 1

2σ2
(y −Xβ)T (y −Xβ)}.

(a) The maximum likelihood estimates (β̂, σ̂2) are defined to be the values of β and
σ2 that simultaneously maximize the likelihood function, or more conveniently
the log-likelihood function

`(β, σ2) = log f(y | β, σ2).

Give expressions for the maximum likelihood estimator of β and σ2. You may
assume that X has full column rank.

(b) The likelihood ratio statistic for testing the hypothesis β = β(0) = (β0, 0, . . . , 0) is
defined as

W = 2{`(β̂, σ̂2)− `(β̂(0), σ̂
2
0)},

where (β̂(0), σ̂
2
0) is the maximum likelihood estimate of (β, σ2) when β = β(0). Show

that σ̂2
0 = n−1Σ(yi − ȳ)2, and that W is a function of the F -test for regression.

(c) Assume σ2 is known. Suppose that we assume a prior distribution for β that is
N(0, τ 2I), where τ 2 is also known:

f(β) =
1

(
√

2πτ)p
exp(− 1

2τ 2
βTβ).

By Bayes theorem the posterior distribution of β, given y, is

f(β | y) = f(y | β)f(β)/

∫
f(y | β)f(β)dβ.
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Show that this posterior distribution for β is normal, with

E(β | y) = (XTX + λI)−1XTy,

cov(β | y) = (XTX + λI)−1σ2

where λ = σ2/τ 2. What is the limiting posterior distribution as τ 2 →∞?

(d) 2104 only: Continuing with the assumption of known σ2, show that the mean
of the posterior distribution for β using the double exponential prior

f(β) =
1

2τ
exp(−|β|/τ)

gives the lasso estimator.

2. Exercise 3.8 of HTF:
Consider the QR decomposition of the uncentered N × (p+ 1) matrix X, with a first
column of 1’s, and the singular value decomposition of the N × p centered matrix X̃.
Show that Q2 and U span the same subspace, where Q2 is the sub-matrix of Q with
the first column removed. Under what circumstances will they be the same, up to sign
flips?

3. The wine quality data:
A recently posted regression data set at the UCI machine learning repository is the
wine quality data. For this exercise we will work with the red wine data set. It can
be accessed from within R by read.csv(”http://www.utstat.utoronto.ca/reid/sta414/winequality-red.csv”,

sep=”;”). There are 1599 cases, and 11 inputs. The output variable is the quality score,
a number between 0 and 10. The goal is to use the features to predict the quality
score.

(a) Choose 1000 cases at random to be your personal training data set. The remaining
599 cases are the test data set.

(b) Estimate the coefficients in a linear model using least squares with all 11 features,
all possible subsets regression, ridge regression, lasso regression, PCR and PLS.

(c) Evaluate each method on the test data by computing the mean of the squared
prediction error.

(d) Present the results in a Table similar to Table 3.3.

(e) Although the quality score can range from 0 to 10, most of the values are 5 and
6. What is the range of quality scores in your test data? How might this affect
the estimated mean square error?

4. 2104 only Exercise 3.10 of HTF :
Show that the ridge regression estimate can be obtained by ordinary least squares
regression on an augmented data set. We augment the centered matrix X with p
additional rows

√
λI, and augment y with p zeros. By introducing artificial data

having response value zero, the fitting procedure is forced to shrink the coefficients
towards zero. This is related to the idea of hints due to Abu-Mostafa (1995), where
model constraints are implemented by adding artificial data points that satisfy them.
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5. 2104 only Exercise 3.2 of HTF:
Given data on two variables X and Y , consider fitting a cubic polynomial regression
model f(X) =

∑3
j=0 βjX

j. In addition to plotting the fitted curve, you would like a
95% confidence band about the curve. Consider the following two approaches:

(a) At each point x0, form a 95% confidence interval for the linear function aTβ =∑3
j=0 βjx

j
0.

(b) For a 95% confidence set for β as in (3.15), which in turn generates confidence
intervals for f(x0).

How do these approaches differ? Which band is likely to be wider? Conduct a small
simulation experiment to compare the two methods.

6. Project description:
Submit a brief description of the data set you will analyse for your project, along with
the source (usually a web site) and any relevant papers associated with the data set.
Be sure to identify the response variable or variables, to clearly state the number of
cases and the number of features, as well as whether or not there is any missing data.
State the problem that you expect to address in analysing this data. The answer to
this question should be about one paragraph.
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