STA 414/2104 S: February 23 2010

Administration

» HW 2 posted on web page, due March 4 by 1 pm
» Midterm on March 16; practice questions coming
» Lecture/questions on Thursday this week

» Regression: variable selection, regression splines,
smoothing splines, wavelet smoothing

» Classification: discriminant analysis, logistic regression

» Kernel Smoothing Methods; Model Assessment and
Selection

» Projection Pursuit Regression and Neural Networks, Ch. 11
» Support Vector Machines, Ch. 12

» Classification and Regression Trees, Ch. 9.2

» Unsupervised Learning, Ch. 14
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Wavelet examples

1 (a) NMR Spectrum
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1 (b) Wavelet Shrinkage De-Noising
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Figure 1: First Figure of Short Course

Buckheit et al., "About Wavelab” 2005 From
http://www-stat.stanford.edu/~wavelab/Wavelab_
850/Documentation.html

Compare Figure 5.17
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... wavelets

Vidakovi¢ and Muller, "Wavelets for kids (Part 1)” 1994. From
http://www.amara.com/current/wavelet.html:
"Amara’s wavelet page”

> library (wavethresh); data(lennon)
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Ch. 6: Kernel smoothing methods — smoothing

vV vV vV v VY

without basis functions

model: E(Y | x) = f(x) (“smooth”)

data: y; = f(x;) + ¢

simplest possible estimate of f(xp) = E(Y | x0):

f(x0) = ave(y; | x; € Nk(x0))  running means

Nk(xo) set of k smallest values of |x; — xo| nearest neighbours
weight cases according to distance from xg

s SN KXo X))y
f(XO) - N
> oin1 Ka(xo, X))

(6.2)

Figure 6.1
kernel function

Kx(X0,X) = D (’X ;xﬂ) or D C&xﬁ?’)
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... kernel smoothing

» )\ determines the width of the neighbourhood, hence
smoothness

» increasing A gives smoother function (higher bias, lower
variance)

» constant (metric) window width —
constant bias, variance « 1/local density

» nearest neighbour window width hy(xp) —
constant variance, bias o 1/local density

» Choice of kernel:

3(1—12),|t| <1 Epanichakov
D(t) { 6( ) [t < p
{ (1—[t3)3, |t < 1 tri — cube
0

= ¢(t) = \/127 exp(—t2/2) Gaussian

» could add weights w; to each observation (p.194)
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R:

ksmooth (x,y, kernel=c ("box", "normal") ,bandwidth=0.5,

range.x=range (x),
n.points=max (100, length(x)), x.points)

> eps<-rnorm(100,0,1/3)

> x<-runif (100)

> sind <- function(x) {sin (4*x)}

> y<-sind (x) teps

> plot(sin4,0,1,type="1",ylim=c(-1.0,1.5),xlim=c(0,1))
> points (x,V)

> lines (ksmooth (x,y, "box",bandwidth=.2),col="blue")

> lines (ksmooth (x,y, "normal",bandwidth=.2), col="green")
> plot(sin4,0,1,type="1",ylim=c(-1.0,1.5),xlim=c(0,1))
> lines (ksmooth (x,y,"normal",bandwidth=.2), col="green")
> lines (ksmooth (x,y,"normal",bandwidth=0.4),col="blue")
> lines (ksmooth (x,y, "normal",bandwidth=0.6),col="red")
(Figure 6.1)
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Local linear regression (56.6.1)

» replace weighted average of x;’s with weighted linear (or
polynomial) regression: better endpoint behaviour

>
min Ko (X0, X))y — a(x0) — B(X0)X;}2
a(xOm(xO)Z A(X0, Xi){Yi = a(x0) — B(x0)xi}
>
f(x0) = (1, %) (XTW(x) X)X W(xo)y
>
1 X
1 X
X= Y-
1 XN

» W(x0)i = Ka(x0, %), Wi(x0)j=0
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Notes
» Recall weighted least squares:

mmzw, — Bo — B1xj)%or min(y — XB)"W(y — XB)

B=(XTWxX)""XTwy

» can combine the least squares weights with the kernel
weights  Figure 6.4, pp. 196

» can also do local quadratic regression (and higher) but
increases bias at endpoints

» for extrapolation book recommends local linear fits; for
good fits in middle local quadratic

» In R there are several smoothers: ksmooth and loess
are built in

» The first uses kernel smoothing, the second uses local
linear regression (robustified)
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» scatter.smooth fits a 1oess curve to a scatter plot

» loess takesa family argument: family = gaussian
gives weighted least squares using K) as weights and
family=symmetric gives a robust version using Tukey’s
biweight

» supsmu implements “Friedman’s super smoother”: a
running lines smoother with elaborate adaptive choice of
bandwidth

» Library KernSmooth has locpoly for local polynomial
fits, and by setting degree = 0 gives a kernel smooth

» as usual more smoothing means larger bias, smaller
variance
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## file loess.R contains the following lines:
plot(sin4,0,1,type="1",ylim=c(-1,1.5),xlim=c(0,1), xlab = "x")
lol = loess(y ~ x, degree = 1, span = 0.75)

## we are using data generated in ksmooth

attributes(lol)

ord = order (1lol$x)

lines(lol$x[ord],lol$fitted[ord], co

plot (lol$x[ord],lol$fitted[ord],type="1",col="red",

ylim=c(-1,1.5),xlim=c(0,1), xlab = "x")

lines (ksmooth (x,y, "normal",bandwidth=0.4),col="blue")

lo2 loess (y™x, degree=1, span=0.4)

lo3 loess (y™x, degree=2, span=0.4)

plot (lol$x[ord],lol$fitted[ord],type="1",col="red",
ylim=c(-1,1.5),xlim=c(0,1), xlab = "x")

lines (lol$x[ord],lo2$fitted[ord], col="green")

lines (lol$x[ord],lo3$fitted[ord],col="purple"

## end file

## I ran these commands using source("loess.R"), or the File Menu

## After making sure the file was in the same directory that I was working in

"red")

> attributes (lol)

$names

[1] "n" "fitted" "residuals" "enp" "s" "one.delta"
[7] "two.delta" "trace.hat" "divisor" "pars" "kd" "call"

[13] "terms" "xnames" naen ey "weights"

$class

[1] "loess"
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Notes

» f = S,y and df=trace(S,), as in smoothing splines p.199

» while possible to fit these models in RP, 56.3, 6.4, doesn'’t
seem so useful Figure 6.8

» §6.4 describes ways to impose some structure to get a
more interpretable model

» can use the same kernel smoothing idea for likelihood
functions and maximum likelihood estimates:

max > B i)
replaced by
max > Ka(xo, X)) (B i)
called local likelihood and described in §6.5 Figure 6.12
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v

v
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Kernel methods for classification (56.6)

estimate density of predictor from sample xy, ..., xy
rather than assume normality as in LDA

f(X ) #{XI EN)\(XO)}

histogram if intervals don’t overlap

otherwise a bumpy density estimate

use kernel to smooth as before

f(x0) = 15 3 Ka(x0, X;): smooth density estimate
implemented in R as density (x, ...) withalarge
choice of kernels; default is Gaussian

f(x0) = NZ¢A(X0 X)) = (F % $»)(x0)

1 N
=1

14/16



STA 414/2104 S: February 23 2010

... kernel methods (56.6.2)

for classification: compute ?,-(X ) for each class

v

Br(Y =j | X = x0) = #jfi(x0)/ D _ Acfi(x0)

with p inputs treat the inputs as independent

v

£(X) = MP_ Bie(Xe)

v

Naive Bayes classifier (§6.6.3):

» Figure 6.15
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vVvyVvVVyywyw

Which smoothing method?

basis functions: natural splines, Fourier, wavelet bases
regularization
cubic smoothing splines
kernel smoothers: locally constant/linear/polynomial
adaptive bandwidth, running medians, running
M-estimates
Dantzig selector, elastic net, rodeo (Lafferty & Wasserman,
2008)
Faraway (2006) Extending the Linear Model:
» with very little noise, a small amount of local smoothing
(e.g. nearest neighbours)
» with moderate amounts of noise, kernel and spline methods
are effective
» with large amounts of noise, parametric methods are more
attractive
“It is not reasonable to claim that any one smoother is
better than the rest”
» loess is robust to outliers, and provides smooth fits
» spline smoothers are more efficient, but potentially sensitive
to outliers
» kernel smoothers are very sensitive to bandwidth
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