
STA 414/2104 S: February 23 2010

Administration
I HW 2 posted on web page, due March 4 by 1 pm
I Midterm on March 16; practice questions coming
I Lecture/questions on Thursday this week
I Regression: variable selection, regression splines,

smoothing splines, wavelet smoothing
I Classification: discriminant analysis, logistic regression
I Kernel Smoothing Methods; Model Assessment and

Selection
I Projection Pursuit Regression and Neural Networks, Ch. 11
I Support Vector Machines, Ch. 12
I Classification and Regression Trees, Ch. 9.2
I Unsupervised Learning, Ch. 14
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Wavelet examples

Buckheit et al., ”About Wavelab” 2005 From
http://www-stat.stanford.edu/˜wavelab/Wavelab_
850/Documentation.html
Compare Figure 5.17
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... wavelets

Vidaković and Müller, ”Wavelets for kids (Part I)” 1994. From
http://www.amara.com/current/wavelet.html:
”Amara’s wavelet page”

> library(wavethresh); data(lennon)
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Ch. 6: Kernel smoothing methods – smoothing
without basis functions

I model: E(Y | x) = f (x) (“smooth”)
I data: yi = f (xi) + εi
I simplest possible estimate of f (x0) = E(Y | x0):
I f̂ (x0) = ave(yi | xi ∈ Nk (x0)) running means
I Nk (x0) set of k smallest values of |xi − x0| nearest neighbours
I weight cases according to distance from x0

f̂ (x0) =

∑N
i=1 Kλ(x0, xi)yi∑N
i=1 Kλ(x0, xi)

(6.2)

Figure 6.1
I kernel function

Kλ(x0, x) = D
(
|x − x0|

λ

)
or D

(
|x − x0|
hλ(x0)

)
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... kernel smoothing
I λ determines the width of the neighbourhood, hence

smoothness
I increasing λ gives smoother function (higher bias, lower

variance)
I constant (metric) window width –

constant bias, variance ∝ 1/local density
I nearest neighbour window width hλ(x0) –

constant variance, bias ∝ 1/local density
I Choice of kernel:

D(t) =

{ 3
4(1− t2), |t | ≤ 1 Epanichakov
0

=

{
(1− |t |3)3, |t | ≤ 1 tri− cube
0

= φ(t) =
1√
2π

exp(−t2/2) Gaussian

I could add weights wi to each observation (p.194) 5 / 16
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R:
ksmooth(x,y,kernel=c("box","normal"),bandwidth=0.5,

range.x=range(x),
n.points=max(100,length(x)), x.points)

> eps<-rnorm(100,0,1/3)
> x<-runif(100)
> sin4 <- function(x){sin(4*x)}
> y<-sin4(x)+eps
> plot(sin4,0,1,type="l",ylim=c(-1.0,1.5),xlim=c(0,1))
> points(x,y)
> lines(ksmooth(x,y,"box",bandwidth=.2),col="blue")
> lines(ksmooth(x,y,"normal",bandwidth=.2),col="green")
> plot(sin4,0,1,type="l",ylim=c(-1.0,1.5),xlim=c(0,1))
> lines(ksmooth(x,y,"normal",bandwidth=.2),col="green")
> lines(ksmooth(x,y,"normal",bandwidth=0.4),col="blue")
> lines(ksmooth(x,y,"normal",bandwidth=0.6),col="red")

(Figure 6.1)
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Local linear regression (§6.6.1)
I replace weighted average of xi ’s with weighted linear (or

polynomial) regression: better endpoint behaviour
I

min
α(x0),β(x0)

∑
Kλ(x0, xi){yi − α(x0)− β(x0)xi}2

I

f̂ (x0) = (1, x0)(X T W (x0)X )−1X T W (x0)y

I

X =


1 x1
1 x2
...

...
1 xN

 = B

I W (x0)ii = Kλ(x0, xi), W (x0)ij = 0
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Notes
I Recall weighted least squares:

min
β

∑
wi(yi − β0 − β1xi)

2or min
β

(y − Xβ)T W (y − Xβ)

I

β̂ = (X T WX )−1X T Wy

I can combine the least squares weights with the kernel
weights Figure 6.4, pp. 196

I can also do local quadratic regression (and higher) but
increases bias at endpoints

I for extrapolation book recommends local linear fits; for
good fits in middle local quadratic

I In R there are several smoothers: ksmooth and loess
are built in

I The first uses kernel smoothing, the second uses local
linear regression (robustified)
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I scatter.smooth fits a loess curve to a scatter plot
I loess takes a family argument : family = gaussian

gives weighted least squares using Kλ as weights and
family=symmetric gives a robust version using Tukey’s
biweight

I supsmu implements “Friedman’s super smoother”: a
running lines smoother with elaborate adaptive choice of
bandwidth

I Library KernSmooth has locpoly for local polynomial
fits, and by setting degree = 0 gives a kernel smooth

I as usual more smoothing means larger bias, smaller
variance
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## file loess.R contains the following lines:
plot(sin4,0,1,type="l",ylim=c(-1,1.5),xlim=c(0,1), xlab = "x")
lo1 = loess(y ˜ x, degree = 1, span = 0.75)
## we are using data generated in ksmooth
attributes(lo1)
ord = order(lo1$x)
lines(lo1$x[ord],lo1$fitted[ord],col="red")
plot(lo1$x[ord],lo1$fitted[ord],type="l",col="red",
ylim=c(-1,1.5),xlim=c(0,1), xlab = "x")
lines(ksmooth(x,y,"normal",bandwidth=0.4),col="blue")
lo2 = loess(y˜x, degree=1, span=0.4)
lo3 = loess(y˜x, degree=2, span=0.4)
plot(lo1$x[ord],lo1$fitted[ord],type="l",col="red",

ylim=c(-1,1.5),xlim=c(0,1), xlab = "x")
lines(lo1$x[ord],lo2$fitted[ord],col="green")
lines(lo1$x[ord],lo3$fitted[ord],col="purple")
## end file
## I ran these commands using source("loess.R"), or the File Menu
## After making sure the file was in the same directory that I was working in

> attributes(lo1)
$names
[1] "n" "fitted" "residuals" "enp" "s" "one.delta"
[7] "two.delta" "trace.hat" "divisor" "pars" "kd" "call"

[13] "terms" "xnames" "x" "y" "weights"

$class
[1] "loess"
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Notes
I f̂ = Sλy and df=trace(Sλ), as in smoothing splines p.199
I while possible to fit these models in Rp, §6.3, 6.4, doesn’t

seem so useful Figure 6.8
I §6.4 describes ways to impose some structure to get a

more interpretable model
I can use the same kernel smoothing idea for likelihood

functions and maximum likelihood estimates:

max
β

∑
`(β; yi)

replaced by
max
β

∑
Kλ(x0, xi)`(β; yi)

called local likelihood and described in §6.5 Figure 6.12
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Kernel methods for classification (§6.6)
I estimate density of predictor from sample x1, . . . , xN
I rather than assume normality as in LDA

I f̂ (x0) =
#{xi ∈ Nλ(x0)}

Nλ
I histogram if intervals don’t overlap
I otherwise a bumpy density estimate
I use kernel to smooth as before
I f̂ (x0) = 1

Nλ
∑

Kλ(x0, xi): smooth density estimate
I implemented in R as density(x, ...) with a large

choice of kernels; default is Gaussian
I

f̂ (x0) =
1
N

N∑
i=1

φλ(x0 − xi) = (F̂ ? φλ)(x0)

I

F̂ (x) =
1
N

N∑
i=1

I{xi ≤ x}
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... kernel methods (§6.6.2)
I for classification: compute f̂j(X ) for each class

p̂r(Y = j | X = x0) = π̂j f̂j(x0)/
∑

π̂k f̂j(x0)

I with p inputs treat the inputs as independent
I

f̂j(X ) = Πp
k=1 f̂jk (Xk )

I Naive Bayes classifier (§6.6.3):

p̂r(Y = j | X = x0) =
π̂j f̂j(x0)

Σπ̂j f̂j(x0)

I Figure 6.15
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Which smoothing method?
I basis functions: natural splines, Fourier, wavelet bases
I regularization
I cubic smoothing splines
I kernel smoothers: locally constant/linear/polynomial
I adaptive bandwidth, running medians, running

M-estimates
I Dantzig selector, elastic net, rodeo (Lafferty & Wasserman,

2008)
I Faraway (2006) Extending the Linear Model:

I with very little noise, a small amount of local smoothing
(e.g. nearest neighbours)

I with moderate amounts of noise, kernel and spline methods
are effective

I with large amounts of noise, parametric methods are more
attractive

I “It is not reasonable to claim that any one smoother is
better than the rest”

I loess is robust to outliers, and provides smooth fits
I spline smoothers are more efficient, but potentially sensitive

to outliers
I kernel smoothers are very sensitive to bandwidth
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