STA 410S/2102S: Practice questions for 1st test

These do not cover all the topics that may be on the test

The test will have 4 questions of equal value; you are permitted one aid sheet (8.5×11) .

1. The following R program, due to Radford Neal, computes the Cholesky decomposition of a symmetric, positive definite matrix.

```
cholesky <- function (A)
Ł
  if (!is.matrix(A) || nrow(A)!=ncol(A))
  { stop("The argument for cholesky must be a square matrix")
  }
  p <- nrow(A)
  U <- matrix(0,p,p)</pre>
  for (i in 1:p)
  ſ
    if (i==1)
    { U[i,i] <- sqrt (A[i,i])
    }
    else
    { U[i,i] <- sqrt (A[i,i] - sum(U[1:(i-1),i]^2))
    }
    if (i<p)
    { for (j in (i+1):p)
      { if (i==1)
        { U[i,j] <- A[i,j] / U[i,i]
        }
        else
        { U[i,j] <- (A[i,j] - sum(U[1:(i-1),i]*U[1:(i-1),j])) / U[i,i]
        }
      }
    }
  }
  U
}
```

The program is uncommented; please add comments to explain how the program works. Illustrate it on the matrix

2. Consider the linear model

$$y = X\beta + \epsilon$$

where y is $n \times 1$, X is $n \times p$ and has column rank p, β is a $p \times 1$ vector of unknown coefficients, and $\epsilon = (\epsilon_1, \ldots, \epsilon_n)$ where we assume $\epsilon_i \sim (0, \sigma^2)$ and the ϵ_i are independent.

(a) Recall that the least squares estimator $\hat{\beta} = (X^T X)^{-1} X^T y$; from which

$$\hat{y} = X\hat{\beta} = X(X^T X)^{-1} X^T y = Hy$$

where H is called the hat matrix. Show that H is idempotent.

- (b) Show that $\hat{\epsilon}^T \hat{\epsilon} = y^T (I H) y$, where $\hat{\epsilon} = y \hat{y}$.
- (c) Show that $\hat{\epsilon}^T \hat{\epsilon}/(n-p)$ is an unbiased estimate of σ^2 .
- 3. Assume our (very old) computer does floating point arithmetic in which the mantissa has just three decimal digits. Construct an example in which round-off error causes

$$\Sigma (x_i - \bar{x})^2 \neq \Sigma (x_i^2) - n\bar{x}^2.$$

4. The **abbey** dataset contains 31 determinations of nickel content in a rock sample. The values are:

> abbey

[1]	5.2	6.5	6.9	7.0	7.0	7.0	7.4	8.0	8.0	8.0	8.0
[12]	8.5	9.0	9.0	10.0	11.0	11.0	12.0	12.0	13.7	14.0	14.0
[23]	14.0	16.0	17.0	17.0	18.0	24.0	28.0	34.0	125.0		

Following the book I computed several summary statistics in R, as follows:

```
> mean(abbey)
[1] 16.00645
> median(abbey)
[1] 11
> unlist(hubers(abbey))
       mu
                  s
11.731514 5.258487
> unlist(hubers(abbey,k=2))
       mu
                  s
          6.105222
12.351117
> unlist(hubers(abbey,k=1))
       mu
                  s
11.365392 5.567345
> unlist(huber(abbey))
      mu
                s
11.55136 4.44780
> mad(abbey)
[1] 4.4478
> IQR(abbey)
[1] 7
```

Explain to a non-statistician why all these estimates of 'mu' are different. Which one would you recommend?

5. A random variable U has the *uniform* distribution on (0,1) $(U \sim U(0,1))$ if its distribution function is

$$\Pr(U \le u) = \begin{cases} 0 & u < 0\\ u & 0 \le u \le 1\\ 1 & u > 1 \end{cases}$$

Show that if X has a distribution function F(x), then Y = F(X) follows a uniform distribution on (0, 1). Show conversely that if $U \sim U(0, 1)$ that $Z = F^{-1}(U)$ has distribution function F. Use this to write an R program that simulates a sample of size n from

$$F(x) = 1 - \exp(-\lambda x)$$

using the function **runif** which generates samples from a U(0, 1) distribution. Your function should take n and λ as input and return a random sample of length n.

Here are the topics that we have covered so far:

floating point arithmetic	class notes					
basics of R:						
data frames, vectors and matrices, subsetting	class notes and $\S2.1,2,3$ (to p.32)					
linear regression:						
fitting models in R	class notes, p.144					
computation of OLS estimates by QR decomposition	class notes					
Cholesky decomposition and singular value decomposition	class notes, p.62,63					
diagnostics and residual plots	$\S6.3$					
robust estimation of location and scale	$\S5.5$					
robust regression	6.5 to p.159					
density estimation	\$5.6					
generalized linear models	handout					
permutation tests	HW 1					
randomized block designs	HW 1					