
Random and Mixed Effects Models (Ch. 10)

Random effects models are very useful when the observations are sampled in a highly struc-
tured way. The basic idea is that the error associated with any linear,

E(yi) = xT
i β

or nonlinear
E(yi) = η(xi, β)

model has more structure than simply N(0, σ2). Sometimes, for example, the y’s are obtained
by two stage sampling: a batch of chemical is sampled from a production run, and then several
smaller samples are taken from each batch. Or a group of schools is chosen at random, and
then classes are sampled within each school. Or a sample of patients is followed over time, so
that successive measurements on an individual patient might be expected to be correlated.
This last case is sometimes called ’repeated measures’, modelling; in social science examples
such as the schools example this is sometimes called multi-level modelling.

I will follow the discussion in the text fairly closely, filling in where I think it is helpful. This
handout only considers linear models (§10.1).

The gasoline data in library MASS (data(petrol)), is an example of the first type. There
were 10 batches of crude oil (called samples in the book), and several measurements were
made on each batch. The measurements are:

response Y yield of the refined product as a percentage of crude
covariate SG specific gravity
covariate VP vapour pressure
covariate V10 ASTM 10% point
covariate EP ASTM end point in degrees F

There is another variable in the data frame, No, which records the batch. It is a factor
variable with 10 levels "A" through "J". The first three covariates were measured on the
batch, and then within each batch there were several (between 2 and 4) measurements taken
of EP and Y. My first steps were to try to get a sense of the data from various plots and
summaries.

> library(MASS)

> data(petrol)

> dim(petrol)

[1] 32 6

> petrol

No SG VP V10 EP Y

1 A 50.8 8.6 190 205 12.2

2 A 50.8 8.6 190 275 22.3

3 A 50.8 8.6 190 345 34.7
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4 A 50.8 8.6 190 407 45.7

5 B 40.8 3.5 210 218 8.0

6 B 40.8 3.5 210 273 13.1

7 B 40.8 3.5 210 347 26.6

8 C 40.0 6.1 217 212 7.4

9 C 40.0 6.1 217 272 18.2

10 C 40.0 6.1 217 340 30.4

11 D 38.4 6.1 220 235 6.9

12 D 38.4 6.1 220 300 15.2

13 D 38.4 6.1 220 365 26.0

14 D 38.4 6.1 220 410 33.6

...

> tapply(petrol$Y,petrol$No,mean)

A B C D E F G H

28.72500 15.90000 18.66667 20.42500 25.36667 22.16667 13.27500 18.23333

I J

18.60000 13.73333

> petrol.mean <- cbind(tapply(petrol$Y,petrol$No,mean),tapply(petrol$SG,petrol$No,mean),

+ tapply(petrol$VP,petrol$No,mean),tapply(petrol$V10,petrol$No,mean),

+ tapply(petrol$EP,petrol$No,mean) )

> petrol.mean <- data.frame(petrol.mean)

> names(petrol.mean)<-c("Y","SG","VP","V10","EP")

> petrol.mean

Y SG VP V10 EP

A 28.72500 50.8 8.6 190 308.0000

B 15.90000 40.8 3.5 210 279.3333

C 18.66667 40.0 6.1 217 274.6667

D 20.42500 38.4 6.1 220 327.5000

E 25.36667 40.3 4.8 231 356.3333

F 22.16667 32.2 5.2 236 343.0000

G 13.27500 41.3 1.8 267 321.0000

H 18.23333 38.1 1.2 274 364.6667

I 18.60000 32.2 2.4 284 387.5000

J 13.73333 31.8 0.2 316 390.6667

Then I tried a few elementary plots, and the code given in the book (p.272) for Figure 10.1.

> plot(petrol$No,petrol$Y,main="Petrol Boxplot", xlab="No")

> plot(petrol$No,petrol$EP,main="Petrol Boxplot", xlab="No")
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> library(lattice)

> xyplot(Y~EP | No, data=petrol,

+ xlab="ASTM end point (deg. F)",

+ ylab="Yield as a percent of crude",

+ panel=function(x,y){

+ panel.grid()

+ m<-sort.list(x)

+ panel.xyplot(x[m],y[m],type="b",cex=0.5)})

The left boxplot is yield and the right boxplot is EP. The grey plot shows the regression of
Y on EP in each group. (See Figure 10.1 for a clearer picture.)
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The first regression model fit in the text is separate linear regressions for each of the groups.
A new data frame was created that replaced each covariate by (xi − x̄). This just changes
the estimates of the intercepts; the claim is that these are then easier to interpret.

> ##

> ## Fit separate regressions for each of the 10 groups

> ##

> ## (replace each covariate by ’covariate - mean(covariate)’

> ##

> Petrol <- petrol

> Petrol[,2:5] <- scale(Petrol[,2:5],scale=F)

> pet1.lm <- lm(Y ~ No/EP -1, data=Petrol)

> coef(pet1.lm)

NoA NoB NoC NoD NoE NoF

32.7452257 23.6201614 28.9852457 21.1303143 19.8208227 20.4164797

NoG NoH NoI NoJ NoA:EP NoB:EP

14.7805644 12.6824864 11.6172945 6.1775520 0.1668576 0.1463249

NoC:EP NoD:EP NoE:EP NoF:EP NoG:EP NoH:EP

0.1796814 0.1535378 0.2287929 0.1604756 0.1357129 0.1704130

NoI:EP NoJ:EP

0.1260274 0.1289979

> matrix(round(coef(pet1.lm),2),2,10,byrow=T,

+ dimnames=list(c("b0","b1"),levels(Petrol$No)))

A B C D E F G H I J

b0 32.75 23.62 28.99 21.13 19.82 20.42 14.78 12.68 11.62 6.18

b1 0.17 0.15 0.18 0.15 0.23 0.16 0.14 0.17 0.13 0.13

The model formula No/EP, or in general a/b is explained on p.150 near the bottom. It is a
shorthand for a + a:b, which means a separate model 1 + b for each level of a. (Although
it can be used if a is not a factor, this doesn’t usually make sense.) The mathematical model
is

yij = β0i + β1iEPij + εij (1)

where j = 1, . . . , ni; i = 1, . . . , 10 and we assume the εij are independent, mean 0 and variance
σ2. (We haven’t used any random effects yet.)

Since the slopes are all fairly similar, but the intercepts are very different, the second model
tried is

yij = β0i + βEPij + εij. (2)

> pet2.lm <- lm(Y~No -1 +EP, data=Petrol)

> summary(pet2.lm)

Call:
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lm(formula = Y ~ No - 1 + EP, data = Petrol)

Residuals:

Min 1Q Median 3Q Max

-3.13601 -0.93477 -0.08414 1.16652 3.39579

Coefficients:

Estimate Std. Error t value Pr(>|t|)

NoA 32.549392 0.949476 34.281 < 2e-16 ***

NoB 24.274641 1.125928 21.560 8.31e-16 ***

NoC 27.782046 1.133370 24.513 < 2e-16 ***

NoD 21.154164 0.939794 22.509 3.48e-16 ***

NoE 21.519127 1.093576 19.678 5.19e-15 ***

NoF 20.435522 1.086548 18.808 1.28e-14 ***

NoG 15.035907 0.941567 15.969 3.20e-13 ***

NoH 13.063047 1.100631 11.869 8.92e-11 ***

NoI 9.805387 1.365804 7.179 4.46e-07 ***

NoJ 4.436077 1.135286 3.907 0.00081 ***

EP 0.158730 0.005718 27.759 < 2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.879 on 21 degrees of freedom

Multiple R-Squared: 0.9953,Adjusted R-squared: 0.9929

F-statistic: 408.4 on 11 and 21 DF, p-value: < 2.2e-16

> anova(pet2.lm,pet1.lm)

Analysis of Variance Table

Model 1: Y ~ No - 1 + EP

Model 2: Y ~ No/EP - 1

Res.Df RSS Df Sum of Sq F Pr(>F)

1 21 74.132

2 12 30.329 9 43.803 1.9257 0.1439

The last command compares the full model (1) with the reduced model (2). In (1) there are
10 intercepts and 10 slopes estimated, leaving 32-20=12 residual degrees of freedom. In (2)
there are 10 intercepts and 1 slope estimated, leaving 21 residual degrees of freedom. The
improvement in residual sum of squares by fitting 10 different slopes is not enough to justify
all these extra parameters.

The next step is to see if there is any structure in the intercepts. We haven’t yet used the
covariates SG, VP and V10. So we now try the model

yij = µ + β1SGi + β2V Pi + β3V 10i + β4EPij + εij (3)
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where we have replaced β0i in (2) with a linear structure. (Still no random effects!) This
model has 5 parameters, leaving 27 residual degrees of freedom. The details are at the
bottom of p.273 and the top of p.274. This model doesn’t seem to be as good as model (2),
so we still haven’t really explained the variation in the intercepts (β0i).

So now we try a different explanation, we model the intercepts as random variables with a
common mean and variance σ2

1, say:

yij = µ + ζi + β1SGi + β2V Pi + β3V 10i + β4EPij + εij (4)

where we assume ζi ∼ N(0, σ2
1) independently of εij. The model means that each group has

a random intercept. The variance component σ2
1 measures the variation due to the choice of

batch of crude oil, whereas σ2 measures the variation in the process to measure the yield.
Linear mixed models are fit using lme, in the library nlme. Model (3) is called a mixed effects
model, as it has some random effects (intercept) and some fixed effects (everything else).

> ?lme

> library(nlme)

> ?lme

> pet3.lme <- lme(fixed = Y ~ SG + VP + V10 + EP,

+ random = ~ 1 | No, data=Petrol)

> summary(pet3.lme)

Linear mixed-effects model fit by REML

Data: Petrol

AIC BIC logLik

166.3820 175.4528 -76.19098

Random effects:

Formula: ~1 | No

(Intercept) Residual

StdDev: 1.445028 1.872146

Fixed effects: Y ~ SG + VP + V10 + EP

Value Std.Error DF t-value p-value

(Intercept) 19.706795 0.5683413 21 34.67423 0.0000

SG 0.219397 0.1469559 6 1.49295 0.1861

VP 0.545861 0.5205881 6 1.04855 0.3348

V10 -0.154244 0.0399668 6 -3.85929 0.0084

EP 0.157177 0.0055878 21 28.12841 0.0000

Correlation:

(Intr) SG VP V10

SG 0.059

VP 0.013 0.067

V10 0.015 0.433 0.836

EP -0.004 0.023 -0.116 -0.197
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Standardized Within-Group Residuals:

Min Q1 Med Q3 Max

-1.7807117 -0.6063671 -0.1069013 0.4571818 1.7811918

Number of Observations: 32

Number of Groups: 10

Note that the degrees of freedom for some of the covariates (SG, VP, V10) are 6, whereas
for EP it is 21. This is because the first set only takes 10 different values, and there are four
fixed effects parameters estimated. But it’s a bit tricky to figure out why the intercept and
EP have 21.

The output gives us estimates of σ2
1 and σ2:

σ̂2
1 = (1.444)2 = 2.09 σ̂2 = (1.872)2 = 3.51.

Note also that the estimates of β1, . . . β4 are not very different between the fixed and mixed
effects models, but that the standard errors of the estimates for SG, VP, V10 are much
smaller. This is because we have separated out batch-to-batch variation from within batch
variation.

On p.275 the book compares the fixed and mixed effects models using anova, but before doing
this they had to refit the mixed effects model using a different method for estimating the
variance components (σ2 and σ2

1). This is related to a theoretical point about likelihood ratio
tests; but the bottom line is if you are interested in estimating the components of variance σ2

and σ2
1 then it is better to use method REML, but if you are interested in comparing models,

it is better to use method ML. Their main conclusion is that the mixed effects model doesn’t
really fit any better, but we’re pressing on anyway.

Note from the summary of pet3.lme that the variables SG and VP do not seem to have much
effect on Y, so the next model they tried omits these variables.

> pet4.lme <- update(pet3.lme, fixed=Y~V10 +EP)

> anova(pet4.lme,pet3.lme)

Model df AIC BIC logLik Test L.Ratio p-value

pet4.lme 1 5 163.9555 170.7920 -76.97775

pet3.lme 2 7 166.3819 175.4528 -76.19098 1 vs 2 1.573551 0.4553

Warning message:

Fitted objects with different fixed effects. REML comparisons are not meaningful. in: anova.lme(pet4.lme, pet3.lme)

I just tried the above anova statement for fun, but note that I got a warning telling me it
was not valid, because of the fitting method used. This is a reminder to refit both models
using method="ML" if we want to do likelihood ratio tests to compare nested models.
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> pet3.lme <- update(pet3.lme, method="ML")

> pet4.lme <- update(pet3.lme, fixed=Y~V10+EP)

> anova(pet4.lme,pet3.lme)

Model df AIC BIC logLik Test L.Ratio p-value

pet4.lme 1 5 149.6119 156.9406 -69.80594

pet3.lme 2 7 149.3833 159.6435 -67.69166 1 vs 2 4.22855 0.1207

> summary(pet4.lme)

Linear mixed-effects model fit by maximum likelihood

Data: Petrol

AIC BIC logLik

149.6119 156.9406 -69.80594

Random effects:

Formula: ~1 | No

(Intercept) Residual

StdDev: 1.381100 1.823660

Fixed effects: Y ~ V10 + EP

Value Std.Error DF t-value p-value

(Intercept) 19.651589 0.5733608 21 34.27439 0

V10 -0.210805 0.0160972 8 -13.09575 0

EP 0.157586 0.0056728 21 27.77945 0

Correlation:

(Intr) V10

V10 -0.046

EP -0.004 -0.285

Standardized Within-Group Residuals:

Min Q1 Med Q3 Max

-1.8146954 -0.4421839 -0.1487166 0.4532735 1.8221910

Number of Observations: 32

Number of Groups: 10

There are many components to an lme object; see ?lme.Object for details. For example,

> fixed.effects(pet4.lme)

(Intercept) V10 EP

19.6515891 -0.2108053 0.1575859

> coef(pet4.lme)

(Intercept) V10 EP

A 21.05404 -0.2108053 0.1575859
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B 18.33760 -0.2108053 0.1575859

C 21.48568 -0.2108053 0.1575859

D 17.53792 -0.2108053 0.1575859

E 19.45035 -0.2108053 0.1575859

F 19.42200 -0.2108053 0.1575859

G 20.17194 -0.2108053 0.1575859

H 19.84125 -0.2108053 0.1575859

I 19.21158 -0.2108053 0.1575859

J 20.00352 -0.2108053 0.1575859

The intercepts are actual ‘estimates’ of the individual random effects ζi, although for random
variables we usually think of predicting them, rather than estimating them. They are not
explicitly used for summarizing the data; for that we use the estimates σ̂2

1 and σ̂2.

The final model is to let the slope on EP have a random component:

yij = µ + ζi + β3V 10i + (β4 + ηi)EPij + εij (5)

where we have as before εij ∼ N(0, σ2), ζi ∼ N(0, σ2
1) and now ηi ∼ N(0, σ2

2) and cov(ζi, ηi) =
σ12, i.e. we don’t assume the random effects for the intercept and slope are necessarily
independent.

> pet5.lme <- update (pet4.lme, random=~1 + EP | No)

> pet5.lme

Linear mixed-effects model fit by maximum likelihood

Data: Petrol

Log-likelihood: -69.80776

Fixed: Y ~ V10 + EP

(Intercept) V10 EP

19.6514774 -0.2108117 0.1575926

Random effects:

Formula: ~1 + EP | No

Structure: General positive-definite, Log-Cholesky parametrization

StdDev Corr

(Intercept) 1.3820901440 (Intr)

EP 0.0008064208 0.002

Residual 1.8225962064

Number of Observations: 32

Number of Groups: 10

> anova(pet4.lme,pet5.lme)

Model df AIC BIC logLik Test L.Ratio p-value

pet4.lme 1 5 149.6119 156.9406 -69.80594

pet5.lme 2 7 153.6155 163.8757 -69.80776 1 vs 2 0.003646107 0.9982
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This shows that model (5) fits the data no better than model (4).

The anova command gives different output for lme than for lm, although it uses the same
general theory. In this last comparison, pet4.lme has fitted 5 parameters (µ, β3, β4, σ

2, σ2
1)

and pet5.lme has fitted 7 parameters: these 5 plus σ2
2 and σ12. So the difference in loglike-

lihoods has 2 degrees of freedom.

The hardest part in specifying the model for lme is getting the random effects part correctly
specified. I didn’t find the help file very helpful. The general format for lme is

lme(fixed = ... [formula], data= ... [data.frame],

random = ... [formula] , ... [other stuff] ).

Once you see a formula for a given example it’s kind of obvious, but I find it hard to construct
it from scratch. The definitive reference is the book by Pinheiro and Bates (exact reference
in the help file).

The next two linear model examples are a multi-level sampling example involving students
(in classes, in schools), and a growth curve model, where measurements are repeated on the
same experimental unit (in this case trees) at several time points.

A very general formulation of the mixed effects linear model is given on p.279:

yij = xijβ + zijζi + εij (6)

where we assume we have the responses in groups indexed by i, and then the responses
within each group are indexed by j. In fact the schools example has more structure, I think
it should be indexed by ijk, where i = 1, 2 indexes levels of COMB, j indexes schools and k
indexes pupils; but I’m not completely sure. In (6) xij and zij are row vectors of explanatory
variables. The most general assumption about εij is that they are independent among levels
of i (cov(εij, εi′j) = 0), but possibly dependent within groups:

var(εij) = σ2g(µij, zij, θ), corr(εij) = Γ(α).

Note this is a very general formulation of the variance; in our example above we had a much
simpler structure. It is usually assumed as well that ζi are independent of the εij and have
variance-covariance matrix (note that ζi are vectors)

var(ζi) = D(αζ).

Usually g ≡ 1, Γ = I, and only D is unrestricted (as we had above for pet5.lme).
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