
STA 410S/2102S: Homework #3
Due April 7, 2005

1. The data in Table 1 show the calcium uptake of cells y (cal) as a function of x (time),
after being suspended in a solution of radioactive calcium. The model suggested for
this data is a nonlinear regression model

yi = β0{1− exp(−β1xi)}+ εi

where i = 1, . . . , 27, and we assume εi ∼ N(0, σ2).

(a) Calcium is absorbed into cells through the cell walls. The calcium molecules
in this experiment were labelled with a radioactive dye, so that at each time
point the amount of calcium absorbed could be measured. The measurement of
calcium absorbed is moles/microgram. What interpretation can you give to the
parameters β0 and β1?

(b) Fit this model using either nls or optim, and report the estimates β̂0, β̂1 and
their estimated standard errors. (Provide your code as an appendix.)

(c) Plot the data and the fitted model.

(d) Define the parameter π(x0) = 1−exp(−β1x0); it is the proportion of the maximum
value reached by time x0. Estimate π(15) and obtain an estimate of its standard
error. Use these to construct an approximate 95% confidence interval for π(15).

2. Nonlinear mixed effects models: In §10.3 the book describes extending mixed effects
models to nonlinear least squares. This is implemented in R in nlme, in the library
nlme. This question concerns the book’s analysis of the data set Sitka in library MASS,
described on pp. 286 – 288.

(a) Each tree is measured at 5 different time points. Adapt the code on p.272 to plot
the curves of size against time for several trees; some from treatment (treat =

ozone) and some from control (treat=control).

(b) Fit the nonlinear model adopted in the book, using the code near the top of p.287.

(c) Give the mathematical formulation of this model, in the form of equation (10.4),
but giving the specific form of the nonlinear and random effects parts of the model.

(d) Choose 5 trees and plot the observed and fitted equations for each of these trees.

(e) What does the statement (top of p.288) ”The t value for a difference in slope by
treatment is convincing” mean, and what part of the summary on the bottom of
p.287 does it refer to?

3. 2102 only; optional for 410 the EM algorithm for a mixture of Gaussians: Sup-
pose we have data that we expect might be modelled as a mixture of two Gaussian
distributions:
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with all five parameters θ = (π, µ1, µ2, σ1, σ2) unknown. We considered fitting this
model using maximum likelihood in class on March 10. Another way of fitting it is
described in the book by Hastie, Tibshirani and Freedman used as the 450 text this
year (§8.5.1). We imagine y has having been generated in a two-stage process: there
is a latent variable ∆ that follows a Bernoulli distribution:

∆ = 1 with probability π

= 0 with probability 1− π.

If ∆ = 1 then we generate an observation from a N(µ2, σ
2
2), and if ∆ = 0 then we

generate an observation from a N(µ1, σ
2
1).

(a) Suppose we actually observed these latent variables: then our data set would be
(y, δ) = (y1, δ1, . . . yn, δn). Show that the likelihood based on this data is

`(θ; y, δ) =
n∑

i=1

{(1−δi) log φθ1(yi)+δi log φθ2(yi)}+
∑

(1−δi) log(1−π)+
∑

δi log(π)

where φθ1 is shorthand for the density of a N(µ1, σ
2
1) and similarly φθ2 . Show also

that the maximum likelihood estimates of µ1 and σ2
1 are the sample mean and

variance of the yi’s for which δi = 0, and that the maximum likelihood estimates
of µ1 and σ2

1 are the sample mean and variance of the yi’s for which δi = 1.

(b) Since the δi are not in fact known, these estimates are not available. The EM
algorithm proceeds in steps to first estimate the δi based on a current guess for
θ, and then to update the estimates of the mean and variance parameters using
the easier likelihood based on y and the estimates of δ. Argue that a reasonable
estimate of δi is

δ̂i =
π̂φθ̂2

(yi)

(1− π̂)φθ̂1
(yi) + π̂φθ̂2

(yi)
;

and that given these estimates of δ̂i estimates of θ should be updated as follows:

µ̂1 =

∑n
i=1(1− δ̂i)yi∑n
i=1(1− δ̂i)

, σ̂2
1 =

∑n
i=1(1− δ̂i)(yi − µ̂1)

2∑n
i=1(1− δ̂1)

µ̂2 =

∑n
i=1 δ̂iyi∑n
i=1 δ̂i

σ̂2
2 =

∑n
i=1 δ̂i(yi − µ̂2)

2∑n
i=1 δ̂i

π̂ =
n∑

i=1

δ̂i/n.

These new estimates are now used to update δ̂i and we continue until convergence.
The estimation of δi is called the Expectation step as E(∆i) = pr(∆i = 1). The
update of the parameters is called the Maximization step.

(c) Apply the EM algorithm to the geyser data in the MASS library, and compare
the results with those obtained by directly maximizing the log-likelihood.
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(d) This algorithm can be applied in many similar contexts: the basic idea is that
there is a likelihood that is easy to maximize, and we can define some latent
variables whose values, if they were known, would enable us to calculate the
easy likelihood. For more discussion see HTF Ch. 8 and Thisted ”Elements of
Statistical Computing” Ch. 4.7.

Table 1: Calcium uptake data for exercise 1
time (minutes) cal (moles/mg)

1 0.45 0.34170
2 0.45 -0.00438
3 0.45 0.82531
4 1.30 1.77967
5 1.30 0.95384
6 1.30 0.64080
7 2.40 1.75136
8 2.40 1.27497
9 2.40 1.17332

10 4.00 3.12273
11 4.00 2.60958
12 4.00 2.57429
13 6.10 3.17881
14 6.10 3.00782
15 6.10 2.67061
16 8.05 3.05959
17 8.05 3.94321
18 8.05 3.43726
19 11.15 4.80735
20 11.15 3.35583
21 11.15 2.78309
22 13.15 5.13825
23 13.15 4.70274
24 13.15 4.25702
25 15.00 3.60407
26 15.00 4.15029
27 15.00 3.42484
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