
STA3000 Sufficiency and Ancillarity

Sufficiency

Definition:

A statistic S = s(Y ) is sufficient for θ, in the family of models f(y; θ); θ ∈ Θ, if and
only if f(y|s) is free of θ.

Factorization Theorem: A statistic S is sufficient for θ (in the family of distributions
{f(y; θ), θ ∈ Θ}), if and only if there exist functions g and h such that

f(y; θ) = g{s(y); θ}h(y) ∀ θ.

Interpretation: The usual interpretation of sufficiency (see, e.g. CH Ch. 2) is that a
statistician observing Y should come to the same conclusion about θ as a statistician
observing only S, because the second statistician could recover the joint density for Y
from the marginal density for S by multiplying by a fixed density (that of Y given S).
That is, an observation from the conditional density of Y given S can be generated
without any knowledge of θ. Thus it could be generated by a random number
generator. It is argued (and generally accepted) that this additional randomness
cannot provide any information about the unknown parameter θ. This discussion
assumes that the model is correct, of course. In fact, we shall see that the conditional
density of Y given S can be used for checking the model.

Minimal sufficiency: A sufficient statistic partitions the sample space Y into sub-
spaces. Two elements of Y are in the same partition if they have the same value
of s(y). Typically the ‘size’ of the partition is substantially smaller that the ‘size’
of the sample space. For example, if Y is a random variable on R

n, S(Y ) =
∑

Yi

takes values on R. The biggest reduction in dimension is obtained with the coarsest
partition. The statistic inducing the coarsest possible partition (if it exists) is called
the minimal sufficient statistic.
Definition. A statistic S = s(Y ) is a minimal sufficient statistic if it is a function of
every other sufficient statistic.

This definition is obviously difficult to work with, but can be avoided by using
the following theorem:
Theorem. The likelihood statistic is minimal sufficient.
Proof. The likelihood statistic is the partition of the sample space that puts two
values of y into the same partition if they have the same likelihood function (i.e.
their likelihood functions are in the same equivalence class). Thus y and y′ are in
the same partition if

L(θ; y) = L(θ; y′)

c(y)f(y; θ) = c(y′)f(y′; θ)

f(y; θ) = k(y′, y)f(y′; θ).
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If this holds, we write s(y) = s(y′) to indicate that s(·) is the function that indexes
this partition.

Suppose T = t(Y ) is some other sufficient statistic. By the factorization theorem

f(y; θ) = g{t(y); θ}h(y)
f(y′; θ) = g{t(y′); θ}h(y′)

If t(y) = t(y′) then

f(y; θ) = g{t(y′); θ}h(y)
= f(y′; θ){h(y)/h(y′)}
= f(y′; θ)k(y, y′)

so s(y) = s(y′), which shows that s(·) is a function of t(·).

References

The sketch of the proof given here is taken from CH, Ch.2. There is a good
discussion of sufficiency as well in SM, §4.2.

The “likelihood statistic” is a confusing term, as normally functions of y and θ
are not statistics. The term “likelihood map” is used in Fraser & Naderi (2006); this
paper (available as 238.pdf at http://www.utstat.toronto.edu/dfraser/) is the
latest is a series of studies of abstract notions of likelihood and minimal sufficiency.

The result is also proved in Lehmann and Romano (TSH), §1.9 and 2.6 or in
Lehmann and Casella (TPE), Theorem 1.6.12 and Corollary 1.6.13, p. 37.

Ancillarity

Definition:
A statistic A = a(Y ) is ancillary for θ, in the family of models f(y; θ); θ ∈ Θ, if and
only if f(a) is free of θ.
A key feature of transformation models is that the model for a sample of size n
permits a reduction in dimension of the sufficient statistic. This reduction is obtained
by conditioning. Thus, there exist functions of the data, say s(Y ) and a(Y ), for
which we can write

f(y; θ) ∝ f1{s(y)|a(y); θ}f2{a(y)}
where the marginal density of a(Y ) does not depend on the parameter θ. More
importantly, the conditional density f1 is itself a transformation family density,
with parameter θ and sample space variable s(Y ).

Location family Suppose Y1, . . . , Yn are i.i.d. observations from the location family
f0(y − θ). Letting s(y) = yn and ai = yi − yn, i = 1, . . . , n− 1, we can write

f(y; θ) =
∏

f0(yi − θ) = f1(yn|a; θ)f2(a) (1)

where

f2(a) =

∫

f0(a1 + t) · · · f0(an−1 + t)f0(t)dt (2)
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and

f1(yn|a; θ) =
f0(yn + a1 − θ) · · · f0(yn + an−1 − θ)f0(yn − θ)

f2(a)
. (3)

The numerator is just a rewriting of
∏

f(yi; θ), and an expression equivalent to (3)
is

f1(yn|a; θ) =
f0(y1 − θ) · · · f0(yn − θ)dθ
∫

f0(y1 − θ) · · ·f0(yn − θ)dθ
. (4)

The density of A does not depend on θ, and the conditional density of Yn given A
is a location family density on R.

The functions s(Y ) and a(Y ) are not uniquely determined, but they are uniquely
determined up to a location transformation. We could for example let S = Ȳ and
Ai = Yi− Ȳ . The vector A has n components but lies in R

n−1 (as all its components
must sum to 0, or in other words it is orthogonal to the 1-vector). The marginal
density for a is again given by (2), and

f(y; θ) ∝ f(ȳ, a; θ) = f1(ȳ|a; θ)f2(a).

We might choose instead to let S be θ̂, the maximum likelihood estimate of θ, and
define Ai = Yi − θ̂.

Location-scale model A version of S and A that can be used for the location-scale
model is s(Y ) = (Ȳ , sY ), where s2Y = (n − 1)−1

∑

(Yi − Ȳ )2, and ai(Y ) = (Yi −
Ȳ )/sY , i = 1, . . . , n. The vector A has n components, but is restricted to lie in
R

n−2. To prove that the distribution of A is indeed free of θ, we write

f(y; θ)dy = θ−n
2

∏

{f0
(

yi − θ1
θ2

)

}dy1 . . .dyn

= θ−n
2

∏

f0

(

ais+ ȳ − θ1
θ2

)

|J |da1 . . .dandȳds (5)

where |J | is the Jacobian of the transformation from y to (a, ȳ, s). To compute f(a)
we need to integrate out ȳ and s from this expression, so we need to figure out the
dependence of |J | on ȳ and s. The computation is a little bit tricky, but by writing
yi = ais + ȳ we can see that dyi = sdai, and since a has n− 2 free dimensions, the
factor sn−2 will be part of the Jacobian. It turns out that this is the only part that
depends on ȳ and s. The details are presented in the next section. The result is

f(a)da =

∫ ∫

sn−2

θn2
f0

(

a1s+ ȳ − θ1
θ2

)

. . . f0

(

ans+ ȳ − θ1
θ2

)

dȳds

=

∫ ∫

(θ2v)
n−2

θn2
f0

(

a1θ2v + ȳ − θ1
θ2

)

. . . f0

(

anθ2v + ȳ − θ1
θ2

)

dȳθ2dv

=

∫ ∫

vn−2

θ2
f0

(

a1v +
ȳ − θ1
θ2

)

. . . f0

(

anv +
ȳ − θ1
θ2

)

dȳdv

=

∫ ∫

vn−2f0(a1v + t) . . . f0(anv + t)dtdv (6)
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which shows that the marginal distribution of A does not depend on θ. The con-
ditional distribution of s(Y ), given A, is simply the ratio of the joint density to
this marginal density. Again, the ancillary is not uniquely determined, but it is
unique up to choice of location and scale variable. We could use (a′, y(1), y(n)− y(1)),
where a′i = (y(i) − y(1))/(y(n) − y(1)), instead of (a, ȳ, s), or many other equivalent
formulations.

Details on the Jacobian:

As mentioned above, it is necessary to compute the Jacobian in the transforma-
tion from ȳ to (ȳ, s, a), where a = (a1, . . . an) and ai = (yi − ȳ)/s. This will be done
below both algebraically and geometrically.

Since s2 =
∑

(yi−ȳ)2, we can see that the vector a, although it has n components,
in fact lies in R

n−2, because
∑

ai = a · 1 = 0 and
∑

a2i = ||a||2 = 1. To compute
the Jacobian we make the transformation one-to-one by letting

t1 = ȳ, t2 = s, ti = ai i = 3, . . . , n;

note that we are explicitly using only n − 2 components of a. To find the inverse
transformation we have

yi = t1 + t2ti i = 3, . . . , n

and using the restrictions on a we have

a1 + a2 = −
n

∑

3

ti

1− a1 − a2 =

n
∑

3

t2i

from which we can write a1 = f1(t3, . . . , tn) = f1(t(2)); a2 = f2(t3, . . . , tn) =
f2(t(2)), say. Then

y1 = ȳ + s · f1(t3, . . . , tn)
y2 = ȳ + s · f2(t3, . . . , tn)
y3 = ȳ + s · t3
...

yn = ȳ + s · tn
is now a one-to-one transformation, with Jacobian determinant

∣
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where fij(t(2)) = ∂fi(t(2))/∂tj , i = 1, 2; j = 3, . . . , n. A well-known formula for the
determinant of a partitioned matrix shows that the Jacobian is of the form

sn−2h(t(2)) = sn−2h(a)

which is the result we were looking for.
In the above derivation the location and scale estimates were ȳ and s, with the re-

sult that a is orthogonal to the 1-vector, and has length 1. However, the same deriva-
tion applies for a variety of other location and scale estimates. For example, suppose
we wanted to use the maximum likelihood estimates of µ and σ, which are defined
as the solutions to the equations ∂ log f(y; µ̂, σ̂)/∂µ = 0, ∂ log f(y; µ̂, σ̂)/∂σ = 0
i.e.

−1

σ̂

∑

g′(
yi − µ̂

σ̂
) = 0

−n

σ̂
+

yi − µ̂

σ̂2

∑

g′(
yi − µ̂

σ̂
) = 0

where g(yi) = log f(yi). The ancillary statistic a is defined by ai = (yi − µ̂)/σ̂, so
that yi = σ̂ai + µ̂, and these two equations can be reexpressed as

∑

g′(ai) = 0
∑

aig
′(ai) = n

which gives two restrictions on the ai. Thus we can proceed as above and express
(µ̂, σ̂, a3, . . . an) as a one-to-one function of ȳ, and find the inverse transformation.
It is of exactly the same form (with s replaced by σ̂), but the functions called f1
and f2 in the above derivation are different.

The geometric derivation of the result is actually very similar, but a little more
elegant. It again uses ȳ and s as coordinates to get the result, and then argues
that this choice of coordinates is arbitrary. Although it’s not necessary, it’s a little
bit easier to first define zi = (yi − µ)/σ; we want to construct the conditional
distribution of z̄, s(z), where z̄ = n−1

∑

zi, and s2(z) =
∑

(zi − z̄)2, given d(z) =
(z − z̄ 1)/||z − z 1||. Note that in terms of the original variables z̄ = (ȳ − µ)/σ,
s(z) = σs, and d(z) = a. (Bold font is used for vectors here to try to clarify the
geometric argument.)

Now we compute the Jacobian of the transformation from z to {z̄, s(z),d(z)} by
figuring out what the differential element dz is in the new coordinates. That is, in
the joint density of z,

f(z)dz =
∏

f(zi)dzi

we consider the differential element
∏

dzi as giving the volume of a small box at the
point z. We want to express this volume in the new coordinates. The coordinates
{z̄, s(z),d(z)} provide locally orthogonal coordinates at the point z = z̄ 1+s(z)d(z),
and we want to know how they change as we change to point z to z + dz. The
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coordinate specified by z̄ lies on the 1-vector, so a small change in the coordinates
z cause a change in z̄ of

√
ndz̄. Since s(z) measures the length of z − z̄ 1, its rate

of change is simply ds. (Think of the picture in R
2.) Now d(z) is orthogonal to

the 1-vector, and lies on a unit sphere in the n − 1-dimensional subspace of Rn

that is orthogonal to the 1-vector. Thus the volume element is the surface volume
on the sphere defined by s(z)d(z), i.e. the sphere of radius s(z). This volume is
s(z)n−1du, where du is surface volume on the unit sphere in R

n−1 (which is n − 2-
dimensional). (In fact an explicit expression for the surface area of the unit sphere
in R

d is (2π)d/2/Γ(d/2).)
The coordinates in this development are orthogonal, so the volume element is

the product of the three pieces. For this reason these coordinates are a convenient
choice for computing the differential. However, if we choose to coordinatize the
point using other location and scale functions, the result is unchanged. The only
thing we need to make sure of is that the location coordinate, say µ̃(z), satisfies the
property µ̃(az+b1) = aµ̃(z)+b, the scale coordinate, say σ̃(z), satisfies σ̃(az+b1) =
aσ̃(z), and d is appropriately defined in terms of these two coordinates. We can
show that such location and scale coordinates must themselves be location scale
transformations of z̄ and s(z), so that we can convert the above result to a more
general one. (Although µ̂1 and σ̂ will not give orthogonal coordinates, so that in
these two dimensions the ‘box’ is a parallelogram, we can still figure out the volume
by multiplying the base by the height!) Using the more general coordinates will not
provide an explicit expression for the normalizing constant in terms of the surface
area on the sphere, because the new vector d isn’t forced to lie in the orthogonal
complement of the 1-vector.

The geometric argument is from Chapter 2 of Inference and Linear Models

(Fraser, 1979).
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